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Abstract

There are considered new fast software encryption function
and some its cryptographical properties. It has been shown that
the probability of the selection of two equivalent keys is very low.
Crypto-robustness of this cipher has been evaluated on the basis
of its probabilistic model.
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1 Introduction

Cryptographical methods allow solving the crucial problems of data au-
tomated processing protection. They assure high level of data protec-
tion and provide possibility of efficient control of information integrity
and authentication. Modern encryption methods guarantee practically
absolute data protection. There are known many ciphers securing high
cryptoresistibility level, however, majority of them (for example, DES,
FEAL, IDEA) are hardware-oriented.

Mass application of cryptographical methods is restrained by the
fact that the use of specialized encrypting hardware requires substan-
tial financial expenses. Increasing productivity of serial microproces-
sors and penetration of computer technologies in communication and
information systems allows one to solve the last problem on the basis
of the software-oriented ciphers.

Recently several software encryption functions based on data-de-
pendent selection of the current key elements has been proposed [1, 2].
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In such ciphers there is used an initialization subsystem which generates
a long secondary encryption key [3].

In present paper there is considered a new software encryption block
cryptoscheme based on local pseudorandomness.

2 Encryption function

Cryptoscheme described below uses a 1024-byte key {Qp}, where @y,
is a 32-bit word (h = 0,1,2,...,255). It is supposed that this key
depending on the password is generated by the initialization subsystem.
Encryption function is based on operations @ (xor), + (mod 2%?), and
— (mod 23?) as well as on pseudorandom selection of the key elements.
Below there are used the following notations

j=(i—1)mod4, a;=(X;_1 div2567) mod 256,
b; = (Y; div 2567) mod 256,

and  Q(z) = Qu.

ENCRYPTION ALGORITHM

INPUT: 64-bit date block T' = A||B represented as concatenation
of two 32-bit words.

1. Set parameter p = 3, counter 1 = 1, and initial values of the variables
XandY: Xg=A and Yy = B.

Transform the variable Y: Y; = Y;_1 + Q(a;) mod 22
Transform the variable X: X; = X;_; @ (bj) and increment 1.
Transform Y: Y; = Y;_1 @ Q(a;).

Transform X: X; = X;_1 — Q(b;) mod 2%? and increment .

& ok w b

Transform Y: Y; = Y;_1 — Q(a;) mod 2%2.
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7. Transform X: X; = X;_1 @ Q(bj) and increment 1.
8. Transform Y: Y; = Y1 @ Q(a;).
9. Transform X: X; = X,_1 + Q(bj) mod 23 and increment 1.

10. If ¢ < 4p then increment ¢ and jump to step 2, otherwise STOP.

OUTPUT: 64-bit ciphertext block C = X19||Y72.

Program implementing this algorithm provides the conversion
speed about 70/r Mbit/s for microprocessor Intel 486/100, its size be-
ing about 2 Kbytes. Parameter p assigns the necessary number of
encryption passages.

Encrypting some initial data blocks 7y many times the sequences
{T}} have been constructed for different keys Q : T; = E(T}_1), where
E is encryption function and j = 1,2,3,... . Numerous sequences
{T;} have been checked with several spectral and compaction tests
which have shown the bit distribution is pseudorandom. Analyzing
long sequences {T;} we have not succeeded to find any periods for
j <10

A distinguishing feature of the described cipher is its use of the
data-dependent selection of the key area elements. The selection is not
predetermined and can be characterized as a ” pseudorandom” one. En-
cryption of some input data block 7' can be described by the following
generalized formula:

C:E(T7 Qh17Qh27"'7Qh8p717Qh8p)7 (1)

where {Qn.}, e=1,2,...,8p —1,8p, is a set of the key area elements
used while encrypting. Generation of the current set {Qj, } depends
on both input message and key area. There are possible only Ny =
264 different input data blocks, but for given key area the number of
different sets {Qp, } equals L8 = 204 (L = 256 is the key area length
in 32-bit words).
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3 Some properties

For given key any block encryption function defines a permutation of
a set of Ny numbers 0,1,2,...,2° — 1, where b is the input data block
length in bits. The keys Q and K are equivalent ones if they define
the same permutation.

One-round (p = 1) encryption function has the following property.

Theorem. For both arbitrary set of indexes {he} and arbitrary key
Q there exists unique input data block T = A||B defining the respective
set of key elements {Qp,_ }.

Indeed, for given Q an input block defines the set of indexes
hl,hg,... ,hg:

A mod 28 = hy, (2)

Y, mod 28 = ha, (Y1 =B+ Qp, mod 2%2) (3)

(X, div 28) mod 28 = hs, (X1 =A8Qn,) (4)

(Yy div 28) mod 28 = hy, (Y2 =Y1 ® Qp,) (5)

(Xo div 216) mod 28 = hs, (X2 =Xy — Qp, mod 232) (6)
(Ys div 216) mod 28 = he, (Yo =Y — Qp, mod 232) (7)
(X3 div 2%*) mod 2° = hy, (X3 = X2 ® Qpg) (8)

(Yy div 2%*) mod 28 = hg, (Yy=Y3® Qn,) (9)
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For given {h.} and Q the values A and B are unknowns. It is easy
to show that this system of equations has unique solution. One can
solve equations (1)-(8) by turns starting from (1).

Corollary 1. For given Q every block T' defines unique set of
indezes.

Corollary 2. If equivalent keys Q and K # Q exist, then Q; # K;
for 3 =0,1,2,...,255.

Indeed, if there exists such index e for which ). = K., then we can
select T" defining the set of indexes {e, e, ¢, ¢, ¢e,¢e,e,v}, where Q, # K,.
Such index v exists because K # Q . We get E(T",Q) # E(T" K).

Let us consider blocks T and T" defining sets of indexes
{h|, by, ..., hg} and {RY, Ay, ... hg}, where

Be=h!, i i=1,2,...,6
WL £ B, i i =1,8.

For these input blocks T” and T" the last condition is valid for arbitrary
key. Considering encryption function one can obtain

[E(T') @ B(T")) mod 22 = Qu, ® Qs = S

{[B(T") div 2% = [E(T") div 2°%]} mod 2* = Qu — Qpr = Apypr-

It is possible to select different pairs 7" and T"” and to construct sets of
differences {A;;} and {d;;} for all couples of indexes ij. The following
corollary is evident.

Corollary 3. For equivalent keys the sets of differences 0;; and
A;; are composed from the same elements.

The last corollary is of great practical importance. It shows that for
one-round encryption function the probability to select two equivalent
key is negligible. For randomly chosen key Q we have set {A;;} con-
taining 256 elements. The probability to find n given 232-bit numbers
in this set can be estimated by formula

P < 25672,
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For n = 6 we have P < 1073, but for equivalent key there are fixed
n = 256 of differences. Thus, for one-round encryption function the
probability P of the selection of two equivalent keys is very low. For
p > 2 it is difficult to estimate directly the probability P. This can
be made on the basis of the general properties of permutations. Let
us suppose that one-round encryption for two different keys Q and K
defines permutations a and 3, respectively. For p-round encryption
these keys define permutations of and (7, correspondingly. For some
a # [ one can get o = (P. This means that for p-round scheme the
keys became equivalent though they are not equivalent for p = 1.

The order of permutation vy (denoted by |y|) is the minimal natural
number n satisfying equality 7" = €, where € is the identical permuta-
tion. Thus, for any permutation o we have /%l = e. Let us consider
relations between orders || and |f3| for permutations o and § which
satisfy condition o = [P. Below there are used the following nota-
tions: (m,n) is the greatest common divisor of numbers m and n; m|n
(m fn) denotes that m divide (do not divide) n;

It is known:

(1) if (m,n) = d, then (m/d,n/d) =1,

(2) if (m,n) =1, then there exist such integers z and y that
mx +ny = 1;

(3) if m|n and n|m, then m = n.

For primary p there are possible the following cases.

Case 1. pl||a| and p||5|. We get the following implications:

(o = )= ((ap)la\/p — (ﬁp)\al/p): (a\al — ﬁla\):>
= (81 = )= |||,
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(o = BP)= ((?)IPV/P = (pP)IAI/P) = (olfl = gIF—

= ("l = )= |all|8].

Hence || = |4

Case 2. p fla| and p }|B|. Let us assume r and ¢ are such natural
numbers (they exist) that 0 <r <p, 0<t<p,
and p|(la] + 1), pl(|8]+1t). Then

(aP = BP)=> ((o?)elFn)/P = (gp)(laltn)/py— (gloltr = gleltr)—

_— (ar — ﬁ|a\+r):> ((aT)P _ (ﬁ|a\+r)p):> (apr _ ﬁp|oz\-|—pr):>

= (87 = Pl = ("% = )= |Bl|plal),

(o = pP)=> ((a?)IBIFD/P — (gr)IBIHD/Py —
= (ol = )= (|allplB)).

Since p is a prime, then |f]|p|a| = |Al|a| and |o||p|f] = |a||A].
Hence |G| = |a|. Thus, r = t and gl = e. Now we get

(of = BP)=> ((o@)alFD/P = (gP)(2l+0/P)— (glolFt = glaltty—

= (o' = g").

Since (p,t) = 1, there exist such integers k and s that pk + ts = 1.
Then we have

a =P = oPFal = (af)H(af)* = (B7)F(B")" =
— ﬁpkﬂts — I@pk—}-ts — ﬁ
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Thus, in case 2 we have obtained o = 3

Case 3. p||la| and p f|F]). In this case we get
(o = BP)= ((a?)lol/P = (gP) /)= (ool = glohy =

= (81 = 9= |Alllal-

Since plla] and (16],p) = 1, we get |8]|(jel/p) therefore pl][lel. On
the other hand there exists such integer n that p|(|3| + n). Then

(o =)= ((ap)(\ﬂlJrn)/p — (5p)(\ﬂ|+n)/p):> (a\ﬂlJrn = )=

— (oI = g = o) — (P = €)= |al|p|f).

From p|f|||a| and |a||p|B| one can conclude |a| = p|f|.

Case 4. p f|a| and p||B|. This case is analogous to the case 3 and
one can get |3| = plal.

Thus, the equality 8P = o implicate: either o = 3, or |a| = |S], or
lal = plBl. or || = plal. Hence, if |a] # |A], |a] # p|6], and || # plal,
then o # (P,

Analogous consideration of the case o' = ﬂpk, where p is a prime,
shows that there are potentially possible the following equalities

a=p, la|=18. lol=pl6l, lof=p*IAl,....lal = p"|Al;

18] =plal, 18] =plal,.... |18 = pFlal.

These relations between orders |«| and || show that the probability
of the selection of two equivalent keys is very low for p-round
(p=2,3,4,5,7,8,9,11,13,16,17...) encryption function described in
Section 2.
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4 Robustness evaluation

There are possible only Ny = 264 different input data blocks, but for
given key area the number of different sets {Q, } equals L% = 2697
(L = 256 is the key area length in 32-bit words). Such repetitions
can take place due to the possible presence of some equal elements at
different sites of the key area. Taking into account results of Section 1
one can conclude that probability of the generation of two equal sets
{Qn. } corresponding to input blocks 7" # T" is very low for arbitrary
p. Robustness of the cryptosystem under consideration is conditioned
mainly by the complexity of the {Q}_} set repetition recognition re-
gardless of the complexity of the solution of the equation (1) or of the
system of such equations.

Some preliminary estimations can be obtained on the basis of the
probabilistic model of the cipher under discussion. Let us assume the
following:

1. Key elements (), are selected randomly.

2. To calculate a set {Qp, } it is sufficiently to recognize two pairs
(T",C") and (T",C") corresponding to sets of the used key ele-
ments for which indexes hap, hapi1,. .., hgy are the same.

3. The solution of the respective system of two equations (1) is not a
complex problem.

The minimal known plaintext size V;,;, which is necessary for crypt-
analysis can be estimated by the following formula corresponding to the

0.5 probability of the observation of a hy4y, hapi1,. .., hgy subset repe-
tition:

Vinin = Ny = /P =L*  (blocks), (10)
where P is the probability to observe a given subset hap, hapi1,...,hgp

when encrypting gives input data block. For p = 2(3) we have V;,, >
10%(10%) blocks. Let us suppose that cryptanalyst is able to obtain
and to process so large texts. To meet a true repetition one has to check
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on the average about C% /2 of different pairs (T, C). The complexity
of this procedure is

Runin > Ro - C%, /2 = (Ro/4) - N2 = (Ro/4) - L*, (11)

where Ry is some average number of operations which are to be exe-
cuted while checking one system. For Ry = 2 operations and p = 2(3)
we have R, > 1019(10%%) operations.
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