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Provably indeterminate 128-bit cipher

N. Moldovyan

Abstract

There is described a class of the encryption functions based
on data-dependent selection of subkeys. Such functions are pro-
posed for elaboration of the indeterminate ciphers with very large
number of different modifications of the cryptalgorithm. A 128-
bit undetermined cipher is described. The number of possible
modifications is ≈ 1020R, where 2 ≤ R ≤ 7, R is the number of
rounds. It is proved that all modifications are unique.
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1 Introduction

The majority of known single key cryptosystems are hardware-oriented.
At present the problem of creation of fast software encryption ciphers
seems to be actual [1]. One of the promising trends is the creation of
block software encryption systems is based on data-dependent selection
of subkeys [2, 3].

In present paper there is described a class of the encryption func-
tions based on data-dependent subkey selection and an indeterminate
128-bit cipher with provably nonequivalent cryptalgorithm modifica-
tions.

2 Cryptoscheme with a tuning subsystem

It is assumed that there is used a tuning subsystem (TS) and a resident
cryptomodule in the cryptoscheme described below [2]. Tuning proce-
dures are to be executed only once when cryptosystem is switched on
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therefore they do not influence the encryption speed. In many applica-
tions the run duration of TS (about 0.1–1 s) is not critical [4] and it is
possible to include very complicated functions in the tuning algorithm.
The tuning consists in executing a one-way conversion of the source key
(password) into a comparatively large secondary sequence of subkeys
(encryption key) and in “pseudorandom” password-controlled modifi-
cation of the encryption algorithm of the resident subroutine [5]. The
main requirements to TS seem to be the following:

(1) every bit of the password must influence about equiprobably all
bits of the key area and

(2) complexity of the calculation of the password from the known
secondary key must be very high.

Parameters of the resident cryptomodule determine all critical char-
acteristics of such ciphers. In next sections there is considered a new
encryption mechanism with flexible subkey selection. If TS executes
modification of the encryption procedures of the resident module, then
the cryptalgorithm is not predetermined. In this case we have an inde-
terminate cipher. Design of such flexible ciphers is connected with the
following problems:

(1) all possible modifications of the cryptalgorithm must be secure,

(2) number of nonequivalent modifications is to be very large,

(3) selection of nonequivalent modifications must be approximately
equiprobable.

3 Encryption functions based on data-depen-
dent subkey selection

3.1 Notations

Input text block is represented as concatenation of subblocks:

T = B(n−1)‖B(n−2)‖ . . . ‖B(1)‖B(0).
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b is the length of the subblocks B(i) in bits.
#T is the cardinal number of the set of all possible data blocks,

#T = 2nb.
∆ is a subsubblock defining the current subkey Q∆ = Q[∆].
δ is the length of subsubblock ∆ in bits.
{Qj} = {Q[j]} is an encryption key represented as a sequence of b-

bit subkeys Q[j], j = 0, 1, 2, . . . , 2δ−1. This sequence is to be generated
under control of the password during initialization stage.

d is an integer defining the number of encryption subrounds in one
round.

s is the number of the current subround, s = 1, 2, . . . , b/d.
i is the number of the current encryption step, i = 1, 2, . . . , nb/d.
α(g) is a permutation of the set of numbers {0, 1, 2, . . . , n− 1}.
B>x> (B<x<) denotes to-right (to-left) rotation of B by x bits.

3.2 Encryption mechanism

The one-round encryption function is

C = E(T ) = ek(ek−1(. . . e2(e1(T )))), (1)

where k = nb/d is the whole number of elementary encryption steps, C
is the ciphertext block, e1, e2, . . . , ek are elementary encryption func-
tions. At the current encryption step i there is executed only the
conversion of the subblock Bα(g), where g = i mod n:

Bα(g) := ei(Bα(g), Q[∆(s, g′)]), (2)

where ∆(s, g′) = (Bα(g′))>d(s−1)> mod 2δ, g′ = i − 1 modn, ei is an
elementary encryption function, which for fixed Bα(g) defines a permu-
tation γ(Q∆) of the set of numbers {0, 1, 2, . . . , 2b − 1}.

Encryption of some input data block T can be described by the
following generalized formula:

C = f(T, Qh1 , Qh2 , . . . , Qhk
), (3)

where {Qhi
}, i = 1, 2, . . . , k, is a set of subkeys used while encrypting.

Generation of the current set {Qhi} depends on both the input message
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and the key area. One can say that for given input data block T there
is generated a set of indices {hi}. The set {Qhi} is some virtual key
used for encryption of the given block T . There are possible only
NT = 2bn different input data blocks, but for given secondary key the
number of different sets {Qhi} equals Nh ≈ (2δnb/d)r, where r is the
number of encryption rounds. Such ratio allows one to suppose that the
probability of the generation of two equal sets {Qhi} for two different
input blocks is very low. Below it will be shown that there exists a
wide class of encryption functions for which the virtual keys are unique
for all input blocks.

The one-round decryption function is

T = D(C) = dk(dk−1(. . . d2(d1(C)))), (4)

where di is the elementary function which is to be executed at the step
i. It is inverse as regards to en−i+1. Elementary decryption functions
have the following structure:

Bα(q) := di(Bα(q), Q[∆(s, q′)]), (5)

where ∆(s, q′) = (Bα(q′))>b−sd> mod 2δ, q = n + 1 − imod n, q′ = n −
imod n. It is evident that for given {Qj} at the respective decryption
and encryption steps there are used the same subkeys.

Let us consider the case d = δ and such elementary encryption
functions which satisfy the following condition:

Design Criterion 1. Elementary encryption functions define
a permutation of the value of the higher subsubblock.

It is supposed that the current subblock is represented as concate-
nation of higher and lower subsubblocks B = H‖L = H · 2d(s−1) + L,
where the size (in bits) of the lower subsubblock is l = d(s−1) and de-
pends on the number of the conversion subround. Design Criterion 1
means that elementary encryption function must have the following
structure

B := e(B) = β(H) · 2d(s−1) + f(L), (6)
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where f(L) ≤ 2d(s−1)− 1, β(H) is a permutation of the set of numbers
{0, 1, 2, . . . , 2b−d(s−1) − 1}.

If all elementary functions in (2) satisfy Design Criterion 1, then
Statement 1 take place. Criterion 1 is oriented to implementation of
this statement. Theorem 1 shows the subkey selection is uniform over
the whole set of input data blocks. Furthermore, it is evident that
for all input blocks the ordered sets of indices of selected subkeys are
unique for arbitrary number of rounds.

Statement 1 If an arbitrary key area {Qj} is given and d = δ, then
for all input blocks T there are generated unique sets of indices {hi}.

Theorem 1 If d = δ, then for arbitrary key {Qj} and arbitrary set
of indices {hi}, where i = 1, 2, . . . , n/d, there exists unique input data
block T for which it is generated the given set of indices.

Proof. The cardinal number of the set of possible combinations of k
indices is #{hi} = (2δ)nb/d. If d = δ, then #{hi} = 2nb = #T . Taking
into account Statement 1 we obtain the one-to-one correspondence for
elements {hi} and T . This means that for any set {hi} there exists
unique T which generates the given set of indices. ¦

3.3 Ciphers with indeterminate cryptalgorithm

Security of the cryptoschemes based on pseudorandom selection of sub-
keys appears to be not sensitive as regards to particular kind of used
elementary functions ei and their random modification. This allows
designing flexible ciphers in which functions ei are to be modifyed by
means of the password-control tuning of some set of the reserved op-
erations. One can assign also initialization of different permutations
α(g) for every subround. Such an approach allows developing flexi-
ble cryptosystems with > 1080 different possible modifications of the
encryption algorithm.

It is known that for given encryption key a b-bit block en-
cryption function defines a permutation ε(T ) of the set of numbers
{0, 1, 2, . . . , 2nb − 1}. We will use the following
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Definition 1 Two modifications of encryption function (1) are equiv-
alent if they define the same permutations ε(T ) for all encryption keys.

To evaluate the number of nonequivalent modifications it is neces-
sary to consider particular algorithms implementing an indeterminate
cryptoscheme. Below it is presented a 128-bit cipher in which there are
no equivalent modifications of the encryption function.

4 Algorithm implementation

In algorithms described below the 32-bit words of input data blocks are
converted consequently using simple arithmetic operations: module 2
addition (⊕), module 232 addition (+) and subtraction (−), as well as
fixed and data-dependent rotations. It is supposed that there is used
a 1024-byte encryption key {Qj} = {Q∆}, where Q is a 32-bit subkey
(∆, j = 0, 1, 2, . . . , 255). Algorithm 1 represents a 128-bit cipher with
fixed encryption algorithm. Algorithm 2 describes an indeterminate
128-bit cipher.

Below there is used the following notation:

X, Y, Z, and W are variables;

u = (s− 1)mod 4; t = (4− s) mod 4 ; Q(∆) = Q∆,

where

∆ = af , bf , df , ef and f = u, t;

au = (Xs)>8u> mod 28; bu = (Ys)>8u> mod 28;

du = (Zs)>8u> mod 28; eu = (Ws−1)>8u> mod 28;

at = (Xs−1)>8t> mod 28; bt = (Ys−1)>8t> mod 28;

dt = (Zs−1)>8t> mod 28; et = (Ws)>8t> mod 28;

V = v4‖v3‖v2‖v1, where V = X, Y, Z, W and v = x, y, z, w.
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Algorithm 1: 128-bit cipher (d = δ = 8; b = 32;n = 4)

a) Encryption

INPUT: 128-bit data block T = D‖B‖A‖E represented as a concate-
nation of four 32-bit words.

1. Set: R = 3, s = 1, X0 = A, Y0 = B, Z0 = D, and W0 = E.

2. Transform X: Xs = Xs−1 ⊕Q(eu).

3. Transform Y : Ys = Ys−1 ⊕Q(au).

4. Transform Z: Zs = Zs−1 ⊕Q(bu).

5. Transform W : Ws = Ws−1 ⊕ Q(du), (w4‖w3)s := (w4‖w3)>Ys>
s ,

and increment s.

6. Xs = (Xs−1 −Ws−1 mod 232)⊕Q(eu).

7. Ys = [Ys−1 + Q(au) mod 232]⊕Xs.

8. Zs = (Zs−1 ⊕ Ys)−Q(bu) mod 232

9. Ws = Ws−1 − Q(du)mod 232, (w2‖w1)s := (w2‖w1)>Ys>
s , incre-

ment s.

10. Xs = [Xs−1 −Q(eu)]mod 232.

11. Ys = [Ys−1 ⊕Q(au)] + Ws−1 mod 232.

12. Zs = [Zs−1 ⊕Q(bu)]−Xs mod 232.

13. Ws = Ws−1 ⊕Q(du), increment s.

14. Xs = Xs−1 + Q(eu) mod 232.

15. Ys = Ys−1 ⊕Q(au).

16. Zs = Zs−1 −Q(bu) mod 232.

17. Ws = (Ws−1 ⊕ Zs)>Ys> + Q(du) mod 232.
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18. If s < 4R, then increment s and jump to step 2, otherwise STOP.

OUTPUT: 128-bit ciphertext block C = Z4R‖Y4R‖X4R‖W4R.

b) Decryption

INPUT: 128-bit ciphertext block C = D‖B‖A‖E.

1. Set: R = 3, s = 1, X0 = A, Y0 = B, Z0 = D, and W0 = E.

2. Ws = [Ws−1 −Q(dt) mod 232]<Ys−1< ⊕ Zs−1,

3. Zs = Zs−1 + Q(bt)mod 232,

4. Ys = Ys−1 ⊕Q(at).

5. Xs = Xs−1 −Q(et) mod 232, increment s.

6. Ws = Ws−1 ⊕Q(dt).

7. Zs = (Zs−1 + Xs−1 mod 232)⊕Q(bt).

8. Ys = (Ys−1 −Ws mod 232)⊕Q(at).

9. Xs = Xs−1 + Q(et) mod 232, increment s.

10. (w2‖w1)s−1 := (w2‖w1)
<Ys−1<
s−1 , Ws = Ws−1 + Q(dt)mod 232.

11. Zs = [Zs−1 + Q(bt) mod 232]⊕ Ys−1.

12. Ys = (Ys−1 ⊕Xs−1)−Q(at) mod 232.

13. Xs = [Xs−1 ⊕Q(et)] + Ws mod 232, increment s.

14. (w4‖w3)s−1 := (w4‖w3)
<Ys−1<
s−1 , Ws = Ws−1 ⊕Q(dt).

15. Zs = Zs−1 ⊕Q(bt).

16. Ys = Ys−1 ⊕Q(at).

17. Xs = Xs−1 ⊕Q(et).
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18. If s < 4R, then increment s and jump to step 2, otherwise STOP.

OUTPUT: 128-bit data block T = Z4R‖Y4R‖X4R‖W4R.

Note that data-dependent rotations at steps 5a and 9a do not vio-
late Design Criterion 1. In the following algorithm there are reserved
binary operations bpc = + , −,⊕ and rotation operations >cl> defin-
ing to-right circular shift by cl bits, where 1 ≤ cl ≤ 31 (p and l are the
numbers of the reserved operations).

Algorithm 2: Indeterminate 128-bit cipher
(d = δ = 8; b = 32; n = 4)

INPUT: 128-bit data block T = D‖B‖A‖E.

1. Set: R = 3, m = 1, s = 1, X0 = A; Y0 = B; Z0 = C; W0 = D.

2. Xs = [Xs−1 b22m− 21c Q(eu)]>c7m−6>;

3. Ys = [Ys−1 b22m− 20c Q(au)]>c7m−5>.

4. Zs = [Zs−1 b22m− 19c Q(bu)]>c7m−4>;

5. Ws = Ws−1 b22m− 18c Q(du).

6. Zs := Zs b22m− 17c Xs; Ys := Ys b22m− 16c Ws; s := s + 1.

7. (w4‖w3)s−1 := (w4‖w3)
>c7m−3>
s−1 ; Xs = Xs−1 b22m− 15c Q(eu).

8. (x4‖x3)s := (x4‖x3)
>c7m−2>
s ; Ys = Ys−1 b22m− 14c Q(au).

9. (y4‖y3)s := (y4‖y3)
>c7m−1>
s ; Zs = Zs−1 b22m− 13c Q(bu).

10. (z4‖z3)s := (z4‖z3)>c7m>
s ; Ws = Ws−1 b22m− 12c Q(du).

11. Ys := Ys b22m− 11c Xs; Zs := Zs b22m− 10c Ws; s := s + 1.

12. Xs = Xs−1 b22m− 9c Q(eu);
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13. Ys = Ys−1 b22m− 8c Q(au).

14. Zs = Zs−1 b22m− 7c Q(bu);

15. Ws = Ws−1 b22m− 6c Q(du); s := s + 1.

16. Xs = Xs−1 b22m− 5c Q(eu); Ys−1 := Ys−1 b22m− 4c Ws−1.

17. Ys = Ys−1 b22m− 3c Q(au); Zs−1 := Zs−1 b22m− 2c Xs.

18. Zs = Zs−1 b22m− 1c Q(bu).

19. Ws = Ws−1 b22mc Q(du); s := s + 1.

20. If s < 4R, then increment m and jump to step 2, otherwise STOP.

OUTPUT: 128-bit ciphertext block C = Z4R‖Y4R‖X4R‖W4R.

Decryption algorithm is evident. The subroutines implementing
Algorithms 1 and 2 provide conversion speed about 60/R Mbit/s (for
microprocessor Intel 486/100). The allowable number of encryption
rounds is R ≥ 2. In Algorithm 2 there are reserved 22R bynary opera-
tions and 7R rotation operations (4R positions for rotation by from 1
to 15 bits and 3R positions for rotation by from 1 to 31 bits). Thus,
there are possible 322R · 154R · 313R ≈ 1020R different combinations of
conversion operations. Due to data-dependent subkey selection one can
expect the majority of possible modifications of the encryption func-
tion of Algorithm 1 are not equivalent. Let us consider this problem.
Desigh Criterion 1 is satisfied for Algorithm 1 and for all possible mod-
ifications of Algorithm 2. Thus, Theorem 1 is valid and uniform subkey
selection take place for all modifications. Considering consequently all
encryption steps for arbitrary value R one can establish the following
statement:

Statement 2 If two arbitrary modifications E′ and E′′ correspond to
sets of the operations differing at least in one reserved position, then
there exists an encryption key Q which for arbitrary given T defines
different ordered sets of indices {h′i} and {h′′i }, i = 1, 2, . . . , 16R, for
E′ and E′′ respectively.
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Theorem 2 For R ≤ 7 there exist no equivalent modifications of Al-
gorithm 2.

Proof. Let us consider an encryption key Q for which a given T
generates sets of indices {h′i} and {h′′i } 6= {h′i}, where i = 1, 2, . . . , 16R,
corresponding to modifications E′ and E′′. To prove Theorem 2 we
shall construct a key for wich these modifications define different per-
mutations ε(T ). Since {h′′i } 6= {h′i} one can find i = I for wich h′′I 6= h′I .
Let us mark indices h′1 = h′′1, h′2 = h′′2,. . . , h′I−1 = h′′I−1 as used ones.
For given T we have Nused ≤ 16R used indices. Other indices we shall
name vacant indices.

Case 1: I = 1.
Modifying the subkeys Qh′I

and Qh′′I
one can define a couple of

indices H ′
I+1 and H ′′

I+1 6= H ′
I+1 (the capital letter H denotes index after

modification) which are selected from the set of vacant indices, when
the block T is encrypted with the modifyed key. Since we do not modify
subkeys corresponding to previous selection steps, indices h′1 and h′′1 do
not change. In this way one can modify consequently QH′

I+1
and QH′′

I+1
,

QH′
I+2

and QH′′
I+2

, . . . , QH′
8R−1

and QH′′
8R−1

. Now we have indices H ′
8R

and H ′′
8R 6= H ′

8R which are selected for the first time. Accumulating
all such local modifications we obtain a new key Q′. If E′(T,Q′) 6=
E′′(T,Q′), then we have proved that E′ and E′′ are not equivalent. If
E′(T ′,Q′) = E′′(T ′,Q′), then one can modify QH′′

8
obtaining another

new key Q′′ and E′(T ′,Q′′) = E′(T ′,Q′) = E′′(T ′,Q′) 6= E′′(T ′,Q′′).
Thus, for the case 1 we have proved Theorem 2.

Case 2: I ≥ 2.
We shall modify the subkey Qh′I−1

. There is 255 different values
Qh′I−1

which define 255 different values H ′
I 6= h′I and 255 different

values H ′′
I 6= h′′I . In Algorithm 2 there are used such operations for

which for about all different Qh′I−1
we have H ′

I 6= H ′′
I . For R ≤ 7

we have 256 − 2Nused > 32 different values Qh′I−1
for which values

H ′
I and H ′′

I correspond to vacant indices and for several cases we have
H ′

I 6= H ′′
I . Selecting a couple of such indices H ′

I and H ′′
I 6= H ′

I and
modifying the encryption key as in the first case, we obtain a new
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key Q′′ satisfying the condition E′(T,Q′′) 6= E′′(T,Q′′). Theorem 2 is
proved. ¦.

Theorem 2 shows that the proposed encryption algorithm is really
an indeterminate cipher.

5 Conclusion

Data-dependent selection of subkeys seems to be a perspective encryp-
tion mechanism for creation of fast sotware-oriented indeterminate ci-
phers with provably nonequivalent modifications of the cryptalgorithm.
Using the conversion scheme described above one can compose many
different 64-, 96-, and 128-bit block indeterminate ciphers. The size of
input data block is not limited. It is possible also to use this scheme
for creation 512-byte block cryptosystems, however we estimate the
approach described in [2] to be preferable for such purpose.

Security of the considered 128-bit indeterminate cipher is based on
the following.

1. The most powerful known cryptanalytic attacks, for example dif-
ferential cryptanalysis [6], are based on the preliminary investiga-
tion of statistic properties of conversion procedures. In the case
under consideration cryptalgorithm modification is selected ran-
domly from the set of ≈ 1020R potentially implementable modi-
fications, all of them being unique.

2. For all modifications there are no two different input data blocks
for encryption of wich there is used the same set of subkeys.
Selection of subkeys is changed “pseudorandomly” from one block
to another. We expect that this fact should help defeat standard
differential and linear cryptanalysis even in the case of the known
cryptalgorithm modification.

196



Provably indeterminate 128-bit cipher

References

[1] Fast Software Encryption. Third Intern. Workshop. Proceedings.
Lecture Notes Computer Science, Springer-Verlag, 1996. Vol.1039.
X, 219 p.

[2] Moldovyan A.A., Moldovyan N.A. Fast Software Encryption Sys-
tem Based on Local Pseudorandomness. Comput. Sci. J. of
Moldova. 1995. V.3. No.3(9), p.252–262.

[3] Moldovyan A.A., Moldovyan N.A., Andronati N.R., Ro-
gozhin Yu.V. Software-Oriented Approach to Computer Processing
Protection. Europ. simul. meet.: Simulation Tools and Applica-
tions. Gyor, Hungary, Aug. 28–30, 1995. Proc. p.143–149.

[4] Moldovyan A.A., Moldovyan N.A., Moldovyan P.A. Effective
Software-Oriented Cryptosystem in Complex PC Security Software.
Comput. Sci. J. of Moldova. 1994. V.2. No.3, p.269–282.

[5] Moldovyan A.A., Moldovyan N.A. Fast Software Encryption Sys-
tems for Secure and Private Communication. 12th Intern. Conf. on
Comput. Communic., Seoul, Korea, Aug. 21-24, 1995. Proc. p.415–
420.

[6] Biham E., Shamir A. Differential Analysis of DES-like Cryptosys-
tems. Journal of Cryptology. 1991. V.4. No.1, p.3–72.

N.A.Moldovyan, Received Martch 25, 1997
Institute of Modelling and
Intellectualization of Complex Systems,
Prof. Popov Str., 5, St-Petersburg
197376, Russia;
phone: 7(812) 2340415; fax: 7(812)2349093
e-mail: sovetov@imics.spb.su

197


