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Constructing the Gröbner basis using Anick’s

resolution in the noncommutative algebras

A.Podoplelov

Abstract

This article describes the method of construction the Gröbner
basis based on the information in the Anick’s resolution.

Introduction

Gröbner basis is an important tool to investigate an algebra. For ex-
ample, it is a base for constructing of so-called Anick’s resolution [1].
In this article we show that the resolution itself contains sufficient in-
formation to construct the Gröbner basis during the calculation of the
differentials.

1 Gröbner basis and n−chains

Let X = {x1, x2, . . . , xn} and

A = K < X >

be a finitely-generated associative free algebra over a field K. Let > be
a degree ordering on the set S of all words in the alphabet X i.e.

• deg f < deg g ⇒ f < g

• f < g ⇒ hfk < hgk,∀f, g, h, k ∈ S

c©1996 by A.Podoplelov

428



Constructing the Gröbner. . .

Then for any element of the free algebra it is possible to point out its
leading word (term).

Let I be some ideal of the algebra A which will be fixed in this
section.

Definition 1.1 A word s ∈ S is called normal (modulo the ideal I), if
s is not the leading term of any element in I.

Let us denote by N the linear hull of the set of normal words and
call it the normal complement of the ideal I. The name is justified by
the preposition (see [2]):

A = N ⊕ I.

In other words any element u ∈ A can be represented as u = n + i, n ∈
N, i ∈ I.

Definition 1.2 For every u ∈ A its normal form u is defined to be its
image by the natural projection A −→ N . Clearly, u = 0 ⇔ u ∈ I.

Definition 1.3 Following [1], we call a word f ∈ S an obstruction if
f is the leading term of some of the element of I (i.e. f 6∈ N), but
all its proper subwords are normal. We denote by F the set of all the
obstructions.

Definition 1.4 The subset G = {f − f |f ∈ F} of the ideal I is called
its (reduced) Gröbner basis.

Let us define the notion of an n-chain using the following graph
of chains C(F ). It is a oriented graph C(F ), whose vertices are all
proper endings of obstructions (including the empty word Λ = 1),
together with the set of generators X. The edges are defined as follows:
there is one edge from the empty word to every generator 1 → x for
x ∈ X. Furthermore f → g if and only if the word fg contains the only
obstruction as a subword and the unique occurrence of the obstruction
in the word fg is one of its ends. The n−chain is a word, that can be
read during a path in C(F ) of length n + 1, starting with 1.
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Example. Let F = {x4}, X = {x, y}. Then the graph C(F ) is of
the following form
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−1-chain: 1

0-chains: x, y

1-chain: x3

2-chain: x4

3-chain: x6

. . .

Note, that every (n + 1)−chain f can be uniqely presented in the
form f = gt, where g is n−chain (and call t as tail of f).

2 Anick’s resolution

Let A = A/I be a graded finitely-presented algebra. Let us denote all
the n-chains by Cn and consider the following resolution, constructed
by Anick (see [1]):

. . . Cn ⊗A
dn→ Cn−1 ⊗A

dn−1→ · · ·C−1 ⊗A
ε→ K → 0

430



Constructing the Gröbner. . .

The differentials dn are defined by induction, together with the
splitting inverse mapping in : ker dn−1 → Cn ⊗A, which unlike dn will
not be homomorphisms of modules. Thus let us set

d0(x⊗ 1) = 1⊗ x,

i−1(1) = 1⊗ 1,

i0(1⊗ xi1 . . .xik) = xi1 ⊗ xi2 . . .xik .

Let f = gt be an (n + 1)-chain with the tail t. We set

dn+1(gt⊗ 1) = g ⊗ t− indn(g ⊗ t),

and it remains only to define in for n > 0. To do this let us note
first that, thanks to isomorphism from CnN to Cn ⊗N , the following
partial order is defined: f ⊗ t < g ⊗ s ⇔ ft < gs. In particular, in the
definition of dn+1, the first term in g ⊗ t will be the leading one and
this can also be assumed to be satisfied by induction.

Thus, let u ∈ ker dn−1 and f⊗s be the leading term in u, participat-
ing in u together with a coefficient α 6= 0. Let r be the tail of the (n−1)-
chain f = hr. We know by induction that dn−1(f⊗1) = h⊗r+ . . . and
that h⊗r is the leading term. dn−1(f⊗s) = h⊗rs+ . . ., since dn−1 is a
homomorphism of A-modules. Note, that rs is the normal form of rs.
If the word rs were normal, then h⊗rs would remain the leading word
and the element u could not possibly belong to the kernel. Thus, rs
contains an obstruction. Choosing its leftmost possible occurrence of
the form rs = abc, where b is an obstruction, we easily see that g = hab
is an n-chain. Consequently g ⊗ c ∈ CN ⊗A. Let us now set

in(u) = αg ⊗ c + in(u− αdn(g ⊗ c)),

and the matter will be done by one more induction this time on the
order >, since the parentheses already contain a smaller element.

3 Implementation

The recursive construction, described above, was implemented by au-
thor both as a part of the program BERGMAN (elaborated by Jörgen
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Backelin in LISP) and as a separate program ANICK (C++) for differ-
ent computers. We plan to discuss this implementation in the separate
article and here restrict our attention by only one aspect of implemen-
tation.

According to the construction, the Gröbner basis should be known
(at least up to given degree) to calculate the resolution. Let us suppose
we give as input data not complete Gröbner basis, hence the program
will have at its disposal only part of the Gröbner basis elements. This
means that when the graph of chains is constructed not all the obstruc-
tions participated in this process and hence some of the chains could
not be obtained from this graph. If in this situation we try to calculate
the resolution we will see that there exist such chains to be calculated
in the graph that requires these absent chains. So, consequently we get
the fact that if we want to have the whole calculated resolution till the
degree k, it is necessary to have all the chains till this degree k. But
this fact would not be very interesting if it answers only whether we
have a complete Gröbner basis or not.

Using the information on the way of the calculations it turned out
that it is possible to find in this critical situation a new Gröbner basis
element.

Let us consider this on an example. Let A =< X|R > be a finitely-
presented graded (associative) algebra over a field K with two genera-
tors x and y ( x > y ), and with one element x2 − y2 = 0, i.e

A < x, y | x2 − y2 >

The corresponding graph of chains looks like
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Let us try to calculate the differential for 1-chain x2. Note, that

d0(x⊗ 1) = 1⊗ x, and d0(y ⊗ 1) = 1⊗ y.

So,

d1(x2 ⊗ 1) = x⊗ x− i0(d0(x⊗ 1) ∗ x) =

x⊗ x− i0(1⊗ x2) = x⊗ x− i0(1⊗ y2) =

x⊗ x− (y ⊗ y + i0(1⊗ y2 − d0(y ⊗ 1) ∗ y)) =

x⊗ x− (y ⊗ y + i0(1⊗ y2 − 1⊗ y2)) =

x⊗ x− (y ⊗ y + i0(1⊗ y2 − 1⊗ y2)) =

x⊗ x− y ⊗ y

And we see that no critical situations occurred while calculating all
the i0. But let us see on the process of the calculation for the 2-chain
x3:

d2(x3 ⊗ 1) = x2 ⊗ x− i1(d1(x2 ⊗ 1) ∗ x) =

x2 ⊗ x− i1((x⊗ x− y ⊗ y) ∗ x) =

x2 ⊗ x− i1(x⊗ x2 − y ⊗ yx) =

x2 ⊗ x− i1(x⊗ y2 − y ⊗ yx) =

Here the situation appears when to calculate the integral i1 it is
necessary to have an 1-chain xy2 that for a moment cannot be got
from the graph of chains.

In this situation let us do the following. We replace the tensor
product sign in the argument for i1 with the simple product sign and
the result element we add to the Gröbner basis, reconstructing the
graph of chains. In our case

x⊗ y2 − y ⊗ yx → xy2 − y2x = 0

Hence our new basis will consist already of two elements:

x2 − y2 = 0, xy2 − y2x = 0.
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In the graph there will appear the new vertex y2 and the edge
x → y2, i.e.
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Continuing the calculations for the d2(x3 ⊗ 1) we will get the fol-
lowing result without any critical situations

d2(x3 ⊗ 1) = x2 ⊗ x− xy2 ⊗ 1

As we have seen the idea of constructing the Gröbner basis is to
calculate in the fixed degree all the 2-chains. After computing these
chains in the given degree we get the complete Gröbner basis till this
degree. But it remains not minimal so the final stage is to reduce the
new Gröbner basis elements.

4 Conclusion

Program is installed in Stockholm university account and is included
(together with a package BERGMAN) in the international list of avail-
able by ftp Computer Algebra software.
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