Computer Science Journal of Moldova, vol.5, no.3(15), 1997

Grammar flow analysis reduction to scheduling
problem

K. Chebotar

Abstract

The article describes a variant of GFA problem connected
with shared storage. It shows that this GFA problem may be
reduced to a well known problem of scheduling theory (the Bel-
lmann—Johnson problem for two—machine conveyer system). It
proposes an effective algorithm to solve a particular case of the
problem.

1 Introduction

GFA [1, 2] is a technique that offers a unified framework for describing
and proving of properties of context—free grammar. GFA is performed
on the grammar (syntax) graph, whose nodes correspond to nonter-
minals or productions, and whose edges are drawn according to the
productions. The propagation functions are defined to assign some
information to graph nodes. This information may have a very com-
plex structure. According to the nature of these functions two kinds of
flow analysis schemes are distinguished. In the bottom—up scheme, the
information is assigned to the nodes bottom—up that is that the infor-
mation attached to the left—hand side of a production depends on the
information attached to the symbols in the right-hand side of produc-
tion. In the top—down scheme information is propagated from the root
top—down and reflects the dependence of the information attached to
the symbols in the right—hand side of a production on the information
attached to the left-hand side nonterminal but generally also on the
information previously attached during the bottom—up propagation.

(©1997 by K.Chebotar

353

K.Chebotar

The specific interest for GFA problem appears as a result of applica-
tion of attribute grammars technique to the design and implementation
of language processors. Attribute grammars offer convenient tools to
solve various problems at the compiler construction level. For exam-
ple, such well-known problems as attribute grammar circularity test
and attributes evaluation. In this context new methods were proposed
to solve these particular cases which would be effective for more com-
mon properties of GFA. Let note some of them:

GP grammar partitioning [3], in which the grammar is decomposed
into subgramimars

WS weak stability [4] which allow to skip the processing of nontermi-
nals and productions that generates only terminal strings

SS using the definition of iteration semantic stability [5, 6] determines
the evaluated information “ages”, that permit to avoid redundant
computations.

The article describes a variant of GFA problem connected with
shared storage. It shows that this GFA problem may be reduced
to well-known problem of scheduling theory (the Bellmann-Johnson
problem for two—machine conveyer system). It proposes an effective
algorithm to solve a particular case of this problem.

2 Notations and definitions

Let G = (Vn, Vr, P, Z) be a context-free grammar, where Vy is the set
of nonterminals, V7 is the set of terminals, P is the production set and
Z is the axiom. Each production will be of the form
p: Xo — XlXQ...an.

The grammar graph is a directed graph I'¢ = (Vy,Ug) with the
set of nodes Viy and the set of edges Ug defined as follows:

UG = {(Xlqu) | Elp € Pup : XZ — an/B7 XJ € VN7
a,pe(VnUVr)'}

354

Grammar flow analysis reduction to scheduling problem

Let K = {G1,G2,...,G;} be the connected components (equiva-
lence classes) of graph I'¢ and 'y = (K, Up) be the condensed-graph
for I'¢. Every permutation of I'g nodes = = (Gi,,Gi,,...,G;;), ob-
tained as the result of topological sorting of I'g is an admissible graph
treewalk used to resolve all enumerated above GFA problems.

Let II will be a set of all admissible permutations of I'y nodes. For
example, for the graph described in the Fig.1 the following permuta-
tions are admissible:

Gs, Gy, G3,Ga, G)

Gs, Gy, G2, G3,G)

G4,G3,G5,Go,GY),
)
)

?

@\
@/

G4a G57 GQ; G3a Gl

G4a G57 G3a G2a Gl }

Moreover the admissible permutation practically does not influence
the effectiveness and the final result of algorithms used to solve GFA
problems. One could try to reach more effective solutions of GFA
problems using a choice of admissible permutation from II, in particular
more effective storage allocation. Let us show that the variant of this
problem may be reduced to a well-known scheduling problem for two-

Fig.1

machine conveyer system.

3 The optimal scheduling problem for two—ma-
chine conveyer system

Because the readers interested in GFA problems may be not acquainted
with the scheduling theory, we will formulate here the classical variant

355

K.Chebotar

of problem: to obtain the optimal schedule for processing N objects by

the two—machine conveyer system.

Let n; (m;) be the processing time for i—th object by the first (sec-

ond) machine. It is supposed that:

e all the objects must be processed by the first machine then by the

second one or only by one of them (the case n; = 0 or m; = 0);

e cach machine can process simultaneously no more than one ob-

ject;

e the same object cannot be processed by both machines simulta-

neously;

e the objects processing order is the same for both machines.

The problem: order the processing of the objects by conveyer in such

a way that minimize the total time of all objects processing.
The scheme of such conveyer system is presented at Fig.2.

Machine
1

® O ®

Fig.2

356

Machine

11

®

Grammar flow analysis reduction to scheduling problem

Lets x; will be the wait time for arrival of the i—th object to the
second machine. The typical schedule is the following:

Machine I 1 n2 n3 Ty ns

Machine II X1 mi | Lo | Mma| T3 ms3 |Mm4| Ts ms

Fig.3

N
It is necessary to minimize T'(r) = 3° (rn; + ;) for all m € II. The

Jj=1
values z; may be expressed through n; and m; in the following way:

1 =m
x9 = max(ny + nge —x1 —my,0)
x3 = max(ny + ng +n3 — x1 — x9 — My — My, 0)

J J=1 J—1
Ty = ma:z:(iz1 n; — Zzl T; — z'Zl m;, 0)
Applying the simple rules such as max(a, (max(b, ¢)) = max(a, b, ¢) and
a + max(b, ¢) = max(a + b,a + ¢), we obtain

I =n1

x1 + x9 = max(ny + ne — my,ny)

I +CL‘2 +.T3 = max(m +n2 +n3 —mip —my, N +’n2 —ml,nl)

év:l z; = max(Y(m, 1),Y (n,2),...Y(n,N)) ,

J J-1
where Y (7, 1) =n,Y(m,J) = > n;— >, my, J =2,3,...,N.
i=1 i=1
N N N
Because in the equality T'(w) = > x; + >, m;. Y, m; is con-
=1 i=1 =1
N 1 1
stant, it is necessary to minimize > x;, i.e. it is necessary to find

=1

357

K.Chebotar

min max Y(m,j).
TEIl 1<j<N

The simple algorithm is known, proposed by S.M. Johnson, to re-
solve this problem. Some complexities may appear when any restric-
tions are formulated to the set of admissible objects permutation II.
For example, the objects may be interconnected by an acyclic directed
graph. In this case every topological sort of graph nodes will be an
admissible permutation.

4 The optimal storage allocation

Let I'g = (K, Up) be the condensed graph for the grammar graph I'¢,
K = {G1,Ga,...,G}. Applying the method, looking the same like
shown in [3] to each node G; one can evaluate n;,the volume of storage
necessary to test the circularity of subgrammar G;, and m;,the volume
of storage which becomes free after G; testing.

Algorithm Ay (topological ordering of the I'y nodes)

1:=1;
repeat
e give the rank ¢ to all terminal nodes G; of Uy (no edge exists
from it), a(Gj) :=4;
e discard them from I'y, along with the edges that enter it;
®j: =17+ 1;
until I'y = @

Algorithm A; (topological ordering of grammar nonterminals)

it : foreach G; € Uy do
foreach X; € G; do
BX;) = a(Gy)
endfor
endfor;
ordering : foreach (X;, X;) €'y & X; € G1& X; € G2&G1 # G2 do

358

Grammar flow analysis reduction to scheduling problem

B(X;) = maz(B(X;), a(Gy))
endfor.

Therefore, the priority 8(X;) = k shows that after subgrammar G;
(a(Gy) = k) circularity testing all the storage, occupied by relations of
dependency for nonterminal X; may be made free. This information
permits for all node subgrammars G; of graph I'y to calculate (maybe
approximatively) characteristics n;, the volume of storage necessary to
keep the dependencies during circularity test for subgrammars G; and
m;, the storage made free immediately after G; testing.

Let m = (G1,G9,...,G;) be an arbitrary admissible permutation
of 'y nodes. For subgrammar G; testing it is necessary to allocate
the storage which volume is equal to n;. To test G it is necessary to
allocate the storage of volume equal to ny — my 4+ no. If we denote
by Y (7, G ;) the volume of storage necessary for circularity test of G
then we obtain:

Y(ﬂ', Gl) =N

Y(7T,G2) =n1 —mi1+n9

J J=1
Y(r,Gy)= > ni— Y m;
i=1 i=1
The total volume of storage necessary for the test of all nodes of
graph I'y is equal to F/(7) = fgai(lY(ﬂ, Gj).
<j<

Changing the permutation 7 the problem of optimal storage alloca-
tion is reduced to find the miﬁlF(ﬂ), i.e. to the problem to find optimal
e

schedule for two-machine conveyer system. To solve this problem one
can use any known at present algorithm of scheduling theory. If on the
values of n; and m; to put restrictions n; > m; then a simple and ef-
fective algorithm to solve this problem may be presented. The variant
of such a problem will be described in the next chapter.

359

K.Chebotar

5 An algorithm to solve the optimal storage
allocation problem

Let I'y = (K, Up),be the directed acyclic graph with K = {G1, G, ...,

G}, ny > my, 1 <i<Il. Wedenote A(G;) the set of 'y nodes reachable

from node Gj, i.e. A(G;) ={G;|(G;,G4) € Us} and

T'4(G;) = (A)G;),Ug(Gy)) - the subgraph of Ty, generated by the set

A(G).

Algorithm Ay (construction of optimal permutation 7*)

1:=1.
repeat

e Select the arbitrary node GY of graph Ty for which m; = Jnax m;.
i€V

This node we denote as the leader.

e Construct the graph I'4(GY) = (A(G?), Uy (GY)), generated by
the set of nodes A(G;). Let m; = (G}, G2,... ,Gf", G?) be an
arbitrary admissible permutation of T'4(GY) nodes.

e Discard from the graph I'y the subgraph I 4(GY) and all the
edges (G1,G2) entering the nodes of subgraph T 4(GY), i.e.
Gy € A(Gy,),G1 € A(GY). Let us denote the graph obtained as
the result of this transformation as T{.

o T :=T}%,i:=i+1.

until 'y = ©.

Because at every step of algorithm we discard at least one node

360

Grammar flow analysis reduction to scheduling problem

of graph Iy, at the finite number of steps
gorithm finishes. Let 7n* = (mwy,m9,...,m)
G, G3,...,G8,GY, ...,G},G?,...,GfT,GS).

T, §r<ltheal—
— (G}
= I3

1
(G, G3,....6aM, qY,

Lemma 1. 7 €1l .

The demonstration is concluded directly from the definition of
A(G;) and the construction of 7*.

Let m; = (G},G%,...,Gfi,G?),l < i < r. The following lemma

holds:

Lemma 2. max(Y (7*,G}),Y (z*,G2),...,Y (z*, G¥),
Y(n*,GY)) = Y(r*, GY).

Proof. For arbitrary j,1 < j < n;, let us denote:
d(G}) = n(G)) —m(G]), D Z d(G7)-

Y(r*, G) Z D, + Z d(G?) +n(G])

,_n

Y(n*,GY) = Z D+ Zld(G5)+n(G§)—m(Gf)+ gjld(Gf)+n(G?).
s=j)+

ks ,
Therefore Y (7*, G?) — Y (7, Gg) = Y d(G§)+n(GY) —m(GY).
s=j+1

ki ,
Because Y. d(G%) > 0,m(GY) > m(G?),n(GY) > m(GY) then
s=j+1
Y (7, GY) > Y (r*, GY).
The Lemma 2 shows that the maximal value of all Y (7*, G?) must

be found among values Y (7*,GY), i.e. F(n*) = max Y (7*,GY), and
SIST

that the values of all Y (7*, GY) does not depend on the order of nodes
GLG?, ..., Gf" in the permutation ;.

If at some step ¢ for the nodes G, and G, we have m, = m, and
this is the maximal value among the all graph nodes then in the corre-
spondence with the algorithm As the following choices of leader node
are possible:

361

K.Chebotar

1) GY = Gp, and at the next (i + 1)-th step G?+1 = G is selected,

2

Gq ¢ A(Gp);

2) GY = G,, and at the next (i + 1)-th step GY,; = G, is selected,

1

Gy & A(Gy);
3) G? = Gpan € A(Gp)§
4) G? = GpaGp € A(Gq)§

For these cases we obtain the following permutations:

1) 7 = (G},G?,...G¥,GY),
Ti4+1 = (Gz+1a Gz2+1a S Gz-ﬁla G?+1)
GY = G, GH—I = (4. Let us denote the final permutation by 77.
2) ©t = (G},G?,...G% . GY),
ki
Ti4+1 = (Gz+17 Gz+1a .. Gz_:ila Gz+1)
G? = G4, GY,; = Gp. Let us denote the final permutation by 3.

3) n' = (GLG2,...,G5,...,GY".Q9), @9 = G,,Gf = G, Let us
denote the final permutation by 73.

4) ©t = (G},G2,...,G5,...,G¥ .G, G9 = G,,G} = G,. Let us
denote the final permutation by 7.

Lemma 3. Y (7, G?—l—l) =Y (n3, G?—l—l) =Y (73, G?) =Y (nj, G?)

Proof. First let us show that Y (n}, GY,y) > Y (7}, GY).
Y (1, GO,) = Y(nt, GY) = z A(G2,,) +n(Gy) — m(Gy) > 0 because

n(Gy) — m(Gp) = n(Gy) — m(Gq) > 0. Analogously Y (r3,G?,) >

Y (73,GY). Taking into account that A(G,) U A(G,) is the same set

for all the cases 1)-4), let us show that YV (n},GY,) = Y (75, G,).
Y(n}, GYq) =Y (73, Gy) = n(Gy) —m(Gp) +n(Gg) —n(Gy) +m(Gy)

362

Grammar flow analysis reduction to scheduling problem

n(Gp) = 0. In the same manner Y (7}, Gy,) — Y(n5,GY) = n(G,) —
m(Gp) +n(Gy) — n(Gy) + m(Gy) —n(G,) = 0.

The rest of equalities is proved in the same way.

It is easy to generalize the Lemma 3 for several nodes with the same
characteristics m;. The Lemma 3 shows that the value of Y (7*, GY) for
the last of such nodes in 7* does not depend on the order of choice of
leader nodes and is the maximal among the values Y for all preceding
leader nodes.

Theorem. F(7n*) = min F(x).
well

Proof. In correspondence with the Lemmae 2 and 3 it is necessary
to search the maximal value of Y in leader nodes GY,GY,...,GY of
permutation 7r*. Let 7 will be the arbitrary permutation from II, 7 =
(Giy,Giy, ..., Gyy),m # ©*. To prove the Theorem it is sufficient to
show that for every leader node GO of permutation 7%, in 7 there exist
the node G, , such that Y (7, G;) Y (m* GO)

Let us take now the minimal segment of (G;,,Gi,,...,G;,) of per-
mutation 7, which includes all the leader nodes (GY,GY,.. .,G?) of
permutation 7*. This segment must be finished with one of the leader
nodes G, G3, ..., G}. Let us denote this node by Gi, = GY,1<t<j.
This results from the definition of I1, A(G}) and from the construction
of m*. If GY = G9 then obviously Y (7, G;,) > Y (7*,GY), because
the segment (G;,,Gj,,...,G;,) besides all elements of permutations
1,2, ..., T, may contain another elements.

If G # G then let us take the difference Y (w, G;,) — Y (n*,GY) =
n(GY) — (GO) +n(GY) + Dy — n(GO) (GO) + D, >0, because
(Gﬁ) > m(Gé) > m(GO) By D, we denoted the summa of diffferences
d(G;,) of (Gi,,Gi,,...,G;,) segment elements not belonging to the
segment 7y, 7o, ..., 7, Dy > 0. The Theorem is proved.

Obtained permutation 7* may be used in the implementations of
algorithms GP, WS, SS for the effective storage allocation.

363

K.Chebotar

6 Conclusions

The main steps in construction of the permutation 7* are:

— sorting the graph I'g nodes in descendent order of values m;;
— extraction of the subgraphs I'(A4;);

— construction of the permutations ;.

Therefore, the general complexity of algorithm is O(log, [+¢q) where
l, ¢ are the numbers of nodes and edges of graph I'y.

The proposed algorithm may be used also to solve the variant of
scheduling problem for two-machine conveyer system on the oriented
acyclic graph. The problem formulated bellow may be also solved by
this algorithm.

Let us assume that the complex of interactive problems(events) is
solved and there is an acyclic directed graph D = (N,U), expressing
the relations between the problems (events). For the i-th problem it
is known the total number of resources n;, necessary for the problem
execution and total number of resources m;, made free after its exe-
cution. Among the all admissible schedules we need to find that one,
which minimizes the total number of resources, necessary to resolve the
whole complex.

References

[1] U. Méncke, R.Wilhelm “Grammar Flow Analysis”. Attribute
Grammars, Applications and Systems. Proceedings of Interna-
tional Summer School SAGA, Prague, Chehoslovakia, June 4-13,
1991, pp 151-186.

[2] M.Jourdan, D. Parigot. “Techniques for Improving Grammar Flow
Analysis”. European Symp. on Programming (ESOP 90),Copen-
hagen, N.Jones, ed., pp. 240-255, Lect. Notes in Comp. Sci, 432,
Springer - Verlag, New-York- Heiderberg-Berlin, May 1990.

[3] K. Chebotar. “Some Modifications of Knuth’s Algorithm for Ver-
ifying Cyclicity of Attribute Grammars”. Progr. and Computer
Software, 7, (Jan. 1981), pp. 58-61.

364

Grammar flow analysis reduction to scheduling problem

[4] P. Deransart, M. Jourdan, B. Lorho. “Speeding up Circularity
Tests for Attribute Grammars”, Acta Informatica, 21 (Dec. 1984),
pp. 375-391.

[5] M.Jourdan, D. Parigot. “More on Speeding up Circularity Tests
for Attribute Grammars”. Rapport RR-828, INRIA, Rocquen-
court, Apr. 1988.

[6] K. Chebotar. “The Design and Analysis of Algorithms for At-
tributed TWS Construction”. PhD thesis, Computing Center,
Russian Academy of Sciences, Russian Academy of Sciences,
Moscow, 1984 (in Russian).

K.Chebotar Received 3 June, 1997
Institute of Mathematics,

Academy of Sciences of Moldova,

5 Academiei str., Kishinev,

MD 2028, Moldova

phone: (373-2) 738073

e—mail: chebotar@math.moldova.su

365

