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Models Nonlinear by Parameters

E. Livovsky N. Andronaty

Abstract
In this work we spoke about the method of construction of

models nonlinear by parameters with solution of system of nonlin-
ear algebraic equations by combination of methods. We observed
that method of shortest downhill is though universal, but rough
for obtaining amplified values, we can use more subtle Newton-
Rafson’s method but we must take into account initial meanings
of parameters rather close to real, which we can obtain by pre-
liminary use of method of shortest downhill. Numerical example
is given and methods for overcoming of difficulties is shown.

Mathematical models which are constructed according to the results of
analysis of experimental data often have the form [1]:

y = f(bj ;xj), (1)

where y is a dependent variable, xj is a set of independent variables
j = 0, p, where p is any integer number, bj is a set of parameters of
the right part of the model. If the model (1) is nonlinear according
to independent variables, it is easy to linearize it by substitutional
method.

It is constructed by method of least squares with solution of the
system of normal equations which are linear in coordination with the
parameters bj .

If the model (1) is nonlinear by parameters bj , this case is more
difficult, and it is connected with solution of systems of nonlinear al-
gebraic equations with all consequences followed (initial aproximations
are known, convergence or divergence of solution, extremum etc.).

c©1997 by E.Livovsky, N.Andronaty

162



Models Nonlinear by Parameters

Which reflects the fenomenon in consideration may have local ex-
tremums besides the global one, that is why there is no confidence that
in process of solution of system of nonlinear algebraic equations we
get that particular result the researcher has been striving for. Also it
should be born in mind that the choice of the number of parameters
depends on researcher’s intuitive conceptions and is a procedure to a
considerable extent arbitrary. From the technical point of view dur-
ing execution with exponents one more difficulty is met. Intermediate
results often have very small value (for example 0.1× 100−200) such a
situation is called ”machine zero”.

That’s why the problem of construction of a model nonlinear by
parameters is as a rule solved by computers many times, the number
of parameters being varied in various ways with various initial approx-
imations.

During non-linear parametrization appears a necessity of solving
the system of non-linear algebraic equation

f1(b1, b2, . . . , bp) = 0
f2(b1, b2, . . . , bp) = 0

. . . . . . . . . . . . . . .
fp(b1, b2, . . . , bp) = 0

(2)

It is clear that besides parameters bj in the system dependent vari-
ables yi and independent variables xij are present. They are omitted
for briefness, because differentiation of the expression

U =
n∑

i=1

Wi[yi − η(~β, ~x)]2 (3)

was carried out with respect to the parameters bj .
It is necessary to find value of B that satisfies expression (2), where

B presents p - dimensional vector of unknown parameters

B =

∥∥∥∥∥∥∥∥∥∥

b1

b2
...
bp

∥∥∥∥∥∥∥∥∥∥

(4)
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System (2) can be rewritten as p - dimensional vectorial equation:

F (B) = 0 (5)

Let’s suppose that the difference between the initial approximation
Bo and the solution of system of nonlinear equations is a small vector
∆B if the function F (B) is differentiable for sufficient number of times
in Bo Taylor’s decomposition can be used

F (B) = F (Bo + ∆B) = FBo + Jo(B −Bo) + . . . = 0 (6)

where Jo is Jakoby’s array at the point Bo

Jo =

∥∥∥∥∥∥∥∥∥∥∥

∂f1

∂bo
1

∂f1

∂bo
2

. . . ∂f1

∂bo
p

∂f2

∂bo
1

∂f2

∂bo
2

. . . ∂f2

∂bo
p

. . . . . . . . . . . .
∂fp

∂bo
1

∂fp

∂bo
2

. . .
∂fp

∂bo
p

∥∥∥∥∥∥∥∥∥∥∥

(7)

If in decomposition we limit ourselves with only linear terms we’ll
obtain:

0 ≈ F (Bo) + Jo(B −Bo) (8)

⇒ B = Bo − J−1
o F (Bo) (9)

This value of B is approximative but it can be used as an initial
value on the next step of iteration. In general case a recurrent formula
is obtained

Bk+1 = Bk − J−1
k F (Bk) (10)

The process has been repeated till we have obtained | ∆B |≤ ε for
some ε given beforehand which is changed according to the precision
of calculations.

The particular example of construction of a model nonlinear by
parameters is expediently to examine. There are the following inde-
pendent variables in this model:

t is the age of concrete on the moment of observation and (t −
τ) — time of observation in the dryings. This example is significant
also because of the fact that we didn’t manage to solve the system of
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algebraic equations using Newton-Rafson’s method so we had to use the
method of shortest downhill for construction of model for calculation of
extension of creep of concrete of age 28 ≤ τ ≤ 360 days (more frequent
case in constructions). The form of the model is usually like that:

C(t, τ) = θτf(t− τ) = (Co + Ae−γτ )[1−Deγ1(t−τ)] (11)

If we introduce the symbols which are usually used in the practice
of constructing empirical formula by statistical method: y = C(t, τ);
x1 = τ ; x2 = (t − τ); bo = D; b1 = γ; b2 = γ1, then formula (11) will
look as follows

y = (Co + Ae−b1x1)(1− boe
−b2x2) (12)

Expression (12) is nonlinear by parameters bo, b1, b2. If we have
vector-columns of observation for y, Co, x1, x2, A it is possible to find
parameters bo, b1, b2. Using the method of estimation nonlinear we
should take into consideration the already known value of Co and A
which are obtained by the following way:

Co = 0.5C(∞,28); A = 0.7C(∞,28), (13)

where C(∞,28) is the limit value of size of creep of concrete

C(∞,28) = 63.68 ∗ 10−7
j=11∏

j=1

kj (14)

Initial data for calculation are taken from publications of many spe-
cialists. Initial meanings of independent variable ŷ are calculated with
the help of formula (12) at generally accepted meanings for bo, b1, b2

Using Lejandr’s principle we can write down that the sum of squares
of deviations of value calculated by formula (12) from experimental
values, must be minimal

U =
n∑

i=1

(yi − ŷi)2min (15)
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where
ŷ = (Coi + Aie

−b1x1i)(1− boe
−b2x2i) (16)

In other words we should choose such values of parameters bo, b1, b2

which would minimize the sum of squares of deviations U . So the
problem consists in finding the minimum of function Ub. Let us find
partial derivates on all parameters and equate them with

∂U(b)
∂bo

= 0;
∂U(b)
∂b1

= 0;
∂U(b)
∂b2

= 0; (17)

If we introduce the symbols

ei(b) = yi − ŷi(b) (18)

formula (15) can be rewritten like this

U(b) =
n∑

i=1

e2
i (b) (19)

than we calculate




∂U(b)
∂bo

=
n∑

i=1
2ei(b)

∂ei(b)
∂bo

;

∂U(b)
∂b1

=
n∑

i=1
2ei(b)

∂ei(b)
∂b1

;

∂U(b)
∂b2

=
n∑

i=1
2ei(b)

∂ei(b)
∂b2

;

(20)

Taking into consideration (18) we obtain

∂ei(b)
∂bo

= ∂
∂bo

[
yi − ŷi(b)

]
= −∂ŷi(b)

∂bo
;

∂ei(b)
∂b1

= ∂
∂b1

[
yi − ŷi(b)

]
= −∂ŷi(b)

∂b1
;

∂ei(b)
∂b2

= ∂
∂b2

[
yi − ŷi(b)

]
= −∂ŷi(b)

∂b2
;

(21)
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If we substitute ŷi(b) in (21) we’ll get the system




∂ei(b)
∂bo

= e−b2x2(Coi + Aie
−b1x1i);

∂ei(b)
∂b1

= x1iAie
−b1x1i(1− boe

−b2x2i);

∂ei(b)
∂b2

= x2iboe
−b2x2i(Coi + Aie

b1x1i).

(22)

If we substitute (20) in (17) and take into consideration (22) we’ll
get the system





n∑
i=1

ei(b)e−b2x2iCoi + Aie
−b1x1i) = 0;

n∑
i=1

ei(b)x1iAie
−b1x1i(1− boe

−b2x2i) = 0;

n∑
i=1

ei(b)x2iboe
−b2x2i(Coi + Aie

−b1x1i) = 0.

(23)

This we call the system of algebraic equations bo, b1, b2 nonlinear bx

parameters. Its solution isn’t very simple because the convergence here
depends on chosen method of solution of system and initial approxima-
tions of coefficients bo, b1, b2. When trying to solve the problem at first
attempt we take as initial approximations those values of parameters
which can usually come across in research work or concrete creeping
bo
o = D = 0.85; bo

1 = γ = 0.012; bo
2 = γ1 = 0.006. On the basis of initial

approximations the meanings have been calculated ŷi(b) and êi(b). We
have the set of initial data with number of experiments which equals
141.

Then
∑n

i=1

[
e2
i (b)

]
o = 23067.64. Attempt to solve the system (23)

using the Newton-Rafson’s method with the above shown initial ap-
proximations failed because the results diverge from the true ones.
Then the second attempt was made to solve the system using method
of shortest downhill, and a stable result was obtained. Newly found val-
ues of parameteres bo, b1, b2 were taken as initial approximations when
we used repeatedly Newton-Rafson’s method and quickly convergent
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solution was obtained and considered to be a final one. Let’s analyze
the case of using method of shortest downhill using the example of the
given problem. To make the solution simple we’ll introduce symbols





fo(bo, b1, b2) =
n∑

i=1
ei(b)e−b2x2i(Coi + Aie

−b1x1i);

f1(bo, b1, b2) =
n∑

i=1
ei(b)x1iAie

−b1x1i(1− boe
−b2x2i);

f2(bo, b1, b2) =
n∑

i=1
ei(b)x2iboe

−b2x2i(Coi + Aie
−b1x1i).

(24)

and rewrite the system in the following (23) way




fo(bo, b1, b2) = 0;

f1(bo, b1, b2) = 0;

f2(bo, b1, b2) = 0.

(25)

Let’s introduce also a new function

Φ(bo, b1, b2) = f2
o (bo, b1, b2) + f2

1 (bo, b1, b2) + f2
2 (bo, b1, b2). (26)

Formula (26) takes minimal values at those values of parameters
bo, b1, b2 which answers to equations of the system, the calculations are
made by the following formula

bo1,k+1 = bo,k − Λk
∂Φ(bo,k;b1,k;b2,k)

∂bo
;

b1,k+1 = b1,k − Λk
∂Φ(bo,k;b1,k;b2,k)

∂b1
;

b2,k+1 = b2,k − Λk
∂Φ(bo,k;b1,k;b2,k)

∂b2
;

(27)

Λk =
Φ(bo,k; b1,k; b2,k)

A + B + C
(28)
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A =
[∂Φ(bo,k; b1,k; b2,k)

∂bo

]2
; (29)

B =
[∂Φ(bo,k; b1,k; b2,k)

∂b1

]2
; (30)

C =
[∂Φ(bo,k; b1,k; b2,k)

∂b2

]2
; (31)

From formula (26) we can see that:

∂Φ(bo, b1, b2)
∂bo

=
∂

∂bo

[
f2

o (bo, b1, b2) + f2
1 (bo, b1, b2) + f2

2 (bo, b1, b2)
]

= 2
[
fo(bo, b1, b2)

∂fo(bo, b1, b2)
∂bo

+f1(bo, b1, b2)
∂f1(bo, b1, b2)

∂bo

+f2(bo, b1, b2)
∂fo(bo, b1, b2)

∂bo

]
; (32)

∂Φ(bo, b1, b2)
∂b1

=
∂

∂b1

[
f2

o (bo, b1, b2) + f2
1 (bo, b1, b2) + f2

2 (bo, b1, b2)
]

= 2
[
fo(bo, b1, b2)

∂fo(bo, b1, b2)
∂b1

+f1(bo, b1, b2)
∂f1(bo, b1, b2)

∂b1

+f2(bo, b1, b2)
∂fo(bo, b1, b2)

∂b1

]
; (33)

∂Φ(bo, b1, b2)
∂b2

=
∂

∂b2

[
f2

o (bo, b1, b2) + f2
1 (bo, b1, b2) + f2

2 (bo, b1, b2)
]
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= 2
[
fo(bo, b1, b2)

∂fo(bo, b1, b2)
∂b2

+f1(bo, b1, b2)
∂f1(bo, b1, b2)

∂b2

+f2(bo, b1, b2)
∂fo(bo, b1, b2)

∂b2

]
. (34)

in the formula (30)–(32)

∂fo(bo, b1, b2)
∂bo

=
n∑

i=1

e−2b2x2i(Coi + Aie−b1x1i)
2; (35)

∂fo(bo, b1, b2)
∂b1

=
n∑

i=1

x1iAie
−(b1x1i+b2x2i)

×
[
(1− boe

−b2x2i)(Coi + Aie
−b1x1i)− ei(b)

]
;(36)

∂fo(bo, b1, b2)
∂b2

= −
n∑

i=1

x2ie
−b2x2i(Coi + Aie

−b1x1i)

×
[
ei(b) + boe

−b2x2i(Coi + Aie
−b1x1i)

]
; (37)

∂f1(bo, b1, b2)
∂bo

=
∂fo(bo, b1, b2)

∂b1
(38)

∂f1(bo, b1, b2)
∂b1

=
n∑

i=1

x2
1iAie

−b1x1i(1− boe
−b2x2i
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×
[
Aie

−b1x1i(1− boe
−b2x2i)− ei(b)

]
; (39)

∂f1(bo, b1, b2)
∂b2

=
n∑

i=1

x1ix2iboe
−(b1x1i+b2x2i)

×
[
(1− boe

−b2x2i)(Coi + Aie
−b1x1i)− ei(b)

]
.(40)

∂f2(bo, b1, b2)
∂bo

=
∂f2(bo, b1, b2)

∂b2
(41)

∂f2(bo, b1, b2)
∂b1

=
∂f1(bo, b1, b2)

∂b2
(42)

∂f2(bo, b1, b2)
∂b2

=
n∑

i=1

x2
2iboe

−b2x2i(Co + Aie
−b1x1i)

×
[
(boe

−b2x2i(Coi + Aie
−b1x1i)− ei(b)

]
. (43)

Algorithm of solution of system of nonlinear equations using the
Newton-Rafsons method is given above. As has already been noted
above the attempt to use the Newton-Rafson’s method at once for
the solutions of system (25) at initial approximations b0

0 = 0.85; b0
1 =

0.012; b0
2 = 0.006 failed. Probably these approximations were too far

from true values of parameters and vector ∆B wasn’t a small value.
During the second step an attempt was made to solve the system
using the method of shortest downhill at the same initial approxi-
mations. Calculations were being carried out with the help of com-
puter at the number of observations n=141. The results happened
to be rather encouraging and showed good convergence of method of
shortest downhill while solving such problems. Already on the 8th
iteration the error εj = bj,k+1 − bj,k was for b0 − 4.25 × 10−5%, for
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b1−0.0493%, for b2−0, 905% and following values of parameters are ob-
tained b8

0 = 0, 85; b8
1 = 0, 0143; b8

2 = 0, 0047. These values of parameters
are taken as initial at repeated use of the method of Newton-Rafson,
at the third step of solution of problem. On the 7th iteration the error
took place: for b0−8, 76×10−6%, for b1−0%,for b2−1.35×10−5%. And
the following value of parameters bo = 0.683, b1 = 0.0134, b2 = 0.00344
please compare with initial values: b0 = 0.85; b1 = 0.012; b2 = 0.006.
These values can be considered final for the taken array of experimental
data and in this way the model becomes to look like:

C(t,τ) =
(
C0 + A× e−0.0134τ

)
×

[
1− 0.683e−0.00344(t−τ)

]
(44)

As we have already noted out at initial values of parameters the
sum of square of deviation of calculated results from the experimental
ones was:

n∑

i=1

e2
i = 28067.64.

Calculation by method of shortest downhill made it possible to decrease
this value up to value

n∑

i=1

e2
i = 25391.61.

After amplificating parameter values using the Newton-Rafson’s method
finally obtained

n∑

i=1

e2
i = 23887.52,

that is the sum of squares of deviation which has been decreased about
15%. The author hopes that above told method will allow many special-
ists to use the method of estimation nonlinear by parameters effectively
for solution of practical problems.
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