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Direct methods for solving singular integral

equations with shifts in the unit circle

F. Feras

Abstract

The computation schemes of spline-collocation methods for
solving singular integral equations. A theoretical foundation of
these two methods is obtained in space L2.

In the present paper we give theoreticaly justification of the nu-
merical schemes of spline-collocation method for solving the singular
integral equations (SIE) of the following form

(Aϕ ≡)
4∑

j=1

[aj(t)(Vjϕ)(t) + bj(t)(SVjϕ)(t)] = f(t),

t ∈ Γ0, Γ0 = {t, |t| = 1}, (1)

where aj(t), bj(t) (j = 1, 4) and known functions,ϕ(t) is unknown func-
tion,

(V1ϕ)(t) = ϕ(t), (V2ϕ)(t) = ϕ(t̄),

(V3ϕ)(t) = ϕ(−t), (V4ϕ)(t) = ϕ(−t̄); .

S is the operator of singular integration along the Γ0.
At the same time as in [1] we consider the system of integral equa-

tions:
[D1(t)I + D2(t)S̃ + D3(t)K]Φ(t) = F (t), t ∈ Γ0 (2)

where

D1 =
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D2 =
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,

D3 =
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, K(·) =


 1

πi

∫

Γ0

(·)
τ

dτδjk




4

j,k=1

F (t) = (f(t), f (1)(t), f (2)(t), f (3)(t)), I is the identical operator and S̃
is the singular integration operator acting in the space of 4-dimensional
vector-functions.

Here and further by the g(1)(t), g(2)(t), g(3)(t) we note the functions
g(t̄), g(−t), g(−t̄) correspondingly.

Theorem 1. If the SIE (1) has the unique solution ϕ(t) than the
system of SIE (2) has the unique solution Φ(t) that is the vector-
function of following form:

Φ(t) = (ϕ(t);ϕ(1)(t);ϕ(2)(t);ϕ(3)(t)).

Inversely, if the system of SIE (2) is uniquely solvable and the
vector-function Φ(t) = (ϕ1(t), ϕ2(t), ϕ3(t), ϕ4(t)) is the solution of
the system (2),then the SIE (1) is uniquely solvable too and the func-
tion

ϕ(t) =
1
4
[ϕ1(t) + ϕ

(1)
2 (t) + ϕ

(2)
3 (t) + ϕ

(3)
4 (t)]

is the solution of the SIE (1).
The justice of this theorem can be proved by direct verification.
The theorem 1 makes it possible to reduce the theoretical founda-

tion of the numerical schemes for approximate solution of SIE (1) to
the theoretical foundation of the corresponding schemes for system of
SIE (2), that is the easier problem.

93



F.Feras

1 The deduction of the numerical scheme for
SIE (1)

Let
{

j
n

}
be the decomposition of the real axis R by the equidistant

points tj = j
n , j = 0;±1; . . . , n− natural number.

Let us note by Sm
n the space of all 1-periodical smooth splines of

an add degree m = 2r − 1 with defect 1 corresponding to this decom-
position ([2]).

Thus, every function from Sm
n with its derivatives up to the m− 1

order inclusive, is continuous and 1-periodical on R, but its contraction
on the interval ( j

n , j+1
n ) is polynomial of degree less or equal to m.

Let

{Xk(t)}n−1
k=0 =

{
Xk(e2π·i·t)

}n−1

k=0
, t ∈ [0, 1)

be an interpolation basis from Sm
n , satisfying the conditions

Xk(tj) = δjk, j, k = 0, n− 1

where δjk is Kronecher delta.
We see an approximative solution of SIE (1) in the form of the

following spline

ϕn(t) =
1
4

4∑

s=1

ϕsn(t) ≡ 1
4

4∑

s=1

n−1∑

k=0

α
(n)
sk Xk(t), t ∈ Γ0 (3)

with unknown complex numbers α
(n)
sk = αsk, s = 1, 4, k = 0, n− 1.

We specify the unknown splines ϕsn(t), s = 1, 4 from the following
equation of the spline collocation method

Pn(D1I + D2S̃ + D3K)Φn = 4PnF (4)

where Pn is interpolation projection operator on Sm
n ,

Φn(t) = (ϕ1n(t); ϕ
(1)
2n (t); ϕ

(2)
3n (t); ϕ

(3)
4n (t)); – is unknown 4-dimensional

vector -spline.
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2 Deduction of the numerical scheme for sys-
tem of SIE

Let us consider an arbitrary system of SIE

(MZ ≡)C(t)Z(t) + D(t)(SZ)(t) + (RZ)(t) = Y (t), t ∈ Γ0 (5)

where C(t) = (cls(t))
q
l,s=1 , D(t) = (dls(t))

q
l,s=1 are matrix functions

of dimension q × q, q is natural number, R is the integral operator,
kernel h(t, τ) of which is q× q matrix-function determined on the torus
Γ0 × Γ0, Y (t) is vector -function of dimension q, Z(t) is unknown q−
dimensional vector-function.

We seek an approximate solution of system (5) as a q− dimensional
vector-function sn(t) ∈ [Sm

n ]q

sn(t) =
n−1∑

k=0

γ
(n)
k Xk(e2πiθ), θ ∈ [0; 1)

where γ
(n)
k = γk =(γk1, γk,2, . . . , γk,q) k = 0, n− 1 are unknown q−

dimensional complex numbers. We specify these numbers from the fol-
lowing conditions. We substitute the vector-function z(t) in the left
side of the (5) by sn(t) and then insist that the obtained expression
coincides with the right part Y (t) in the choosen points of decomposi-
tion. After calculation we obtain the following system of linear algebric
equations S.L.A.E. for unknowns γk, k = 0, n− 1 :

C(tj)γj + D(tj)
n−1∑

k=0




(SXk)(tj) . . . 0
. . . . . . . . .
0 . . . (SXk)(tj)


 γk +

+
n−1∑

k=0

(RXk)(tj)γk = Y (tj), j = 0, n− 1 (6)

According to [3]

(SXk)(tj) =





1, when j = 0

σm(tj) =
σ−m(tj)
σ+

m(tj)
, j = 1, n− 1
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where

σ±m(s) =
∞∑

k=0

(k + s)−m−1 ±
∞∑

k=1

(k − s)−m−1

and

(RXk)(tj) =


 1

2πi

∫

Γ0

hls(tj , τ)Xk(τ)dτ




q

l,s=1

It is easy to check that the matrix of S.L.A.E. (6) represent system of
n · q unknown γks, k = 0, n− 1; s = 1, q with n · q equations. Matrix
extended system contain the sum of the diagonal block and circulant
block matrices [4], the circulant matrices defined with the help of uni-
tary matrix of form U :

U =
√

1
n

(
e2πij· k

n

)n−1

j,k=0

This circumstance has the special importance for creation the computer
programs for the method.

3 Theoretical foundation of the algorithms

We consider the system of SIE (5) in the space [L2(Γ0)]q with the norm
in L2(Γ0)

|| · || =


 1

2π

∫

Γ0

| · |2



1
2

We assume the coefficients, the kernel and the right part of the
equation are continuous functions of their arguments. Using the results
of the work [2,5] determined the correctly of the following theorem.

Theorem 2. Let the following conditions be fulfilled

1) Operator M is invertible in L2(Γ0),

2) Det[C(t)±D(t)] 6= 0, t ∈ Γ0,
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3) The left and the right special index of matrix function [C(t)±D(t)]
all equal to zero.

When the beginning with numbers n ≥ n0, S.L.A.E. (6) has unique
solution γ

(n)
k , k = 0, n− 1, with every right part Y (t) from [L2(Γ0)]q.

The approximative solution Zn(t) =
∑

γ
(n)
k Xk(t). converge with n →∞

with the norm [L2(Γ0)]q to the exact solution Z(t) system S.I.E. (5).
Applying theorem 2 to the system (2), we will have:
Theorem 3. Let the following conditions be fulfilled.

1) Operator A is invertible in L2(Γ0),

2) det[D1(t)±D2(t)] 6= 0, t ∈ Γ0,

3) The left and right special index of the matrix function [D1(t) ±
D2(t)] all equal to zero.

When the beginning with numbers n ≥ n1, equation (4) has unique
solution, with every right part F (t) from [L2(Γ0)]4.

The approximate solution ϕn(t) =
n−1∑
k=0

x1,k · Xk(t) converge with

n →∞ with the norm L2(Γ0) to the exactly solution ϕ(t) S.I.E (1).
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