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The approximate solution of singular
integro-differential equations systems on smooth
contours in spaces L,

Iu. Caraus

Abstract

This article generalizes the results which were obtained in
the paper [1], written together with my scientific-adviser, doctor-
habilitat, professor Zolotarevschi V. Theoretical foundation of
the collocation method and of mechanical quadrature method
for singular integro-differential equations systems (SIDE) in the
case when the equations are given on a closed contour satisfying
some conditions of smoothness, without their reduction to the
unit circle, is given below. Let I' be a smooth Jordan border
limiting the one-spanned area F*, containing a point ¢ = 0,
F~ =C\{FtUT}, C is a full complex plane. Let z = ¢(w)— be
a function, mapping comformally and single-valuedly the surface
I'o = {|w| > 1} on F~ so that 1 (c0) = 00,1 (cc) > 0. We shall
assume that the function z = 9 (w) has its second derivative,
satisfying on I'g the Holder condition with some parameter v (0 <
v < 1); the class of such contours is denoted by C(2;v)[2,p.23].

1 Statement of the problem and formulation
of main theorems

In complex space [L,(I')]n(1 < p < oo) of vector-functions g(t) =
(91(t), ..., gm(t)); g (t) € Ly(I') 5 = 1, m with the norm

1
m 1 p
lgll = 3 gl ||gk||p=<; / |gk|P|dT|) )
k=1 i
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where [ is the length of I', we will consider SIDE [3,p.312]

iy T—1

(Mz =) Zq:[fir(t)a:(” (t) + Br(t)l / alk ) 4 +
r=0 T

+%F/KT(t’T) 2W(7)dr] = f(t), teT, @

where A,(t), B,(t) and K,(t,7) (r = 0,q) are given m X m matrix-
functions (MF); f(t) is the given vector-function (VF), z(9)(t) = x(t)
_d'xz(1)

T

is the required VF; (") (¢)

We search the solution of equation (2) in the class of vector-
functions, satisfying the condition

1
33 /{L‘(T)TikildT =0, k=0,q—1 (3)
r
Equation (2) with the help of operators P = %(I +95),Q=1-P,
where [ is an identical operator, and S is a singular (with Cauchy
nucleus) one, can be written as follows:

(r =1,q); q is a natural number.

q

(Mz =) > [A, ) (Pz)() + B, (1) (Qz")(¢) +
r=0
+2im, / K. (t,7) 2" (1)dr] = f(t), tel (4)
r

where A,(t) = A.(t) + B,(t), By(t) = A.(t) — B.(t), r=0,q.
We search the approximate solution of problem (2)-(3) in the form

n -1
zalt) = Y+ Y gl g, (5)
k=0 k=—n
where §,(€n) = ¢, (k = —n,n) are unknown m dimentional numeri-

cal vectors; we shall note that the VF x,(t), constructed by formula
(5),0bviously, satisfies conditions (3).
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According to the collocation method, we determine the unknown
&k (k= —n,n) from a system of linear algebrical equations (SLAE):

n
Z{A t] Z k+q tk+q T§+
r=0

s (kta-
+Br(tj)kz_:1( e (k—l).) Tt
+% z”: %F/Kr(tjvT)T“—qrdT-gk—k
+k§:<—1) k2o /K myrtrdr e} =

= f(tj)7 J=20,2n, (6)

where ¢;(j = 0,2n) is a set of different points on I'.

If the problem (2)-(3) is solved by the mecanical quadrature
method, then we also search the approximate solution in the form (5).
However,we find the unknown & (k = —n, n) as the solution of (SLAE)
(6), in which the integrals are replaced by the quadrature formulae.

We shall apply as a quadrature formula the following one [4,p.70]:

1 1 _
%/Q(T)Tl"'de = %/UH(TH—l -g(T))Tk Ldr,
r r

where k = 0,n, at [ =0,1,2,... and k = —1,—n, for | = —1,-2,...;
the operator of interpolation U, is determined by the formula [4,p.26]

2n

(Ung)(t) =2 g(ts) ’ ls(t);

s=0

n

o -t (@) 0, .
Li(t) = —_— A tel, =0, 2n.
J() k:(gc;éj t—th Z k J

k=—n
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Thus, for the determination of the unknown & (k = —n,n) by the
mechanical quadrature method we get the following SIDE:

- (k+Q)! k+q 1"6 +

E{Ar(tj) Z (ETEDE

" (k+r—1) _,_,
t] Z Til)t k gt
i )
. k+q 14+k—r 4 ()
+§)(k+q 'ZK (tj,ts )t TF T AL Gt
k=1
=f(t;),  7=0.2n (7)
o (9) -
Let [W, lm ={g; 3 ¢ € C(),r =T,¢—1, g9 € [Lp(D)]m; }
o (q) .
is

o ()
and for Vg € [W,, ] the condition (3) is satisfied and norm in W,
determined by the equality

191l5.0 = 119'IiL,1..
the image of space [L,],, with mapping

We shall denote by [Ly glm

P +t74Q) with the same norm as in [L; ],
o (q)

Lemma 1. [5,p.44] The differential operator D : [W, |m —
[Lp.glm, (Dig)(t) = g(‘Z)(t) is continuously reversible and its reverse

o (q)
operator D™9: [Lp gl — [W,, Im is determined by the equality

(D™%)(t) = (NTg)(t) + (N~ g)(t),

_(=b _ t
(N*g)(t) = Irilg — 1)1 / (Pg)(7)(r — )9 In(1 — ;)dTa
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(!

(V70)(0) = gy [ (@9)) =7 (1~ Dy
r

From lemma 1 it follows

o (q)
Lemma 2 The operator B : [W,

1s reversible and

lm = [Lplm, B = (P + t1Q)D?
B l=DYP+t1Q)

The basic theorems in the given paper are the following :

Theorem 1 Let the following conditions be satisfied:
1) the outline I' € C(2,v), 0<v <1

2) MF A.(t) and B,(t) belong to the space [Ho(D)]mxm 0 < a <
I, r=0,q

3) det Ay(t)- det By(t) #0, tel

4) the left partial indexes MF t1B,(t)Aq(t) are all equal to zero;

5) MF K, (t,7) (r=20,q) € Hs[(I' X I)]suxm, 0<B <1, and VF
f(t) € [C(D)]m;

o ()
6) the operator M : [W, |m — [Lp(T)]m is linearly reversible;

7) the points t; (j = 0,2n) form a system of Feier knots[6,p.36] on
I:
tj=1 [exp < 2mi (j —n))] . j=0,2n, i¥=-1.
2n+1

Then, beginning with n > N1 (Ny depends on the coefficients of
SIDE), SLAE (6) has the unique solution & (k = —n,n). The ap-
prozimate solutions xn(t), constructed by formula (5), converge when
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o ()
n — oo in the norm of space [W,, |m to the evact solution x(t) of the
problem (2)-(3) and the following for estimation the convergence speed
holds:

s, ()

( MF h(t,7) is a continuous MF relative to t and 7 on I', defined
below. )

69 = 2P llpg = O (57 + 0wl 1) + O (1 1)

;=
n

Theorem 2. Let all conditions 1)-7) of theorem I be satisfied.
Then, beginning with the numbers n > No(> Ny) SLAE (7) has a
unique solution &, k = —n,n. The approzimate solutions of (5) con-

o (q)

verge when n — oo in the norm [W, |n to ezact solution x(t) of the
problem (2)-(3) and the following estimation for the convergence speed
takes place:

= allpg = b + O (1 ) 0

We shall note that in the case of the standard contour (the segment
of a real straightline or a unit circle ) the similar theorems were obtained
earlier in [7,8]. Before we proceed to the proof of the theorems 1 and
2, we shall bring some statements from [9], which will be necessary
further. (P p

t t

As is proved in [9], VF (Pz)(t) an (@z)(1)

| i dtt
by integrals of Cauchy type with the same density v(t) :

can be represented

q N\
PG L)y s
dtd 211 / T—1
(10)
d4 —q
FQ=)E) _ t—/ 2D g, e F
dtd 271 / T—1

With the help of these representations the problem (2)-(3) can be re-
duced to an equivalent (in the sense of its solvability) singular integral
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equations system(SIE).

(Rv =)C(t)v(t) + D(t) / o(r) dr +

+2L7r2' /h(t, T)v(T)dT = f(t), tE€T, (11)
I

where C(t) = 1[A,(t) + t71By(t)], D(t) = §[A4(t) — t71B,(t)], and
h(t,7) from the condition 5) of the theorem I is a MF, belonging to
the class [C(I" X I')];uxm for both variables; the obvious form of this
function is given in [9].

The system SIE (11) and problem (2)-(3) are equivalent in the sense
that to each solution v(t) of system (11) corresponds by the formulae

(Pa)(t) = i), / vl w (1= 1) 4

2mi(qg — 1 T

q—1
+ 2 OékTq_k_ltk]dT
k=1

(Qr)(t) = % F/U(T)T_q[(T — )47l 1n <1 — %) +

q—2
+>° BertFeMar (12)
k=1

(ag, k=1,¢q—1and k = 1,q — 2 are real numbers ), the solution
x(t) of the problem (2)-(3) and, conversely; to each solution z(t) of the
problem (2)-(3) corresponds by formula

d(Po)(t) | g dq(Qw)(t)’
dtd dt?
the solution v(t) of the system (11); and the linear-independent so-

lutions of the problem (2)-(3) correspond to the linear-independent
solutions of the system (11) (and conversely).

v(t) =
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2. The proof of the theorem 1.
We shall show that for sufficiently large n (> Njp) the operator
U,MU, is reversible as an operator, considered from the subspace

)O( {tq 3 oy th4 Z ath } in subspace [R,],, of polynomials of
k=0 k=—n
type

n

> mtf, terT

k=—n
We consider that in these subspaces the norm is the same as in sub-
o (q)
spaces [W,, |m and [Ly(L)],, respectively.
- d?(Pan)(t)
Similarly to the formulae (10) we shall represent the VF ———~=

dtd
dU(Qz,) (¢
and M by integrals of Cauchy type with the same density

dtd
vp(t) :

d!(Pzn)(t) i/vn(T) )

= d te Ft+
dta 2mi ] Tt note
(13)

q —q
d (an)(t) — t_/v’fl(T) dT, t E Fi.
dt4 271 ! T—1

It is easy to prove that
k + = (k + — 1
on(t) = 30 B Dprg gy BHE AR
k=0 k! k=1

and therefore v, (t) € [Ry]m, teT.

With the help of representation (13) the equation U, MUz, =
Unf, in the same way as the problem (2)-(3), is reduced to an equiva-
lent in the same sense as the above equation

considered as an equation in the subspace [Ry]n,.
The last equation, obviously, represents an equation of the collocation
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method for the system (SIE) (11). From (13) and v, € [Ry]n we
conclude that if v,(¢) is the solution of the equation (14), then VF
yn(t), defined by the equality

Pu)) = gy [l -0t =T+

2mi(q — 1)! J -’
q—1

+ Z aTI k1R dr
k=1

Q) = g F/ ) — T (1= 1) +

qg—1

+ 2 Bt dr (15)
k=1

is the solution of the equation U, MU,x, = U, f and conversely. As it
is mentioned above, VF y,,(¢) is defined with help of v, (¢) by formulae
(15) in the unique manner.

It follows that if the equation (14) has the unique solution v, () in
subspace [Ry,|m, then the equality y,(t) = z,(t) should be satisfied and
Zp(t) is determined in a unique way.

The (14) is an equation of the collocation method for (11). We
shall show that for this equation all conditions of the theorem 8.3 are
satisfied from [4,p.76], which gives the theoretical foundation of the
collocation method for systems SIE in spaces L,(I'). From the condi-
tions 3), 4), 6), lemma 1, lemma2, it follows the reversibility of operator
R : [Ly(T)]m — [Lp(T)]m; this together with the conditions 1), 2), 5), 7)
coincide with theorem 8.3 from [4]. Therefore, beginning with the num-
bers n > N, the equation (14) has the unique solution v, (t) € [Ry]m.
Hence, the equation U, MU, z, = U, f, and the SLAE (6) are solvable
in a unique way for such n.

Besides, according to the theorem 8.3. from [4,p.76] the following

206



The approximate solution of singular ...

estimation is true:
o= oall =0 (o) +O(fi 1) + O (A1) (16)
v— || = o w(fs w'(h; ).
From the relations (15) and y,(t) = z,(t) it follows that
129 — &{0]] < ¢l|o — v,

From the previous inequality and with the help of (16) we obtain (8).
The theorem I is proved.

The proof of theorem 2
It is easy to verify that SLAE (7) is equivalent to the operational equa-
tion

q
Un {Z[Ar(t) (Px)(®) + B (1)(Qal))) (1) +

r=0

b [ UK )P ()drt
271 J T

T

T / LuDE K T)](Qw%’"))(T)dT]} = Un/f, (17)

which after the application of integrate representation (13) is equivalent
(in the same sense as it was mentioned above) to the equation

Un {C()vn(t) + D(2)(Svn)() +

+ QLM / %UéT)[Th(t,T)] -’Un(T)dT} =U,f, (18)
N

where the VF C(t), D(¢) and h(t,7) are determined above.

The equation (18) represents an equation of the mechanical quadrature
method for system SIE (11). It is easy to verify like in the proof
of theorem 1, that from the conditions of theorem 2 the fulfillment
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of conditions of theorem 8.4 from [4,p.77] follows, arranging the use
of mechanical quadrature method to system SIE (11). Therefore, by
virtue of cited theorem 8.4., beginning with the numbers n > Nyo(>
Ny) the equation (18) has the unique solution v, (t) € [Ry]m, and the
following estimation is true:

o= vnll = 0 (5 ) + 0wl 1)+ O (hs 1))+ O (h: 3). (19)

;—
n n

Then for such n the equation (17) has the unique solution z,,(t) € X n
, which is connected with vy, (¢) by the formulae (15). Besides, as the
exact solutions z(¢) and v(t) of the problem (2)-(3) and system (11),
respectively, are connected by the formulae (12), then we shall obtain
(9), taking into account (19). The theorem 2 is proved.
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