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An Algorithm for Solving Quadratic

Programming Problems

V. Moraru

Abstract

Herein is investigated the method of solution of quadratic pro-
gramming problems. The algorithm is based on the effective se-
lection of constraints. Quadratic programming with constraints-
equalities are solved with the help of an algorithm, so that matrix
inversion is avoided, because of the more convenient organization
of the Calculus. Optimal solution is determined in a finite num-
ber of iterations. It is discussed the extension of the algorithm
over solving quadratic non-convex programming problems.
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1 Introduction

In this paper an algorithm will be described for solution of quadratic
programming problems of the form:

f(x) =
1
2
xT Hx + gT x → min (1)

subject to Ax ≥ b, (2)

where H is a symmetric matrix, nonsingular of the n × n dimension.
A is a m× n matrix, g, x and b are column vectors, g and x ∈ Rn and
x ∈ Rn. The symbol T indicates transposition operator.

For the last years quadratic programming problems have been of
a great interest and are utilized intensively to solve problems of con-
strained optimization. In the majority of Newton or quasi-Newton
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methods of solution of nonlinear programming problems with con-
straints it is necessary to solve problems of the type (1)–(2) at every
step, where g and H are respectively the gradient and Hesse matrix of
the objective function[1–5] or of Lagrange function[3–5].

Let it be x∗ an optimal solution of the problem (1)–(2). Then there
exists Lagrange multipliers vector

λ∗ = (λ1
∗, λ

2
∗, . . . , λ

m
∗ )T ,

so that Kuhn-Tucker conditions are satisfied:

Hx∗ + g = AT λ∗,
(Ax∗ − b)T λ∗ = 0,

Ax∗ ≥ b,
λ∗ ≥ 0.





(3)

If the matrix H is positively semi-definite then Kuhn-Tucker condi-
tions (3) are necessary and sufficient to x∗ be a global minimum point.

Let it be the set of indexes

I(x) = {i|aT
i x = bi},

where aT
i is row i of matrix A.

I(x) gives us the set of active constraints in a point x ∈ Rn.
If the matrix H is indefinite, then conditions (3) are added follow-

ing:
λi
∗ > 0, ∀i ∈ I(x∗)

and
pT Hp > 0,∀p ∈ {p ∈ Rn|p 6= 0, aT

i p = 0, i ∈ I(x∗)} (4)

this means that H is positively definite on a linear variety defined by
active constraints.

A great number of methods is designed to solve quadratic program-
ming problems in a finite number of steps. One of the most popular
schemes of solution of quadratic programming problems is based on di-
rect solution of a system of inequations and equations (3). Today there
exist many methods to solve Kuhn-Tucker system. Beale [6], Frank
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and Wolfe [7], Wolfe [8], Shetty [9], Lemke [10], Cottle and Dantzig
[11] and others have generalized and modified simplex method from
linear programming to solve Kuhn-Tucker system (3).

There is another way to solve quadratic programming problems
based on the idea of effective selection of constraints and the solution at
every step quadratic programming problems with constraint equalities.
Pshenichniy and Danilin [1], Pshenichniy [2], Best and Ritter [12] use
conjugate direction method to solve sub-problems that appear during
the work process. Theil and van de Panne [13], Boot [14], Fletcher
[15], Gill and Murray [3,4] reduce the general quadratic programming
problem to the solution of a number of constraint equalities problems.
It is worth mentioning Gill and Murray works (see other references
[3,4]) where they use largely so-called null subspace method.

In this work an algorithm is presented to solve quadratic pro-
gramming problems where at every step a sub-problem with effec-
tive constraints is solved. In the second part a convenient method
to solve quadratic programming problems with constraint equalities.
This method reduces the determination of Kuhn-Tucker system solu-
tion to solving s+1 systems of linear equations with the same Hof n×n
and of a system of s linear equations with s unknown variables, where
s is the number of constraint equalities and s ≤ n. In the third part an
algorithm of solving problems of the form (1)–(2) that is based on the
idea of effective constraints selection will be discussed. Tte extension
of this algorithm to non-convex quadratic programming is effected in
the fourth part herein.

2 Minimization of quadratic functions on a lin-
ear variety

Let us minimize quadratic function (1) subject to

aT
i = bi, i = 1, 2, . . . , s. (5)

Now we will assume that matrix H is positively definite, i.e. func-
tion f(x) is strictly convex. We will also assume that s ≤ n and that
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vectors a1, a2, . . . as are linearly independent.
Due to Kuhn-Tucker conditions this problem is reduced to finding

x ∈ Rn and λ ∈ Rs that would satisfy the system of linear equations:

Hx−AT λ = −g,
Ax = b,

}
(6)

where A is a matrix of s×n dimensions with rows aT
i = 1, 2, . . . , s and

b = (b1, b2, . . . , bs)T .
With rang(A) = s, system (6) of n+s equations and n+s unknown

variables has the only solution (x∗, λ∗) that is the stationary point for
Lagrange function associated to the problem (1), (5):

L(x, λ) = f(x)− λT (Ax− b).

In the case when n + s is very large we will have a system of very
large dimension which is undesirable and avoided in practice. The total
number of necessary arithmetic operations to find the solution of the
system (6) is approximately equal to 2(n+s)3

3 .
Computation of x∗ and λ∗ could be carried out separately. For

this matter (see [3–5]) the inverse matrix H−1 and matrix product
AH−1AT are calculated. Then Lagrange multipliers vector λ∗ is given
by the system:

(AH−1AT )λ = AH−1g + b (7)

and the optimal solution x∗ is defined by

x∗ = H−1(AT λ∗ − g). (8)

The inversion of the matrix H is equivalent the solution of n systems
of liner equations and needs ≈ 4n3

3 arithmetic operations. To find the
optimal solution x∗ of the problem(1),(5) according to the relations (7)
and (8) implies in total ≈ 2

3(5n3 + s3).
Determination of Lagrange multipliers vector λ∗ and of the optimal

solution x∗ needs the determination of the matrix H−1 with the help of
which the matrix AH−1AT (or matrix AH−1) is built for subsequent
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solution of the system of linear equations (7). We know that matrix
inversion is a costly operation. It needs approximately two times more
computing memory than the solution of a system of linear equations.
Besides the calculation of an inverse matrix is made with approxima-
tions that are fatal (see, for example [16,17]).

As we could see, this method generally is not efficient. Now we are
going to describe a method of minimization of the quadratic function
(1) on a linear variety (5). This algorithm is also based on a solution
the system of linear equations (6) and in which the matrix inversion
is avoided because of a specific organization of the calculations. This
method leads to the solution of s + 1 systems of linear equations with
the only matrix H, of a system of s equations and is very efficient
when s << n. The advantage of this system is great when solving
quadratic programming problems with constraints inequalities (1)–(2).
Embedding from a linear variety to another one here imposes no more
than solving of two systems of linear equations: one of n and other of
s equations.

The elaborated algorithm to solve the system of linear equations
(6) (i.e. of the problem (1)–(5) was presented in [18,19] and consists of
the following operations:

Step 1. The system of linear equations is solved

Hy0 = −g, (9)

so that the point of free-minimum of the quadratic function f(x) is
determined. If Ay0 = b then x∗ = y0 is an optimal solution and the
problem (1)–(5) is solved. Otherwise the next steps are followed.

Step 2. The vectors y1, y2, . . . , ys are determined, solving s systems
of linear equations with the only matrix H:

Hyi = ai, i = 1, 2, . . . , s. (10)

Step 3. Matrix V = (vij is created, of s × s dimensions and with
elements vij = yT

i aj , 1 ≤ i, j ≤ s.
Step 4. The following vector is formed

d = Ay0 = (aT
1 y0, a

T
2 y0, . . . , a

T
s y0)T
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with s components di = aT
i y0, i = 1, 2, . . . , s.

Step 5. The solution λ∗ of the linear equations system is deter-
mined

V λ = b− d. (11)

Step 6. The optimal solution is calculated

x∗ = y0 + Y λ∗ = y0 +
s∑

j=1

λj
∗yj ,

where Y = (y1, y2, . . . , ys) is a matrix of n× s dimensions, its columns
are vectors yj , j = 1, 2, . . . , s.

Let’s now analyze the presented algorithm. Matrix V is symmetric
and positively definite. It is true that:

yT
i aj = yT

i Hyj = yT
j Hyi = yT

j ai, ∀i, j,
so, V is modified Gram matrix in which the scalar product is de-
termined by the positively defined matrix H. It is easily seen that
V = Y T HY and rang(Y ) = s where from rang(V ) = s. Thus the
system (11) has the only solution λ∗.

It is immediately verified that

aT
i x∗ = aT

i y0 +
s∑

j=1

λj
∗a

T
i yj = di + bi − di = bi, i = 1, 2, . . . , s,

and this means that x∗ is the only feasible solution.
Let it be x any feasible solution, i.e. aT

i x = bi, i = 1, 2, . . . , s. As a
result:

[∇f(x∗)]T (x− x∗) = [Hx∗ + g]T (x− x∗) = [HY λ∗]T (x− x∗) =

=


∑

j=1

sλj
∗Hyj




T

(x− x∗) =
∑

j=1

sλj
∗a

T
j (x− x∗) = 0.

So, x∗ is the optimal solution of the problem (1),(5).
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Remarks:

1. Solving of linear equations systems (9)–(10), with the only matrix
H, one needs n3

3 + sn2 arithmetic operations. Matrices H and
V are positively definite. As a result, systems of equations (9)–
(11), could be solved with stable numerical algorithms [16, 17],
Cholesky method for instance. In this method matrices H and
V are presented in the form H = LLT and V = RRT . Cholesky
factors L and R are inferior triangular matrices of n × n and
respectively s× s dimensions and are calculated only once at the
beginning and could be stored instead of matrix H.

2. Systems (7) and (11), are equivalent, because V = AH−1AT and
d = −AH−1g. It has to be remarked that the inverse matrix of
H is not calculated. We denote that d = −Y T g is a formula to
be used in the fourth part of the work.

3 The case of problems with constraint inequal-
ities

Now we will return to the problem (1)–(2), where f is a strictly convex
function, i.e. H is a positively definite matrix. Constraint inequalities
create new difficulties because it’s unknown beforehand which of the
problem constraints are verified as equalities by the optimal solution
x∗. If the set of indexes

I(x∗) = {i|aT
i x∗ = bi}

was known we would determine the optimal solution minimizing the
quadratic function (1) on the linear variety

aT
i x = bi, i ∈ I(x∗).

This linear variety could be looked for in a systematic mode with the
help of effective constraint selection method with the following main
idea found in [1–4].

229



V.Moraru

Let it be xk feasible solution of the problem (1)–(2),. The steps of
an iteration are:

1. Determination of I(xk) — the set of indexes of those constraints
that are verified as equalities by the point xk.

2. Calculation of pk — Newtonian direction that origins from xk

and Lagrange multipliers λk, solving the quadratic programming
problem of the form:

f(xk + p) = 1
2pT Hp + (Hxk + g)T p + f(xk) → min

subject to aT
i p = 0, i ∈ I(xk).





(12)

3. Calculation of a new feasible solution

xk+1 = xk + αkpk,

where αk is a step length on the direction pk and is always chosen
so that xk+1 point is feasible, 0 < αk ≤ 1.

4. Increment of k = k + 1 and returning to the step 1.

5. After a finite number of steps the set of active constraint indexes
remains unchanged and pk = 0. If Lagrange multipliers λi

k ≥
0, i ∈ I(xk), then xk is an optimal solution of the problem (1)–
(2). If there exits j such that λj

k < 0 is determined a new set of
indexes I(xk) = I(xk)\{j} and the process is repeated from the
beginning.

6. In this order arbitrary point x0 is taken from the domain of fea-
sible solutions and linear variety of x0 is determined, i.e. I(x0) is
determined. One of the methods to calculate x0 is to use phase
1 of the simplex algorithm (see [3–4]).

After we find the start point x0 the quadratic programming problem
is solved (12), that is reduced to solution of systems of linear equations:

Hy0 = −g0,
Hyi = ai, i ∈ I(x0),

V λ0 = −d,





(13)
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where g0 = Hx0 + g, di = aT
i y0, and vij = yT

i aj = aT
i yj , i, j ∈ I(x0).

Direction p0 is given by the formula:

p0 = y0 +
∑

j∈I(x0)

λj
oyj . (14)

Then x1 = x0 + α0p0, where α0 is determined that the new point
x1 would satisfy constraints (2). If aT

i p0 ≥ 0 for any i 6∈ I(x0), then
we will have α0 = 1. For i 6∈ I(x0) and aT

i p0 < 0 the approximation x1

remains an feasible solution, if

α0 = min

{
bi − aT

i x0

aT
i p0

|i 6∈ I(x0), aT
i p0 < 0

}
.

If there exists i such that aT
i p < 0 at the point x1 one or more

constraints become active. When this happens the last constraints are
included in the set I(x1) and the determination of a new direction
p1 begins. In order to determine p1 we start from (13), where g0 is
substituted with g1 = Hx1 + g and the systems of linear equations

Hy0 = −g1,
Hys = as,

}

are solved again; here s 6∈ I(x0) and the constraint s is active at the
point x1. This is easily performed if we have, for instance, Cholesky
factorization H = LLT .

It is worth mentioning that it’s unnecessary to solve directly the
system of equations Hy0 = −g1, because the solution of this system
can be obtained from:

y0 = y0 − α0p0. (15)

It is true that H(y0 − y0) = H(x0 − x1) is an equality that allows
us to obtain (15).

We get the lagrange multiplier vector λ1 solving the system of equa-
tions V λ1 = −d, where d = (dT , aT

s y0)T and new matrix V is obtained
with the aid of matrix V with addition of new rows and columns:
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V =

(
V u
uT vss

)
.

Here vector u has the components ui = aT
s yi,∈ I(x0) and vss =

aT
s ys. If Cholesky factorization V = RRT is known, then the matrix R

from V = RR
T decomposition is given

R =

(
R 0
w rss

)
.

It is immediately verified that vector w is the solution of the system
of linear equations Rw = u, and rss =

√
vss − wT w. Matrix V is

positively definite. Due to this fact vss > wT w, i.e. we can calculate
rss.

If pk = 0, the condition is satisfied

∇f(xk) = AT λk (16)

and we are at the minimum point on the linear variety obtained from
intersection of active constraints associated with xk. If all λi

k ≥ 0, the
point xk represents the optimal solution of the problem (1),(5), because
Kuhn-Tucker conditions are satisfied. When at least one of λi

k < 0, the
constraint that gives us the negative component is declined, making
instead of the matrix V in (13) a matrix V obtained from V eliminating
j row and column.

We emphasize that if in (16) we have two or more negative compo-
nents of the vector λk, the corresponding constraints will be eliminated
from the set of active constraints in turn, simultaneous elimination of
two constraints could lead us an inadmissible direction pk+1.

Active constraint selection strategy guarantees that the embedding
from a linear variety to another one will decrease the value of objective
function. As the number of constraints is finite it results that a finite
number of steps will lead us to finding the optimal solution of the
problem in consideration.
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4 Minimization of indefinite quadratic functi-
ons

Let us consider now the problem (1)–(2) where H is any quadratic
matrix, symmetric and indefinite. We will suppose that conditions
(3)–(4) are satisfied, what guarantees the identity and the existence of
the minimum for the considerate problem.

In order to apply the above presented algorithm it’s necessary that
the matrix V is positive definite. As we see V = AH−1AT = Y T HY ,
but in general case matrixes H and V are not positively definite nor
in the solution neighborhood. In reality the optimal solution of the
problem (12) doesn’t change if we substitute the matrix H with another
one of the form (see [3–5, 20]):

Ĥ = H +
∑

i∈I(xk)

σiaia
T
i , σi ≥ 0,

where σi are arbitrary non-negative real numbers.
If I(xk) = I(x∗) then at the base of the relations (4) are numbers

σi ≥ 0 so that the matrix Ĥ is positive definite even if H is singular
or indefinite. Determination of set I(x∗) of constraints as egalities of
optimal solution x∗, is generally a difficult problem. We could apply
linearization method[2,5] starting with matrix Ĥ = I to determine
I(x∗). We are going to demonstrate its practical application in our
next paper.
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