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The approximate solution of singular
integro-differential equations on
smooth contours in the spaces L.

V.Zolotarevschi Iu.Caraus

Theoretical foundation of the collocation method and mechanical
quadrature method for singular integro-differential equations (SIDE)
in the case when the equations are given on a closed contour satisfying
some conditions of smoothness,without their reducing to the unit circle
is given below.

Let T' be a smooth Jordan border limiting the one-spanned area
F* containing a point t = 0, F~ = C \ {FT UTl'}. Let z = ¢(w) be a
function, mapping comformally and single-valuedly I'g = {|w| > 1} on
the surface I' so that (o) = oo, (") (c0) > 0.

We shall assume that the function z = 1 (w) has second derivative,
satisfying on I'g the Holder condition with some parameter v
(0 < v < 1); the class of such contours is denoted [I,p.23] by C(2;v).

1 Statement of the problem and formulation
of the main theorems

In complex space Ly(I')(1 < p < 00) of the functions g(t) € L,(I") with

the norm
1 :
loll = 7 [lal7lart | 1
I

where [ is the length of I', we will consider SIDE [2,p.312]
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(Mz =) i[ﬁir(t)x(’") (t) + Er(t)i_ / @m +

g T—1

r=0
tgm [ Kol e mar = 1), e, @
r

where A,(t), B,(t), f(t) and K,(t,7) (r = 0,q) are given functions ;
20 (t) = z(t) is the required function; z(")(t) d'a(t) (r=1,q);q is
a natural number.

dt”
We search the solution of equation (2) in the class of func-
tions,satisfying the condition

1 —k—1 _ _ —
5.7 /{L‘(T)T dr=0, k=0,qg—1. (3)
r

Equation (2) with the help of operators P = (I +5),
Q@ = I — P,where I is an identical operator, and S is a singular (with
Causchy nucleus) one, can be written as follows:

q

(Mz =) Y [A,(t)(P2D)(t) + By (£)(Q'")(¢) +

r=0

% / K, (t,7)2") (r)dr] = f(t), teT (4)
r

where A,(t) = A.(t) 4+ B,(t), By(t) = A.(t) — B.(t), r=0,q.
We search the approximate solution of problem (2)-(3) in the form

n -1
wa(t) = YoV 3 g ter, (5)
k=0 k=—n
where §,(€n) =¢; (k= —n,n) are unknown; we shall note that the func-
tion x,(t), constructed by formula (5), obviously, satisfies conditions

(3)-
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According to the collocation method , we determine the unknown
&k (k= —n,n) from a system of linear algebrical equations (SLAE):

i{Ar(t] i((k%”t“q T+

k+qg—r)!
+B,(t;) Y (- 715— Tkt
= -1
" (k
Z 4 /K (tj, )T dr - & +
2mi = (k+q—1)
- y(k+r—1) ki
+> (- fl 2m/K (tj. 7) dr - &k} = f(t)),
k=1
j=0.2n, (6)

where t;(j = 0,2n) is the set of different points on I".

If the problem (2)-(3) is solved by the mechanical quadrature
method, we also search the approximate solution in the form (5). How-
ever, we find the unknown &, (kK = —n,n) as the solution of (SLAE)
(6), in which the integrals are replaced by the quadrature formulae.

We shall aplly as quadrature formula the following one:

1 1 _
o [ o= o [ gy,

where k = 0,n, at [ =0,1,2,... and k = —1,—n, for | = —1,-2,..
the operator of interpolation U, is determined by the formula

b

(Ung)(t) = Zg() s();

m
L) = 1l 4t‘_t’“ <J> ZA tel, j=0,2n.
k=0,k#j "j k k=—n

Thus, for the determination of the unknown & (k = —n,n) by the
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mechanical quadrature method we get the following SIDE:

y e (k9! g
rgo{Ar(t])];mtj q 'fk-l—
3 k+r—1)
" k ! 2n .
+Z %ZKT(%%)&MTA(_I)C‘& n
k=0 s

n . 2n
# RS Kt AL ) = F)
tos=0

7 =0,2n. (7)
o (9) o
Let qu (F) = {g, = g("') , T = ]_’ q, g(Q) c LP(F), } and for

o (9) o (9)
Vg €W, the condition (3) is satisfied and the norm in W, is de-

P
termined by the equality
I9llp.q = 1199z, -

We shall denote by L, , the image of space L, with mapping P +t79()
with the same norm as in L.

o (9)
Lemma 1 . [3,p.44] The differential operator DY :W, — Ly,
(D4g)(t) = g'9D(t) is continuously reversable and its reverse operator is

o \q
D=9 Ly g =W, is determined by the equality

(D71g)(t) = (NTg)(t) + (N~ g)(t),

(V)0 = g [P = 0 a1 = Dyar
I
—1)¢1 T
90 = 3 (@) — 0 1 = Dyar,
r
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From lemma 1 it follows:

o (q)
Lemma 2 The operator B :W, — Ly, B = (P +t1Q)D? is re-
versable and
B™'=D7I(P+171Q)

The basic theorems in the given paper are the following
Theorem 1 Let the following conditions be satisfied:

e 1) the outlineI' € C(2,v), 0<v <l

e 2) the functions A,(t) and B,(t) belong to the space H,(T)
O<a<l 1r=0,q

o 3) Ay(t) By(t) £0, teT

e 4) the index of function tYB*(t)A(t) is equal to zero;

e 5) the functions K,(t,7) (r =0,q) € Hg(I'xI'), 0 < B <1,
and the function f(t) € C(I);

o (9)
e 6) the operator M W, — Ly is linearly reversable;

e 7) the points t; (j = 0,2n) form a system of Feier knots [4,p.36]
onI':

2r . . .
tj=1 [exp <2n+1(j —n))] ., 7=0,2n, P2 =—1.

Then, begining with n > Ny, (Ny depends on the coefficients of
SIDE), SLAE (6) has the unique solution & (k = —n,n). The approz-
imate solutions xy(t), constructed by the formula (5), converge when

q
n — oo in the norm of space I/f/p to the exact solution z(t) of the prob-
lem (2)-(3) and the following estimation the convergence speed holds:

=)+ 0@ ) + 0wt 1) D 6, 9

- gt
ne n n

) — 2 = O (

( h(t,T) is a continuos function relative to t and 7 on I' defined below.)
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Theorem 2. Let all conditions 1)-7) of the theorem 1 be satisfied.
Then, begining with the numbers n > No(> N1) SLAE (7) has a unique
solution &, k = —n,n. The approzimate solution of (5) converge when

o (g
n — oo in the norm of W, to the exact solution x(t) of the problem
(2)-(3) and the following estimation for the convergence speed takes
place:

Iz~ allp = b + O (B 1) 0

We shall note that in the case of the standard contour (the segment of
a real straightline or an unit circle ) the similar theorems were obtained
earlier in [5,6]. Before we proceed to the proof of the theorems 1 and
2, we shall bring some statements from [7], which will be necessary
further. (P @
t t

As is proved in [7], functions ( d;;)( ) an (SZ)( ) can be rep-

resented by integrals of Cauchy type with the same density v(t) :

q
O _ L[,
dtd 2ni ) T —1

dq@x)(t):gj o)y e

dtd 2ni ) T —1
I

(10)

With the help of these representations the problem (2)-(3) can be re-
duced to an equivalent (in the sense of solving ) singular integral equa-
tion (SIE).

(Rv =)C(t)u(t) + @/T Cdr+ —/h (t,7) — f(0),

i
r

tel, (11)

where C(t) = $[A,(t) +179B,(t)], D(t) = 3[Ay(t) — t79B,(t)], and

h(t,7) according to the condition 5) of the theorem I is a function

belonging to the class C'(I' x I'); the obvious form of this function is
given in [7].
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The equation (11) and problem (2)-(3) are equivalent in the sense
that to each solution v(t) of equation (11) corresponds with the formu-
lae

- 2mi(g — 1

(Px)(t) iq), /U(T)[(T — 7 (1 - i) "
I

q—1
+ 3 aprth 1y
k=1
= 7(_1)4 o) T Y(r =) ' In(1 - T
(Q)(1) = 5™ 1)!F/ -0 m (1-7) +
q—2
+ > BTt M dr (12)
k=1

(ag, k=1,¢g—1and k = 1,q— 2 are real numbers), the solution
x(t) of the problem (2)-(3) and , conversely ; to each solution z(t) of
the problem (2)-(3) corresponds with formula

o = FEDO (@0

the solution v(¢) of the equation (11), and the linear-independent so-
lutions of the problem (2)-(3) correspond to the linear-independent
solutions of equation (11) (and conversely) .

2. The proof of the theorem 1. We shall show that for suffi-
ciently large n (> Ny) the operator U, MU, is reversable as the op-

. n —1
erator, considered from the subspace X,, = {tq Y oapth+ 2 aktk}
k=0 k=—n

in the subspace R,, of polynomials of type

n

> itk ter.

k=—n
We consider that in these subspaces the norm is the same as in sub-

o (9)
spaces W, and Ly(I'), respectively.
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Similarly to the formulae (10) we shall represent the functions
Pr)(D) Q) (1)

dtd dt?
deunsity vy, (1) :

by integrals of Cauchy type with the same

dq(Pxn)(t) _ 1 /vn(T)dT, te Bt

dt4 271 T—1
.0 13)
dU(Quz,)(t) 17 / v (7) } (
dta 27 T—th’ ber.
I

It is easy to prove that

n

Z k+q ET A kg 4 (—1)¢ Igi(k(_]:z;!l)!tkf—k

and therefore v, (t) € R,, teTl.
With the help of representation (13) the equation U, MU, x,, = U, f
is reduced to the equivalent equation in the same way as the problem

(2)-(3):
UnRUpzy = Uy f, (14)

considered as an equation in the subspace R,. The last equation, ob-
viously, represents an equation of the collocation method for SIE (11).
From (13) and v, € R, we conclude that if v, (¢) is the solution of the
equation (14), then the function y,(t), defined by the equality

(Py,)(t) = (_71)(1!/2)“(7)[(7 — )9 n(1 — 3) +
I

2mi(q — 1) T
qg—1
+ 3 gtk 1k ar;
k=1
QO = gy o)l — 0 a1 = D) ¢
q—1
+>° BTt dr (15)
k=1
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is the solution of the equation U, MU,x, = U, f and conversely. As it
is mentioned above, the function y, () is defined with the help of v, (t)
by fomulae (15) in the unique manner.

It follows that if the equation (14) has the unique solution v, (¢) in
subspace R,,, then the equality y,(t) = z,(¢) should be satisfied and
x,(t) is the solution determined in the unique way.

The (14) is an equation of the collocation method for SIE (11). We
shall show that for this equation all conditions of the theorem 8.3 are
satisfied from [8,p.76], which gives the theoretical foundation of the
collocation method for SIE L. From the conditions 3),4),6),
lemma 1,lemma 2,it follows the reversability of operator R : L, — Ly;
this together with the conditions 1), 2), 5), 7) coincide with theorem
8.3 from [8]. Therefore, begining with the numbers n > Ny, the equa-
tion (14) has the unique solution v,(t) € R,. Hence, the equation
U, MUz, = U,f, and the SLAE (6) are solvable in the unique way
for such n.

Besides, according to the theorem 8.3. from [8,p.76] the following
estimation is true:

o= vl =0 () + Olwlfi 1) + 0! (s ). (16

n
From the relations (15) and y, (t) = x,(t) it follows that
9 ~ a2 < elfo — wal,

From the previous inequality and with help of (16) we obtain (8). The
theorem 1 is proved.

The proof of theorem 2 It is easy to verify that SLAE (7) is
equivalent to the operational equation

Un {Z[Aw(t)(Px%”)(t) + Br(£)(Qz ) (1) +

r=0

o [ Lo K )P ) +
27mF T

52



The approximate solution of singular. ..

+ 5 / %UT(LT)[T’T’lK(t, T)](Qa:g))(T)dT]} =Unf, (17)

which after the application of the integrate representation (13) is equiv-
alent (in the same sense as was mentioned above) to the equation

Un{C(#)on(t) + D(#)(Svn)(t) +

1

+ 211

[0 ey =0, (8)
r

where the functions C(t), D(t) and h(t,7) are determined above.

The equation (18) represents an equation of the mechanical quadra-
ture method for SIE (11). It is easy to verify as in the proof of
theorem 1, that from the conditions of theorem 2 follows the execution
of conditions of theorem 8.4 from [8,p.77],arranging the use of mechan-
ical quadrature method to SIE (11) . Therefore , by virtue of cited
theorem 8.4., begining with the numbers n > Ny(> N;) the equation
(18) has the unique solution v, (t) € R, and the following estimation
(taking into account the inclusion) v(t) € C(I) is true:

1 1 1 1
o= onll =0 () + O@(f5 7)) + 0T (15 1) + 0! (h: 3). (19)
n n n n
~ Then for such n the equation (17) has the unique solution z,(t) €
X, which is connected with v,,(¢) by the formulae (15). Besides,as the
exact solutions z(¢) and v(t) of the problem (2)-(3) and equation (11)

respectively are connected by the formulae (12), then we shall obtain
(9),taking into account (19). The theorem 2 is proved.
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