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On graphs G of diameter two with
f(G) < |IV(GE)|+A-6§6+1

A. Pogtaru

Abstract

It is known that for any graph G there exists a graph H whose
median is isomorphic to G: MedH = G. For any graph G, let
f(G) denote the minimal number of vertices of a connected graph
H satisfying MedH = G. 1t is known that if G of diameter two
has n vertices and minimal (maximal) degree 6(A) then f(G) >
n+ A — 9. We constructed a wide class of graphs G of diameter
two for which f(G) <n+A -6+ 1.

1 Introduction

Let G be a simple connected graph with vertex set V(G) = {v1,v2,

...,vp} and edge set E(G), m = |E(G)|. For v € V(G), deggv denotes

the degree of v, § = §(G) = mindeggv;, A = A(G) = maxdeggv;. If
(3 (3

u,v € V(Q), then dg(u,v) denotes the smallest number of edges in a

path from u to v in G and is called the distance between u and v. For
v € V(G) let Ni(v) ={u € V(G) : dg(u,v) = k}.

The distance of v in G is defined by dg(v) = Z dg(v,u). A
ueV(G)
vertex of minimal distance is a median vertex of G, and the median
MedG of G is the subgraph of G, induced by its median velrtices.
Slater proved [1] that for any graph G there exists a graph H whose
median is isomorphic to G: MedH = G. For any graph G, let f(G) de-
notes the minimal number of vertices of a connected graph H satisfying
MedH = G.
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Miller showed [4] that f(G) < 2|V(G)] if 6(G) > 1 and Hendry
showed [2] that f(G) < 2|V(G)| — 6(G) + 1 for any G and gives a
slightly better bound for certain G. Also Hendry [3] proved that

G) > V(G d —d
F(G) 2 V(@) +  max  |degou — degel

for graph G with diameter equal to two.
It is clear that

d —d <A-—0.
(i) 19e96 — degev] <
Consequently, f(G) > |V(G)|+ A — 6.
In this paper we constructed a wide class of graphs G with diameter

two for which
f(G)S|IV(G@)|+A-0+1.

In such a way, for these graphs G we obtain

V(@) +A-6<f(G)<|V(G)|+A—-6+1.

2 Construction of graph H

Let G be a graph with diameter two and V(G) = {v1,v2,...,v,}. Let
H be the graph obtained from G as follows:

V(H)=V(G)|J{z1,2,...,2a-541}and E(H) = E(G)|J E*.

E* will consist of new edges, drawn between some of the vertices v;
and the new vertices z;.

The algorithm that will construct the edges from E* at every step
connects a vertex v; (or some of them) with exactly A+1—deggv; new
vertices ;. While drawing edges (v;, z;) two priorities must be taken
into account , the first priority being superior to the second one:

1. The vertex v;, will be connected with such vertices x;, that at
the given moment satisfy the condition d(v;, z;) > 2.
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2. The vertex v;, will be connected with such vertices x;, whose
degree at the given moment is minimal.

The algorithm consists of the following steps.
Step 0. Vertex v; is connected with A + 1 — deggv, arbitrary vertices
Zj.

Step 1. It is taking one after another a vertex v’ € Ny(v1) and it is
connected with A+1—degqv' vertices z; (while drawing each edge
the two priorities must be taken into account, as we mentioned
above).

Ending vertices v' € Ni(v1), we’ll pass to the next step.
Step k(k > 2). It is taking one after another one vertex v\¥) € Ny, (v;)

and is connected with A+ 1 — deggv™®) vertices xj (with the help
of A + 1 — degav'®) new edges).

Ending vertices v(®) from Ny (v;) we’ll pass to step k + 1.

Remark. The number of steps is e(v1) + 1, where e(vy) is the
eccentricity of v in G.

Theorem 1 The graph H, constructed by the above algorithm, has the
following properties:

1° deggvi =A+1, i=1,n;

2° dH(vl7x])§27 i:17n7j 17A_(5+17

3° |deggw; —deggxj| <1, i=1,n, j=1,A-6+1.

Proof. We’ll take one after another a vertex v € V(G) for checking
up the properties 1°,1°,3°. We’ll suppose that the vertices will be
taken in the same order, in which they were taken in the algorithm
above. It is necessary to mention that the priority 1 is ensured by the
algorithm (by it’s definition).

Let’s consider for the first the vertex v,. This vertex is directly con-
nected (at the distance 1) or through the intermediary of its neighbours
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(their number being equal to deggvi) at distance 2 with all vertices z;
by s edges,

s=A+1—deggu + Z (A+1—deggv'). (1)
v'€N1(v1)

It easy to verify that s > A + 1 — 4. Indeed, (1) implies

s—(A+1—-0) =0—deggu, + Z (A — deggv’) + deggvr > 0,
v'€N1(v1)

that is s > A + 1 — 0. Because the edges are drawn according to
priorities 1 and 2, this inequality ensures that the condition 2° will be
fulfiled for the vertex vy.

It is obvios that respecting of the priorities 1 and 2 we will ensure
the fulfilment of the condition 1° and 3°.

Now, we'll consider the vertex v' € Ni(vy) (as we agreed v’ will be
the first of the vertices taken at the first step) and for it we’ll prove the
condition 2°: d(v',z;) < 2 for any j.

Lemma. If

Ni(v') € Ni(o1) | {01}, (2)

then for v’ the condition 2° is fulfilled.

Proof. Let’s suppose that there exists one vertex z; for which
d(v',z;) > 2. Then due to the first priority, the vertex v’ isn’t di-
rectly connected (at the distance 1) with any vertex z;, with which v,
is directly connected. Indeed, at the moment when we had to connect
v' directly with A 4+ 1 — deggv' vertices, it was

d(v',x;) = d(v',v1) + d(vi, z;) = 2

and, thus, in accordance to the priority 1, v had to be connected
with vertices, situated at a distance more than 2 (there were such
vertices, for example, ;). The vertex v’ isn’t directly connected with
vertices x; either with which the vertices v € Ny (v1)\ Ny (v') are directly
connected. Indeed, at the moment when we had to connect each of
these vertices v with respective vertices z;, the vertex v’ had been
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already connected with them. The degrees of these vertices x;, after the
connection with v’ is 1 and by priority 2 every vertex v € Ny(v1)\ Ny (v)
had to be connected with vertices x; which had degree 0. Consequently,
if there exists z; than d(v',z;) > 2, then we’ll get d(v,z;) > 2 for any
v € Ni(v1)\Ni(v') and, therefore, d(vy,z;) > 2. This will contradict
with d(vi,z;) <2 for any z;.

Thus, lemma is prooved.

Now we will consider a vertex v' € Ny(vy). If Ny(v') C Ny(v1) U{v1},
then, by Lemma, d(v',z;) < 2 for all vertices ;. Suppose, that the
condition 2° is not satisfied. Obviously, v’ shall be connected from v,
(at distance 2) with A 41 — deggv, from the vertices z; and directly
with A + 1 — deggv' vertices ;. Two cases can occur.

Case 1. Through A 4+ 1 — deggv' edges, which is to be shared, the
vertex v is directly connected only with such vertices z;, with which
also v; is directly connected (with all or only with a part of them).
This means that

A +1—deggv' < A+1—deggvi, thatis degqv' > degguy .

The difference A +1—deggv1 — (A+1—deggv’) = degav' — deggvr
represents the number of vertices x;, directly connected with vy, but
not connected directly with v’. For each of these A+1—deggv, vertices
d(v',z;) <2.

Let us see if v’ is connected with the aid of its neighbour vertices
(different with v1; their number is deggv’' — 1) with the other vertices
xj ( their number is A +1—6 — (A + 1 — deggv1), that is deggv, —
). From every of deggv’ — 1 vertices adjacents to v' the edges were
drawn towards the vertices x; after the edges from v’ had been drawn.
Because deggv’ > deggv, and taking into consideration the priority
1, the number of all these vertices is sufficiently to connect all the
adjacents to v’ vertices with any from deggvy — § vertices.

Case 2. A+1—deggv' > A+1—deggui, that is deggv' < deggu:.
Two cases are possible here: 2a) and 2b).

2a). The vertex v is connected directly with all those A+1—degg v,
vertices z;, with which is connected v and, besides this, v’ is connected
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with still
s=A+1—deggv — (A +1—deggv1) = deggvy — degav’

vertices ;.

The difference A+1—§ — (A +1—deggv') = deggv' — § represents
the number of the vertices «; with which v’ is not connected neither
directly and nor through v;. These vertices are connected directly with
the vertices from Nj(v')\{v1}. Because

INy(v")\{v1}] = deggv' —1 and §>1,

their number is sufficient to be able to draw from them by one edge to
each of the deggv’ — ¢ vertices z;, not directly connected neither with
vy nor with o' (these connections are ensured by priorities 1 and 2).
The others § — 1 vertices from Nj(v')\{v1} are connected with vertices
xj, holding account of those two priorities.

So it is clear, that v’ at the respective step could be connected
directly or with the aid of its neighbours with the all vertices x;, so as
for each z; we will have d(v', z;) < 2 and also |degz; — degz;| < 1.

2b). The vertex v’ is not directly connected with all the A + 1 —
degquy vertices xj, with which vy is directly connected, or even neither
with one.

Obviously, there exists at most

A+1—-86—(A+1—deggv') +1=deggv' —d+1

vertices x; not directly connected neither with v' nor with v;. By
reasons similar to those from the case 2a) it can be shown, that with
the aid of its neighbours from Np(v')\{vi} the vertex v’ is connected
with the all these vertices ;.

Thus, also in case 2 the condition d(v',z;) < 2 is satisfied for any
Zj.

It is clear that the condition 3° will be ensured by priority 2.

Thus, Theorem 1 is proved.
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Corollary. For any vertex v; € V(G) we have degyv; = A+1 and
the number of the new edges (of the form (v, x;)) is

n
Z(A +1—deggv;) =n(A+1) —2m.
1=1

Since |degpx; — degpxj| <1 for any x; and x;, it follows

n(A+1) - 2m"

( Recall that if a > 0, then

fa] = a, if a is integer; )
| [a]+1, if ais not integer

The result below is implied by Corollary.

Theorem 2 MedH = G if and only if

3 The graphs G of diameter two with f(G) <
n+A—-0+1

Let § and n are two integer numbers satisfying

n—(6+1) n—(0+1)

5 5 Tk

§>2, >§—1,

Sl

3

k is an integer, kK > &6 — 1, ¢ is an integer, 0 < ¢ < § — 1. We will
construct the graph G' with

V(Gl) - {’1)1,’1)2,. .. ,’l)n},E(Gl) - E1 UE2 U .. UE5+1,
E = {(vl,vj) 1] =20+ 1},Ez = {(v,-,vj) :
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j=0+(—2)k+1,0+ (@ —2k+i+k}, fori=2qg+1;

Ei={(vivj): j=0+2+q+ (i —2)kd+2+q+ (i —2)k+k+1}

fori=q+2,0+ 1.

It is clear that deggivi = d,degciv; = k+ 1 for 1 = 2,q+ 1, and
degnv; =k for i =q+2,6 + 1.

On each set of vertices Nq(v;)\{v1},i = 2,q+ 1, we will construct

one complete graph K,(Cz_i)_l, and on each set Ny (v;)\{v1},i =q¢+2,0+1

- one complete graph K ,gi). The graph so obtained from G' is denoted

by G2.

It is clear, that V (G?) = {v1,v2,...,v,} and E(G?) = E(G') E*,
where E* represents the set of edges of complete constructed subgraphs.
The diameter of graph G? is equal to 4.

Now we will construct the graph G. For this we will add the
new edges of type (v;,v;) for v; and v; from different complete sub-

graphs. Exactly, every vertex v; from K ,(:31 will be connected exactly

with one vertex v; from each subgraph K ,(21, ., K ,(66_‘1). Every ver-

tex from K(Z)

k+
K E_’gl, LK ,gd_‘n. Similarly, we will proceed with the vertices from

K lgi)l and so on. We’ll have to take into account a single condition:
the vertex v; will be connected with such vertices, which at this mo-
ment have the minimal degree. The graph which is obtained is G and
it’s diameter is equal to 2. Evidently, miin degqv; = deggvi = 0.

, will be connected with one vertex from every subgraph

Further on we will calculate the number of edges of the graph G.
The maximum degree of vertices v; from K ,(CS), s =1,0 — q, is equal with

k+0—-1+ [%—‘ From all k£ vertices of each subgraph K ,(CS), exactly

k k
vertices have the degree k+90—2+ [%‘ . Therefore, these § —q subgraphs

k+q—k [%‘ vertices have the degree k +0 — 1+ [g—‘, but k [gw —q

g

contain (0 —q)(k+q—k [k

-‘) vertices with the degree d + k —1+ [%-‘
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and (0 — q)(k [%‘ — q) vertices with the degree of § + k£ — 2 + [%—‘
()

In K7\, s = 1,q, the degree of each vertex is § + k — 1. Because
n

ZdegGvi = 2m, m = |E(G)|, we have
i=1

2m=04+qk+2)+ (0 —¢)(k+ 1)+ gk +1)(0 +k)+

(5—q) (k tq—k m) (5 Fh—1+ m ) +(6—q) (k m _ q> (o4

-2 — [%-‘) . From here it is easy to obtain :

2m =26 + q + (k + 6)(2q + ko) — ¢° (5)

or
2m = ké? + 6(2 + 2¢ + k?) + q(2k + 1 — q) (6)

(k,q - integers, k > 1,q > 0).
The sufficient conditions for
[n(A—i—l)—Zm" <AL

A—-§+1
Case 1. ¢ =0. Then A = §+k—1 and A—§+1 = k. The inequality

n(A+1)—2m . n(d—l—k)—Zm"
_ < A _ <
[ Aot -‘ < maybewrlttenas[ 2 < 4§+
k — 1. This is equivalent to
—2
W <S4 k-1 )

Indeed, the sufficient conditions for the last inequality (7) will be

sufficient for that one too. This results out of that if a = M

is an integer, then the inequality a < 0 + k — 1 is equivalent to [a] <
0+k—1. If however a isn’t an integer, then a < d + k£ — 1 and therefore
[a] =[a] +1<0+Fk—1
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Because n = 0k + d + 1, on account of (6), for ¢ = 0 we obtain
(0k+0+1)(0+k) — (k6> +20 + k?6) <ké +k* -k, or

E2—2k—(62=6)>0 . (8)

This condition is sufficient for (7). The roots of the trinomial are
k1o =14 V14 6% — 4. Thus we have obtained

Theorem 3 If 6 > 2, k = w
n(A+1)—2m
the [ A—5+1

is an integer and k > 6 — 1,

WSAfor(my
k> [1+V1+62 -9 (9)

Remark. Because 1 + V02 +1—-0=1+/(0—-1)?+q=1+0—
1+08=0+p,8¢€(0,1), the restriction (9) means k > § + 1.

Corollary. For any § > 2 there exists an infinitude of graphs G of
diameter two, for which f(G) <n+ A -6+ 1.

Case 2. ¢ > 0(q =1,0 —1). We have seen that A = max deggv; =

0+k—1-— [%-‘ and , because k > ¢ — 1, it follows [%-‘ = 1. Hence,

in this case

AcbthA—dt+1okr, 20D

5 okt

STl

7
therefore

n=0k+06+q+1,2m="k*+62+2¢+k) +q2k+1—q)

A+1)—2
and the condition w < A may be written as follows
A—-§+1
2+ (q—0)k+ (0+q¢d —¢*—0*—1)>0. (10)

The roots of the trinomial are

) §—q+ /502 +5¢42+4—26(3¢+2)
1,2 =
: 2
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and they exist, because
562 4+ 5¢% +4 —26(3¢ +2) = (V56 — Vbg)> +4+45(g — 1) > 4.
It is clear, that k; < 0,ky > 0. Thus we have shown

Theorem 4 For any graph G of diameter two, constructed by proce-
n—(0+1)

dure described in section 3, with parameters n, (6 > 2), ————= =

J

k + %, k>6—1,1<q<0d—1, the constraint (4) is satisfied for any

— + 52 _
. §—q+ /50 5q2+4 20(3q +2) . ()

Corollary. For any § > 2,1 < q < § — 1, there exists an infinitude
of graphs G of diameter two, which satisfies the constraint (11). For
these graphs we have f(G) <n+ A —0+ 1.

Example. Let 6 = 10. The inequality (11), which is sufficient for
(4), implies:

1) if g =1, then k£ > 15; 6) if ¢ = 6, then k > 11;

2) if g =2, then k > 14; 7) if ¢ = 7, then k > 10;

)

)

3) if ¢ =3, then k£ > 13; 8) if ¢ = 8, then k£ > 10;
4) if g =4, then k > 12; 9) if ¢ = 9, then k£ > 10.
5) if ¢ =5, then k > 11.

Remark. If =0 —1, then k > 6.
Indeed, for ¢ = 6 — 1 the discriminant D = 2(6 — 1) + ¢, € € (0,1)
and

k> [1”(‘52_1)“] —f5-1+4¢1=3 (¢ € 0,1)

We have seen that if £ > 0 + 1, then f(G) <n+A—-0+1. In
case ¢ > 0 not every k > 0 + 1 makes to be (4). However, there exists
k > 6, which satisfies (4). For example, we can take the graph H with
q=0—1.
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