Computer Science Journal of Moldova, vol.5, no.1(13), 1997

Communication Facilities for Distributed
Systems

V.Barladeanu

Abstract

The design of physical networks and communication protocols
in Distributed Systems can have a direct impact on system effi-
ciency and reliability. This paper tries to identify efficient mech-
anisms and paradigms for communication in distributed systems.

Judging from the enormous amount of distributed system research
carried out over the past decade, information processing experts have
come to recognize the advantages these systems possess. These re-
search activities have led to the availability of more than 50 network
and distributed systems. However, most of these systems can only
partially succeed in attaining the major goals of a distributed system,
which include transparency, higher performance, higher reliability and
availability, and higher scalability. Of course, attaining all these goals
in the first attempt is imposible.

Nonetheless, gradual improvements are posible by learning from
existing systems and trying to overcome their limitations.

Distributed transaction-procesing systems must manage such func-
tions as concurency, recovery, and replication. One way to improve
their efficiency and reliability is to increase software modularity, which
means the separate components should execute in separate address
spaces to permit hardware-enforced separation. This structure offers
advantages but demands efficient interprocess cimmunication (IPC)
service.

The existing communication paradigms are classifyed into three
groups: local interprocess communication, remote interprocess com-
munication and communication protocols for both local and wide area
networks.

(©1997 by V.Barladeanu

64

Communication Facilities for Distributed Systems

1 Local interprocess communication

To improve local machine performance, Bershad [1] introduced two new
mechanisms: lightweight remote procedure call (LRPC) and user-level
remote procedure call (URPC). LRPC takes advantage of the control
transfer and communiction model of capability — based systems and
the adress-space-based protection model of traditional IPC facilities.
URPC]J2], another cross-address-space communication facility, elimi-
nates the role of the kernel as an IPC intermediary by including com-
mumication and thread management code in each user address space.
URPC combines fast cross-address space communication using shared
memory with a lightweight threads package that is managed at the
user level. The authors significantly expand upon their work on LRPC
[3]. In LRPC, the emphasis was on improved performance achieved
by exploiting the “common case” of same-machine communication for
a multiprocessor operating system kernel. In their previous LRPC
work, the authors argued that it is possible to reduce the overhead of
a kernel-mediated cross-address space call to nearly the limit possible
on a conventional architecture. They observed that the majority of
LRPC’s overhead was attributed to the fact that the kernel mediates
every cross-address space call. In an effort to improve performance and
reduce costs, they examine a new system called URPC. In URPC the
kernel does not mediate every cross-address space call; rather, manage-
ment is performed at the user level. In the URPC system, performance
is improved by always attempting to schedule another thread from the
same address space; the scheduling operation can be handled entirely
by the user-level thread code. By preferentially scheduling threads
within the same address space, URPC takes advantage of the fact that
significantly less overhead is involved in switching a processor to an-
other thread in the same address space than in reallocating a processor
to a thread in another address space. Furthermore, the authors suggest
that user-level code is the best place to make the decision concerning
the context switch itself. The paper defines heavyweight threads, which
are threads that make no distinction between a thread, the dynamic
component of a program, and its address space, the static component.

65

V.Barladeanu

They argue that the baggage such as open file descriptors, page tables,
and accounting state makes operations on heavyweight threads costly.
The authors further argue that kernel-level threads or middleweight
threads, in which address spaces and threads are decoupled and the
kernel assumes the responsibility for scheduling the thread, do not per-
form as well as lightweight threads. The paper argues that the kernel’s
manipulation of middleweight thereads in a general way carries a signifi-
cation performance penalty. Further, the impact of thread management
policy on program performance strongly influences overall throughput
of the application: it is unlikely that a kernel-level thread scheduling
policy will be efficient for all parallel programs. Therefore, lightweight
threads provide a better alternative to these two approaches. In accor-
dance with these observations, the URPC approach emphasizes calls
between functions that do not invoke the kernel and that do not unnec-
essarily reallocate processors between address spaces. These two issues
are key to the perfomance enhancements demonstrated in the URPC
approach. This paper contains perhaps the most significant results
in computer science with respect to the design of operating system
software structures for multiprocessor architectures. Its original and
thoughtful insights into these issues will have a long-lasting impact on
the field.

Both LRPC and URPC were implemented on a DEC SRC Firefly
multiprocessor workstation running the Tao operating system [1]. A
simple cross-address-space call usig SRC RPC takes 464 microseconds
on a single C-VAX processor. LRPC takes 157 microseconds for the
same call, and using URPC reduces the call’s latency to 93 microsec-
onds.

2 Remote interprocess communication

Several message-based operating systems can reliably send messages to
process executing on any host in the network. The V system [4] imple-
ments address spaces, processes, and the interprocesses communication
protocol in the kernel to provide a high-performance message-passing
facility. All high-level system services are implemented outside the

66

Communication Facilities for Distributed Systems

kernel in separate processes. Mash uses virtual-memory techniques to
optimize local IPC. Remote comminication goes through a user-level
server process, which adds extra overhead. Amoeba uses capabilities
for acces control and message address. It has a small kernel, and most
features are in user processes.

However, not all the systems use the small-kernel approach with
remote IPC outside the kernel. In Sprite [5], the IPC is through a pseu-
dodevice mechanism. Sprite kernel communication is through Sprite
kernel-to-kernel RPC. RPC in x-kernel [6] is also implemented at the
kernel level. Table 1 shows the performance of various RPCs over Eth-
ernet.

Table 1. Performance data for remote procedure calls. (The Sun 3/75
is a 2-MIPS machine, and the Sun 3/60 is a 3-MIPS machine)

System RPC Type Architecture Latency Latency
by MIPS
A\ User level Sun 3/75 2.50 ms 5.0 ms
Mash User level Sun 3/60 11.0 ms 33.0 ms
Amoeba User level Sun 3/60 1.1 ms 3.3 ms
Sprite Kernel level Sun 3/75 2.45 ms 4.9 ms
Sprite Kernel level Sun 3/75 1.70 ms 3.4 ms

3 Comunication protocols

Communication protocols provide a standard way to communicate be-
tween hosts conected by a network. Datagram protocol such as IP are
inexpensive but unreliable. However, more reliable protocols, such as
virtual-circuit and requiest-response protocols, can be built on top of
datagram protocols.

The versatile message transaction protocol (VMTP) is a transport-
level protocol that supports the intrasystem model of distributed pro-
cessing [4]. Page-level of file access, remote procedure calls, real-time
datagrams, and multicasting dominate the communication activities.
VMTP provides two facilities, stable addressing and message trans-

67

V.Barladeanu

actions, useful for implementing conversions at higher levels. A sta-
ble address can be used in multiple message transaction as long as
it remains valid. A message transaction is a reliable request-response
interaction between addressable network entities (ports, processes, pro-
cedure invocations). Multicasting, datagrams, and forwarding services
are provided as variants of the message transaction mechanism.

Using virtual protocols and layered protocols, the x-kernel imple-
ments general-purpose yet efficient RPCs. Virtual protocols are demul-
tiplexers that route the messages to appropiate lower level protocols.
For example, in an Internet environment, a virtual protocol will bypass
the Internet Protocol for messages originating and ending in the same
network. The support of atomic broadcasting and failure detection
within the communication subsystem simplifies transaction processing
software and optimizes network broadcasting capabilities [7].

4 Forms of interprocess communication

085/390 OpenEdition services provide three special ways for program-
ming processes to communicate:

Message queues, Semaphores, Shared memory

These forms of interprocess communication extend the possibilities pro-
vided by the simpler forms of communication: pipes, named pipes
or FIFOs, signals, and sockets. Like these forms, message queues,
semaphores, and shared memory are used for communication between
processes. (Sockets are the most common form of interprocess commu-
nication across different systems.)

a) Message queues

0S/390 OpenEdition services provide a set of C functions that allow
processes to communicate through one or more message queues in an
operating system’s kernel. A process can create, read from, or write to
a message queue. Each message is identified with a “type” number, a
length value, and data (if the length is greater than 0).

68

Communication Facilities for Distributed Systems

A message can be read from a queue based on its type rather than on
its order of arrival. Multiple processes can share the same queue. For
example, a server process can handle messages from a number of client
processes and associate a particular message type with a particular
client process. Or the message type can be used to assign a priority in
which a message should be dequeued and handled.

b) Semaphores

Semaphores, unlike message queues and pipes, are not used for ex-
changing data, but as a means of synchronizing operations among pro-
cesses. A semaphore value is stored in the kernel and then set, read,
and reset by sharing processes according to some defined scheme. A
semaphore can have a single value or a set of values; each value can
be binary (0 or 1) or a larger value, depending on the implementation.
For each value in a set, the kernel keeps track of the process ID that
did the last operation on that value, the number of processes waiting
for the value to increase, and the number of processes waiting for the
value to become 0.

A semaphore is created or an existing one is located with the
semget() function. Typical uses include resource counting, file lock-
ing, and the serialization of shared memory.

¢) Shared memory

Shared memory provides an efficient way for multiple processes to share
data (for example, control information that all processes require access
to). Commonly, the processes use semaphores to take turns getting
access to the shared memory. For example, a server process can use a
semaphore to lock a shared memory area, then update the area with
new information, use a semaphore to unlock the shared memory area,
and then notify sharing processes. Each client process sharing the
information can then use a semaphore to lock the area, read it, and
then unlock it again for access by other sharing processes.

69

V.Barladeanu

5 Communication Transport Protocols

The communication transport protocols will be exemplified using such
sistems as Isis and Raid.

Isis is a Toolkit for building distributed applications. Isis was de-
veloped as a UNIX-oriented distributed programming environment, al-
though the system has now migrated to a number of other platforms.

Isis implements several protocol layers, using an architecture that
is stacked somewhat like the ones seen in TCP/IP or the OSI architec-
ture. The highest layer of protocols, labeled vsync, is concerned with
supporting the full virtual synchrony model for multiple groups. Its
overheads are as follows:

e [t adds ordering information to messages, using, called com-
pressed vector timestamps. Timestamp size grows in propor-
tion to the number of processes permitted to send in a process
group, which is generally between 1 and 3 in Isis applications,
but can rise to 32 in certain types of parallel codes.

e [t may delay messages for atomicity and ordering reasons. There
are a number of possible delay conditions. For example, trans-
mission of a message may have to be delayed until some other
message has been sent, a message can arrive before some other
message should precede it, the delivery of a totally ordered multi-
cast may need to be delayed until the delivery ordering is known,
and so forth.

e When a process group membership change is occurring, this layer
ensures that each message is delivered atomically, before or after
the membership change, at all members.

Below the virtual synchrony layer is a multicast transport layer.
This layer has responsibility for delivering messages in the order they
were sent (point-to-point ordering only), without loss or duplication
unless the sender fails. Callbacks to the virtual synchrony layer report
on successful delivery of a message to its remote destination. The
multicast transport layer exploits several message transport protocols:

70

Communication Facilities for Distributed Systems

e The UDP transport layer supports point-to-point communication
channels using the UDP protocol (user datagram protocol). This
layer implements reliability using a windowed acknowledgement
scheme, much as TCP does over the IP protocol. If process p
has channels to process ¢ and 7, notice that the actual UDP
packets travelling over these respective channels may be very dif-
ferent. Isis supports various point-to-point and RPC communi-
cation mechanisms, and ¢ and r may not be members of the same
set of process group. Since the packing algorithm will be applied
to the aggregate traffic from p to ¢ and r, the packet stream used
in each case will differ.

e The IP-multicast transport layer. IP-multicast is similar to UDP,
in that it provides an unreliable datagram mechanism. However,
whereas UDP operates on a point-to-point basis, IP-multicast
supports group destination and the associated routing facilities.
IP-multicast is not reliable, hence protocol implements its own
flow-control and error correction logic. Notice that although IP-
multicast offers a reduction in the number of packets needed to
send a given message to a set of a destinations, this assumes that
identical packets must be sent to the destination processes.

e A transport layer using shared memory for local communication.
This layer is planned for the future: Isis does not currently opti-
mize for local communication, although the growing availability
of shared memory in modern operating systems makes this fea-
sible. An extension of Isis to communicate between processes
on the same machine using a shared memory pool would greatly
enhance local performance, as well as remote performance for
groups having some local destination.

e A transport layer for Mach IPC. This layer is experimental.

The above layering is used when application programs are able to
communicate directly. Most Isis communication is direct (called “by-
pass” communication), and although there are other communication
paths which are not described here.

71

V.Barladeanu

In Raid (Raid has been developd at Purdure University on Sun
workstation under the Unix operating system in a local area network),
each major logical component is implememted as a server, which is a
process in a separate address space. Servers interact with other pro-
cesses through a high-level communication subsitem. Currently, Raid
has six servers for transaction management: the user interface (UI), the
action driver (AD), the access manager (AM), the atomicity controller
(AC), the concurrency controller (CC), and the replication controller
(RC). High-level name service is provided by a separate server, the
oracle.

Raid’s communication software is called Radicomm. The first ver-
sion, Radicomm V.1, was developed in 1986. Implemented on top of
SunOS socket-based IPC mechanism using UDP/IP (User Datagram
Protocol/Internet Protocol), it provides a clean, location-independent
interface between the servers. Radicomm V.2 was developed in 1990 to
provide milticasting support for the AC and RC services. Radicomm
V.3 was developed to support transmission of complex database ob-
jects. It is based on the explicit control-passing mechanism and shared
memory.

Summary

The key difference between a centralized operating system and a dis-
tributed one is the importance of communication in the latter. Various
approaches to communication in distributed system have been proposed
and implemented. Wide-area distributed systems, connection-oriented
layered protocols suuch as OSI and TCP/IP are sometimes used be-
cause the main problem to be overcome is how to transport the bits
over poor physical lines.

For LAN-based distributed system, layered protocols are rarely
used. Instead, a much simpler model is usually adopted, in which the
client sends a message to the server and the server sends back a replay to
the client. By eliminating most of the layers, much higher performance
can be achieved. Many of the design issues in these message-passing
systems concern the communication primitives: blocking versus non-

72

Communication Facilities for Distributed Systems

blocking, buffered versus unbuffered, reliable versus unreliable, and so
on.

The problem with the basic client-server model is that conceptu-
ally interprocess communication handled as I/O. To prevent a better
abstraction, the remote procedure call is widly used. With RPC, a
client running on one machine calls a procedure running on another
machine. The runtime system, embodied in stub procedures, handles
collecting parameters, building messages, and the interface with the
kernel to actually move the bits.

Although RPC is a step forward above raw message passing, it has
its own problems. The correct server has to be located. Pointers and
complex data structures are hard to pass. Global variables are difficult
to use. The exact semantics of RPC are tricky because clients and
servers can fail independently of one another. Finally, implementing
RPC efficiently is not straightforward and requies careful thought.

RPC is limited to those situations where a single client wants to talk
to a single server. When a collection of processes, for example, repli-
cated file servers, need to communicate with each other as a group,
something else is needed. Systems such as Isis provide a new abstrac-
tion for this purpose: group communication. Isis offers a variety of
primitives, the most important of which is CBCAST. CBCAST of-
fers weakened communication semantics based on causality and imple-
mented by including sequence number vectors in each message to allow
the receiver to see whether the message should be delivered immedi-
ately or delayed until some prior messages have arrived.

References
[1] B.N.Bershad. High-Performance Cross-Address Space Communi-
cation, PhD thesis, Tech. Report 90-06-02, University of Washing-

ton, Seattle, 1990.

[2] Bershad Brian N., Anderson Thomas E., Lazowska Edward D.
User-level interprocess communication for shared memory multi-

73

V.Barladeanu

3]

4]

processors, ACM Transactions on Computer Systems vol.9, No.2
(May 1991), pp.175-198.

Bershad B.N., Anderson T.E., Lazowska E.D. and Levy H.M.
Lightweight remote procedure call. ACM Trans. Comput. Syst.
(Feb. 1990), 37-55.

D.R.Cheriton. The V Distributed System, Comm. ACM, Vol.31,
No.3, Mar. 1988, pp.314-333.

J.K.Ousterhout. The Sprite Network Operating System, Com-
puter, Vol.21, No.2, Feb. 1988, pp.23-36.

L.Peterson. The x-kernel: A Platform for Accessing Internet Re-
sources, Computer, Vol.23, No.5, May 1990, pp.23-33.

E.Mafla and B.Bhargava. Implementation and Performance of a
Communication Facility for Distributed Transaction Processing,
Usenix Symp. Experiences with Distributed and Multiprocessor
Systems, Usenix Assoc., Berkeley, Calif., Mar. 1991, pp.69-85.

Vladimir Barladeanu, 21 October 1996
Department of Computer Science

Politechnical University of Bucharest

Splaiul Independentei 313,

Sector 6, Bucuresti, Romania.

Phone: (40-1) 410-04-00, (40-1) 311-16-76

E-mail: vladbQdisco.cs.pub.ro

vladbQarexim.ro

74

