Computer Science Journal of Moldova, vol.5, no.3(15), 1997

On program correctness and teaching
programming

M.Frentiu

Abstract

First, a short survey on program correctness is given. Then,
some consequences of this theory, given as important rules in the
programming activity, are presented.

The most important property of a program is whether it accom-
plishes the intentions of its user, i.e. if it is correct. This means that
it performs correctly for all inputs for which the input predicate ¢(X)
is true, and in these cases the rezults Z are correct, i.e. the output
predicate ¥ (X, Z) is true.

A method for proving partial correctness of a flowchart is due to
Floyd [5]. An important step of this method consists in finding (guess-
ing) the invariant predicate for each cutpoint. Usually these predicates
reflect the meanings of variables.

But the students learn this theory some time after they know how
to write a program. And they do not prove, usually, the correctness of
their programs.

It is the time to teach programming in conformity with the theory of
program correctness. As Naur has underlined in [20], “it is a deplorable
consequence of the lack of influence of mathematical thinking on the
way in which computer programming is being pursued”. We think that
teaching programming well is an important part of our tasks as teachers
in the universities.

(©1997 by M.Frentiu

250



On program correctness and teaching programming

1 A short survey on program correctness

In a program P we distinguish three types of variables, grouped as three
vectors X, Y and Z. The input vector X = (z1,z2,...,Ty) consists
of the input variables, which do not change during computation. They
denote the known data of the problem PP solved by the program P.
The output vector Z = (z1, 22, . .., 2, ) consists of those variables which
denote the results of the problem PP. The program vector Y consists
of the auxiliary variables, which denotes various partialy results of the
computation.

Two predicates are associated to the program P: an input predicate
and an output predicate. The input predicate ¢(X) is TRUE for
those values of X for each the problem may be solved. The output
predicate (X, Z) is TRUE for those values a and b of the vectors X
and Z for which the results of the problem are b when the initial input
data is a.

The specification of the program is the pair formed from the
input predicate ¢(X) and the output predicate (X, Z).

We say that the program P terminates over the input pred-
icate ¢(X) if for each value a = (ay,aq,...,a,) of the vector X for
which the predicate ¢ is TRUE, the execution of P terminates. The
program P is partially correct with respect to the specification if
for the value a for which ¢(a) is TRUE and the execution terminates
with the results b = P(a) then v(a,b) is TRUE. The program P is
totally correct with respect to p(X) and (X, Z) if the program P
terminates over ¢(X) and it is partiallly correct with respect to ¢(X)
and ¢¥(X, Z).

A method for proving partial correctness of a flowchart program is
due to Floyd [5] and it uses a set of cutpoints. This is a set of points
on the arcs of the flowchart such that every loop includes at least one
such cutpoint. Also, there is a cutpoint on the arc leading from the
START box, and there is a cutpoint on the arc leading to the HALT
box.

To each cutpoint 7 of the flowchart, a predicate P;(X,Y) is associ-
ated. This predicate, called inductive assertion, is invariantly true

251



M.Frentiu

for the current values of X and Y in this cutpoint, i.e. it characterizes
the relation that must exist between variables at this point. At the
START cutpoint the corresponding inductive assertion is ¢(X) and at
the HALT cutpoint the inductive assertion is ¢ (X, Z).

The set of cutpoints defines the paths that must be verified. Let
a be a path leading from the cutpoint ¢ to the cutpoint j, with no
intermediate cutpoints (there can be more such paths). To this path
we associate a predicate R, (X,Y) which gives the condition for the
path « to be traversed, and a function r,(X,Y) such that if Y are the
intermediate values in the cutpoint ¢ then, when the path is traversed,
Y' = r,4(X,Y) are the values in the cutpoint j. We represent this as
follows:

PZ(X,Y) Ra(X,Y) P](X7Y)
O > O
i « J

Next, a verification condition is associated to the path a.
This condition is:

VXVY (FP(X,Y) ANRA(X,Y) = Pj(X,ro(X,Y)))

Floyd [5] proved that if all the verification conditions are true then
the program is partially correct with respect to ¢(X) and (X, Z).

Floyd also suggested a method for proving termination using well-
founded sets. A well-founded set M is a partially ordered set, without
infinite decreasing sequences. For each path « from 7 to j, a termina-
tion condition is formed. It uses a function

U - DX X DY — M.
The termination condition for the path « is:

VX VY (p(X) ARo(X,Y) = (ui(X,Y) > u;(X,70(X,Y)))

252



On program correctness and teaching programming

If the partial correctness was proved and Pj(X,Y’) was the invariant
predicate for the cutpoint 7, then the termination condition for the path
« may be:

VX VY (Pi(X,Y) A Ra(X,Y) = (4(X,Y) > u;(X, 70 (X, Y)))

If all termination conditions are proved then the program P termi-
nates over ¢(X).

The ideas of Floyd were formalized by Hoare [11] who introduced
an axiomatic method for proving the partial correctness of a program.
His article changed the programming activity from an art into a science.

Some early papers on program correctness [10, 17, 18] have proved
the correctness of some concrete algorithms. Just Hoare has made a
significant move from a posteriori proof of an existing program [11, in
1969] to a program design method [10, in 1971].

Today there are hundreds of papers dealing with Program Correct-
ness. There are also various aspects of analysing this problem. We can
prove the correctness of an existing program, or we can try to build a
program for doing it. For a given program we are interesting in an au-
tomatic proving the correctness, or in the synthesis of loop predicates
[13, 14, 22].

Certainly, we can try to prove that a given Program is correct with
respect to its specification. But we have learned from Gries [9] that it
is more important to write correct programs from the beginning. As
he said: “A program and its proof should be developed hand-in-hand,
with the proof usually leading rhe way”. The idea that the algorithm
construction and its proof should proceed hand in hand originated with
Dijkstra [2].

2 The consequences on teaching programming
It is not only possible, but necessary, to teach explicitly the methods
and principles for good programming.

Certainly, the correctness is not the only quality that a good pro-
gram must have. Robustness, extendibility, reusability are three other

253



M.Frentiu

external qualities [19]; they can be achieved through some internal qual-
ities of programs: readability and modularity, simplicity and clarity.

Some of the most important rules considered important for pro-
gramming well, which are consequences of the above mentioned theory,
are given and commented below.

2.1. Define the problem completely (i.e., write the predi-
cates ¢(X) and ¥(X,Y)) [4, 9, 16, 21].

This rule seems obvious and easy to respect. But too often the
students (and just the old programmers) begin to work before they
know the correct specification of the problem.

2.2. Think first, program later [3, 16].

Do not start writing the program before its design. Respect the
required steps for a good programming. As the above rule asks, write
first the program specification and think to its correctness. Then design
the algorithms and prove their correctness. Program later, when the
possibility of commiting logical errors was removed.

2.3. Use Top-Down Design [6, 16, 21] (Also known as
“Stepwise refinement” [23], or “Divide and Conquer” [9]).

This is one of the most important programming method. Its main
characteristics are [16]:

e correct specification;

e language independent design;

Design in levels;

Postponement of the Details to Lower Levels;

Proof of correctness at each Level.

The accent is on the correctness at each step in the program construc-
tion. Again the first rule is underlined; the problem must be clearly
and completely defined. Then think to the problem, not to a specific
programming language. Think to the method of solving the problem,

254



On program correctness and teaching programming

and decompose it in easier subproblems. Design in levels; at each level
solve the important actions of that moment. But turn back and refine
the postponed activities (nonstandard sentences).

2.4. Write and use modules as much as possible [3, 16,
21].

A module (a procedure, a function, or a Turbo-Pascal Unit, a mo-
dule of Modula, or an Ada package) has a well defined task. It may
solve a subproblem, which is clearly, simpler than the entire problem.
It is much easier to prove the correctness of small procedures. First
of all, the number of paths between the cutpoints is reasonable. The
tested modules may be organised in libraries and reused.

2.5. Use Structured Programming [1, 6, 21].

We do not try to define this method here. But we are convinced it
has played an important role in programming. It asks for the clarity
and the presence of structure in the texts of programs. Many of the
present rules are connected to Structured Programming.

2.6. Prove the correctness of algorithms during their
design [2, 9].

The errors may be discovered much early than running the program
on a computer. As Gries [9] said: “A program and its proof should be
developed hand-in-hand, with the proof usually leading the way”.

2.7. Decide which are the necessary program variables,
and what are their meanings. Write invariants for these
variables and insert them as comments in the program [9,
16).

Use auxiliary variables only if it is necessary, if there is a reason
to use them. Each variable plays its role in the program. It must
receive correct values. Define rigorously the meaning of a variable by
an invariant predicate and use it in proving the program correctness,
and testing the program.

255



M.Frentiu

2.8. Choose suitable and meaningful names for vari-
ables [16].

During the maintenance phase, when other programmers have to
work on the program, the clarity, and the readability of the program
are very important, and good names improve this clarity.

2.9. For each variable of a program, make sure that it
is declared, initialised and properly used [3, 20].

A very frequent error made by beginners is the utilization of nonini-
tialised variables. This fact certainly causes errors. But a variable may
appear in aprogram accidentally. A line of a program may be omitted,
and some variables are not declared or initialised (for this, rule 2.18 is
very important).

2.10. Verify the value of a variable immediately it was
obtained [4, 6].

Each variable must be protected from wrong values. Especially
during testing, if it is known that a variable must be in [a,b] check
this, and report if this is not true (see also, rule 2.14).

2.11. Use comments to document the program [16].

The text of a program must be understood easily by all persons
who have to read it. For this purpose, comments can be very useful,
illuminating the logical structure of the program. Each module must
contain comments which give the module specification, the meaning of
the variables, the invariants used in the proof of correctness, and any
useful information for the reader.

2.12. Do not overlook the special cases of the problem
[20].

The program must give correct answers for all inputs. From the
programiners experience, it was observed that some special cases of
the problem are omitted from programs. Also, one of the qualities of
a program must be its robustness [19].

256



On program correctness and teaching programming

2.13. Define and use Abstract Data Types (ADT) [3,
21].

An ADT can be viewed as an independent module that define a data
structure and operations on this structure. Due to its independence of
the context where it was used, the reusability of this module is assured.
Also, this ADT may be changed, adding new operations on the defined
structure, or modifying some operations.

2.14. Design input-output routines for each ADT [4,
21].

These routines must check if the transferred values are correct, en-
suring the fulfilment of 2.10. Also, these operations are important for
the independence of the defined ADT.

2.15. Verify each part of a program as soon as possible
[4].

A wvery important rule! The specification of the program may be
incorrect; check it from the beginning. Then prove the correctness of
problem decomposition, and of each subalgorithm.

Nevertheless, do not forget to test the modules and the pro-
gram [7, 8]. The proof may me wrong, and, more probably, the pro-
gram may not be a correct translation of the designed algorithms (a
wrong translation, an omitted line, or some misspeled errors).

2.16. Use symbolic names for all entities (constants, types,
variables, procedures and functions) [3].

It is considered that all properties of a type, and the meaning of
the entity are concentrated in its name. Also, using names, the clarity
of the program is improved, and the modifiability is easier.

2.17. Avoid to use global variables [4, 21].

It is difficult to analyse a program that uses global variables. And
it is impossible to prove the correctness of a module that uses global
variables independent of the context where it is used.

257



M.Frentiu

2.18. Hand-check the program before running it [15,
16].

First of all, it is important to have introduced in the computer
the conceived program. The various errors (mispelling, typing errors,
omitted lines) are very probable. It is not difficult to check for and then
to eliminate these errors. But the rule asks for a human execution of the
program, before an automated execution. We may be very surprised
by the errors we have perpetrated. Esspecially for the beginners, for
the first year students this own program execution may be very useful.

2.19. Write the documentation of the program simul-
taneously with its building [21].

The maintenance activities need information about all levels of the
program development. Also, for the reusability of some parts of the
program, this documentation is very useful. This rule asks to write the
documentation during program development. It must contain docu-
ments for each phase of program building: specification, design, coding,
and testing. The program itself must be selfdocumented by comments.

2.20. Strive for continuing invention and elaboration
of new paradigms to the set of your own ones [6].

This, and many paradigms were discussed by Floyd [6] in his Tur-
ing award Lecture. We need to known the existing methods, and to
permanently aquire new paradigms.

References

[1] Dahl O.J., E.W.Dijkstra and C.A.R.Hoare. Structured program-
ming. Academic Press, New York, 1972

[2] E.W.Dijkstra. Guarded commands, nondeterminacy and formal
derivation of programs. Comm. A.C.M., 18 (1975), 8, pp.453-457

[3] M.Frentiu, B.Parv. Programming Proverbs Revisited. Studia
Univ. Babeg-Bolyai, Mathematica, XXXVIII (1993), 3, pp.49-58

258



On program correctness and teaching programming

[4]

[5]

[6]

[7]

[14]

[15]

[16]

M.Frentiu, B.Parv. Elaborarea Programelor. Metode si Tehnici
moderne. Ed. Promedia, Cluj-Napoca, 1994

Floyd R.W. Asssigning meanings to programs. Proc. Symposium
in Applied Mathematics, 19, AMS, 1967, pp.19-32

Floyd R.W. The paradigms of Programming. Comm. A.C.M., 22
(1979), 8, pp.455-460

Geller M. Test data as an aid in proving program correctness.
Comm. A.C.M., 21 (1978), 5, pp.368-375

Gelperin D. and B.Hetzel. The Growth of Software Testing.
Comm. A.C.M., 31 (1988), 6, pp.687-695

Gries D. The Science of Programming. Springer-Verlag, Berlin,
1981

Hoare C.A.R. Proof of a program: FIND. Comm. A.C.M., 14
(1972), pp.39-45

Hoare C.A.R. An axiomatic approach to computer programming.
Comm. A.C.M., 12 (1969), pp.576-580

Hogger. Derivation of Logic Programs. Journal ACM, 20 (1981),
2, pp-372-392

Igarashi S., London R.L., Luckham D.C. Automatic Program Veri-
fication I: a logical basis and its implementation. Acta Informatica,
4 (1975), pp.145-182

Katz and Manna. Logical analysis of programs. Comm. A.C.M.,
19 (1976), 4, pp.188-206

King J.C. Symbolic Execution and Program Testing. Comm.
A.C.M., 19 (1976), 7, pp.385-394

Ledgard H.F. Programming Proverbs for Fortran Programers.
Hayden Book Company, Inc., New Jersey, 1975

259



M.Frentiu

[17] London R.L. Proving Programs Correctness. Some Techniques and
Examples. BIT, 10 (1970), pp.168-182

[18] London R.L. Proof of Algorithms. A new kind of certification.
Comm. A.C.M., 13 (1970), pp.371-373

[19] Meyer B. Object Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, 1988

[20] Naur. Proof of Algorithms by general snapshots. BIT, 6 (1966),
pp-310-316

[21] Schach S.R. Software Engineeering. IRWIN, Boston, 1990

[22] Wegbreit. The synthesis of loop predicates. Comm. A.C.M., 17
(1974), pp.102-112

[23] Wirth N. Program development by stepwise refinement. Comm.
A.C.M., 14 (1971), 4, pp.221-227

Militon Frentiu, Received October 13, 1996

“Babeg—Bolyai” University,

Faculty of Mathematics and Informatics,
1, M.Kogalniceanu str., Cluj-Napoca
3400, Romania.

phone: 40-64-194315

e—mail: mfrentiu@cs.ubbcluj.ro

260



