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Algorithms for finding the minimum cycle

mean in the weighted directed graph

D. Lozovanu C. Petic

Abstract

In this paper we study the problem of finding the mini-
mum cycle mean in the weighted directed graph. The compu-
tational aspect of some algorithms for solving this problem is
discussed and two algorithms for minimum cycle mean finding in
the weighted directed graph are proposed.

1 Introduction

The problem of finding the minimum cycle mean in the weighted di-
rected graphs appears as an auxiliary problem of finding optimal sta-
tionary strategies for optimal control problem [1]. In this paper we
propose a new polynomial time algorithm for finding the minimum cy-
cle mean in the weighted directed graph. There will be also considered
and analyzed a more general problem of finding the optimal cycle mean.

2 Problem formulation

Let G = (V,E) be a directed graph, where V , |V | = n, is the set of
vertices and E, |E| = m, is the set of edges. On the edges set E there is
defined a function c : E → R from E into the real numbers, associating
each edge e ∈ E a weight c(e). The function c is called the function of
cost and c(e) is called the cost of the edge e.

The problem of finding minimum cycle mean in a digraph was for-
mulated by Richard M. Karp as follows [2]. Given any sequence of edges
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σ = {e1, e2, . . . , ep} we define W (σ), the weight of σ, as
p∑

i=1

c(ei) and

define M(σ), the mean weight of σ, as
W (σ)

p
· Then we assume that

λ∗ = min
c

M(σ), where c ranges over all directed cycles in G. λ∗ is
called the minimum cycle mean.

Richard M. Karp has given a simple characterization of the mini-
mum cycle mean in the directed weighted graph as well as an algorithm
for computing it efficiently.

We consider that G is strongly connected. If G is not strongly
connected, then we can find the minimum cycle mean by determining
the minimum cycle mean for each strong component of G, and then
taking the least of these. The strong components can be found in
O(n + m) computational steps.

3 Main results

The problem of finding minimum cycle mean in the weighted directed
graph can be reduced to a linear programming problem [1,3], which
represents the continue model of the minimum cycle mean problem
in the directed graph. The mathematical formulation of the problem
considered in this paper can be given as:

∑

e∈E

c(e)z(e) → min





∑

e∈V +(v)

z(e)−
∑

e∈V −(v)

z(e) = 0, ∀v ∈ V

∑

e∈E

z(e) = 1

z(e) ≥ 0

(1)

where V +(v) is the set of edges, which have their extremities in v,
V −(v) is the set of edges originated in v, and z(e) is a variable associ-
ated to each edge e ∈ E.
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Solution z of the system (1) determines in G some circulation with
constant (equal to 1) sum of flux values by edges of the directed
weighted graph G. It is easy to show, that any solution of the sys-
tem (1) can be represented in the form of convex combination of the
fluxes of some elementary directed cycles with constant (equal to 1)
sum of flux values by edges of these cycles. Thus, associating each
solution z of the system (1) the graph Gz = (Vz, Ez) induced by the
edges e ∈ E with z(e) > 0, we obtain [4] that any of the extreme points
of the polyhedral set Z of solutions of the system (1) will correspond
to the graph Gz in G, which have the structure of elementary directed
cycle.

Lemma 1 If z ∈ Rm is the solution of the system (1) and corresponds
to an extreme point of the set Z, then the graph Gz reprezents an
elementary cycle.

Proof. First of all we shall prove that there exist a cycle in Gz.
If Gz contains only edges for which z(e) > 0, then in any vertex v
from the vertex set Vz get in an edge z(ei) > 0 and get out an edge
z(ej) > 0. If G is a finite graph, then crossing the vertices from Vz we
shall come to the first vertex from which we have started. Thus, there
exist a cycle in Gz.

Further, we shall prove that Gz is an elementary cycle. Let assume
that Gz is not an elementary cycle. Then, according to the demon-
stration made above in Gz there exist a cycle. We shall choose an
elementary cycle from Gz. Let assume that the edges of this cycle are
{e1, e2, . . . , en2}.

Let z = (z(e1), z(e2), . . . , z(en1), 0, . . . , 0) be the solution of the sys-
tem (1), associated to Gz. Then we can reprezent it in the follow-
ing form: z = (z(e1), z(e2), . . . , z(en2), z(en2+1), . . . , z(en1), 0, . . . , 0),
where the first n2 values of z are the values of the solution on the
edges of the elementary cycle which we have chosen. Let us denote
θ = min

ei∈C0

z(ei) > 0, where C0 is the elementary chosen cycle. Further,

we shall consider the following two solutions:

z1 =
1

1− n2θ
(z(e1)− θ, . . . , z(en2)− θ, z(en2+1), . . . , z(en1), 0, . . . , 0)
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and

z2 =
1

n2θ
(θ, θ, . . . , θ︸ ︷︷ ︸

n2

, 0, 0, . . . , 0), z1, z2 ∈ Rm.

We’ll show that z1 and z2 are feasible solutions of the problem (1). It
is easy to see that, considering the sum of first n1 values of the solution

z1 we obtain:
n1∑

i=1

z(ei)−n2θ = 1−n2θ, because
n1∑

i=1

z(ei) = 1. Applying

the same procedure we obtain, that z2 is also a feasible solution of the
problem (1).

Solution z, associated to Gz, can be reprezented as the linear com-
bination of two feasible solutions z1 and z2:

z = (1− n2θ)z1 + n2θz
2, where n2θ < 1.

In that case z is not an extreme point of the convex polyhedron Z,
which is the set of all solutions of the problem (1). So then, Gz is an
elementary cycle.

Theorem 1 If z∗ is the optimal solution of the problem (1), then the
cycle, generated by the set Ez∗, is the minimum cycle mean in G, and
vice versa if Gz∗ represents the minimum cycle mean in the graph G,
then Z∗ is the optimal solution of the problem (1).

Proof. Let assume that z∗ is the optimal solution of the problem
(1). Since z∗ is the solution of the system (1), and corresponds to an
extreme point of the polyhedral set Z, then the graph Gz∗ , associated
to z∗, represents an elementary cycle. Since z∗ is the optimal solution
of the problem (1), then Gz∗ is the minimum elementary cycle of G,
which is the minimum cycle mean in the weighted directed graph.

And vice versa, if Gz∗ is the minimum cycle mean in G, then this
graph is generated by the solution z∗, which corresponds to an ex-
treme point of the set Z, and it represents the minimum solution of
the problem (1).

The theorem is proved.
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Theorem 2 Let G = (V, E) be a directed weighted graph. Then, there
exist the function ε : V → R and the number p, such that

ε(v)− ε(u) + p ≤ c(e), ∀e = (v, u)

and

min
u∈V +(v)

{ε(u)− ε(v)− p + c(e)} = 0, ∀e = (v, u), ∀v ∈ V,

where p = λ∗ is the length of optimal cycle.

Proof. For proving this theorem, we shall consider the dual prob-
lem of the problem (1), which can be written as:

{
max p
ε(v)− ε(u) + p ≤ c(e), ∀e = (v, u)

(2)

According to the theorem of duality there exist z∗, and ε, p are the
optimal solutions of the problem (2) then and only then, when

z∗[ε(u)− ε(v)− p + c(v, u)] = 0, ∀(v, u) ∈ E.

From this it follows, that for edges e = (v, u) of minimum cycle mean

min
u∈V +(v)

{ε(u)− ε(v)− p + c(v, u)} = 0,

where (v, u) ∈ C∗, C∗ is the minimum cycle mean. Further, the num-
bers ε(v) for v ∈ V , which do not belong to the optimal cycle will be
found in the following way: ε(v) will represent the least length of the
path from the vertex v to the optimal cycle. Then it is clear, that the
relation

min
u∈V +(v)

{ε(u)− ε(v)− p + c(v, u)} = 0, ∀v ∈ V

will take place. The theorem is proved.
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4 Algorithms

Algorithm 1. (Find the minimum cycle mean of the weighted
directed graph G)

Input: A weighted directed graph G = (V,E) and the function of
cost c, defined on the edge set E.

Output: The minimum cycle mean of the graph G.

Step 1. Form the linear programming problem (1).
Step 2. Determine the optimal solution z∗ of the problem (1).
Step 3. Determine edges e ∈ E for which z∗(e) > 0. These edges

generate the minmum cycle mean in G.

Algorithm 2. (Find the minimum cycle mean of G by determining
the cycle of negative weight)

Input: A weighted directed graph G = (V,E) and the function of
cost c, defined on the edge set E.

Output: The minimum cycle mean of G.

Step 1. Let S1 = 0, S2 = max
e∈E

{c(e)}.

Step 2. If S2 − S1 <
1

2n max c(e)
, then c(e) → c(e) − S1, ∀e ∈ E

and determine the cycle of negative weight, which will be the minimum
cycle mean of the graph G. If not, then go to Step 3.

Step 3. Let h =
S2 − S1

2
and p = S1 + h. Make the substitution:

c(e) → c(e)− p.
Step 4. If there exist a cycle of negative weight, then S1 = S1 + p

and go to Step 2. If not, then S2 = S2 − p and go to Step 2.

The algorithm for determining the cycle of negative weight is given
in [5].
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5 Generalization

The problem formulated above can be generalized in the following way.
It is given a graph G on the edge set of which there are defined two
functions c : E → R and d : E → R. Where c is the function of edges
costs and d is a function, which associate every edge e ∈ E some other
number d(e) ≥ 0. It is necessary to find such a cycle Φ, for which the
aim function

z(Φ) =
∑

e∈E c(e)∑
e∈E d(e)

is minimum. The problem of finding the cycle Φ in the graph G with
double weights, for which the relation z∗(Φ) is minimum, can be solved
applying the algorithm of determining the cycle of negative weight in
the graph G.

This problem can be reduced to a linear programming problem in
the following way:

∑

e∈E

c(e)z(e) → min





∑

e∈V +(v)

z(e)−
∑

e∈V −(v)

z(e) = 0, ∀v ∈ V

∑

e∈E

d(e)z(e) = 1

z(e) ≥ 0

(3)

For this problem lemma 1 takes place. That means, that if z ∈ Rm

is the solution of the system (3) and corresponds to an extreme point
of the set Z, then the graph Gz = (Vz, Ez), associated to the solution
z, represents an elementary cycle. And also, for problem (3) it is true,
that if z∗ is the optimal solution of this problem, then Gz∗ represents
the minimum cycle mean of the graph G.
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