Computer Science Journal of Moldova, vol.4, no.3(12), 1996

1

Rewrite Rules and Simplification of Matrix
Expressions

John J Wavrik

Abstract

This paper concerns the automated simplification of expres-
sions which involve non-commuting variables. The technology
has been applied to the simplification of matrix and operator
theory expressions which arise in engineering applications. The
non-commutative variant of the Grébner Basis Algorithm is used
to generate rewrite rules. We will also look at the phenomenon of
infinite bases and implications for automated theorem proving.

Introduction

This paper had its genesis in an attempt to simplify some large matrix
expressions which had been produced by machine computation. Here
is an expression for a Hamiltonian which arose in a computation in H*°
Control Theory:

H = tp[x] ** X ** A ** z 4 tp[x] ** inv[Y] ** A ** x -
tpx] ** inv[Y] ** A ** z + tp[x] ** tp[A] ** X ** z +

| #% X FF A ¥ g tp[z] ¥ inv[Y] FF A ¥R x 4
| *¥* inv[Y] *¥* A ** 2 + tp[z] ¥* tp[A] ¥*¥ X *¥* x -

2] #* tp[A] ** X ** 7 _ tp[z] #* tp[A] ** inv[Y] ** x +

tplz] ** tp[A] ** inv[Y] ** 7z + tp[x] ** X ** B1 ** tp[B1] ** X **

tp[x] ¥* X ** B2 ** tp[B2] ** X ** 5 4
tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x -

(©1996 by John J Wavrik

360

Rewrite Rules and Simplification of Matrix Expressions

tp[x] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z +
tp[z] ** X ** B1 ** tp[B1] ** X ** x -
tp[z] ** X ** B1 ** tp[B1] ** X ** 4 -
tp[z] ** X ** B2 ** tp[B2] ** X ** x +
tplz] ** X ** B2 ** tp[B2] ** X ** 7 -
tplz] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** x +
] ** inv[Y] ** B1 ** tp[B1] ** inv[Y] ** z
tp[x] ** X ** inv[-1 + Y ** X] **Y**tp[C2] EC2 R x +
tp[x] ** X ** inv[-1 4 Y ** X] Y R tp[C2] ** C2 **F 7z +
plx] ** inv[Y] ** inv[-1 + Y ** X] ** Y ** tp[C2] ** C2 ** x -
plx] ** inv[Y] ** inv[-1 + Y ** X] **Y ** tp[C2] ** C2 ** z -
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 4 X ** Y] ** X ** x +
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 4 X *¥* Y] ** X ** 5 +
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv[Y] ** x -
tp[x] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y| ** inv[Y] ** z +
tpz]
tpz]
plz] ** inv[Y] ** inv[-1 4 Y ** X] ** Y ** tp[C2] ** C2 ** x +
plz] ** inv[Y] ** inv[-1 + Y ** X] **Y ** tp[C2] ** C2 ** 7z +
tplz] ¥* tp[C2] ** C2 ** Y ** inv[-1 4+ X ** Y] ** X ** x
]]
]]
]]

tplz

o)
>

-
o)
el

-+

kX R iny[-1 4 Y RF X] RRY R gp[C2] FF C2 FF x -
ok X RR iyl Y R X REY R £p[C2] 02 *F 7 -

-+

]
tp[z [C2] *## C2 ** Y #* iny[-1 + X ** Y] #* X ** 4
tplz] ** tp[C2] ** C2 **Y ** inv[-1 + X ** Y] ** inv]Y]**X—i—
tplz] ** tp[C2] ** C2 ** Y ** inv[-1 + X ** Y] ** inv]Y] ** z +
tp[x] ** X ¥ inv[l 4+ Y ** X] FF Y R gp[C2] ** C2 ** Y *
vl 4 X FF Y] R X RE
tp[x] ** X *H inv[-1 4 Y ** X] FRY R tp[C2] *F* C2 *HY **
inv[-1 4 X #F Y] ** X ** 2 -
tp[x] ** X ¥ vl + Y ** X] R Y R p[C2] (2 *x Y
inv[-1 + X Y] ** inv[Y] ** x +
tp[x] ** X ** inv[-l + Y B X] Y R gp[(2] FF 2 R Y *
inv[-1 + X ** Y] ** inv[Y] ** z -
tp[x] ** inv[Y] ** inv[-1 + Y ** X] #EY B tp[C2] ** C2 *HF Y **
vl 4 X FF Y] RE X R x4
tp[x] ** inv[Y] ** inv[-1 + Y ** X] *€ Y ** tp[C2] ** C2 ** Y **
inv[-1 + X 6 Y] *6 X ** 7

361

John J Wavrik

tp[x] ** inv[Y] ** inv[-1 + Y ** X] R Y R tp[C2] ** C2 **F Y **
inv[-1 + X ** Y] ** inv[Y] ** x -

tp[x] ** inv[Y] ** inv[-1 + Y ** X] #F Y FE gp[C2] *¥* C2 ¥k Y **
inv[-1 + X ** Y] ** inv[Y] ** z -

tp[z] ** X F* inv[-1 4 Y R X] RFY R gp[02] B (2 Y
vl 4 X *F Y] R X R x 1

tp[z] ** X ** inv[-1 4 Y X] RFY R gp[02] (2 Y
vl 4 X *F Y] R X R g 4

tp[z] ** X ** inv[-1 + Y X] RFY R gp[02] FF (2 kY
inv[-1 + X ** Y] ** inv[Y] ** x -

tp[z] ** X ** inv[-1 + Y X] FFY R gp[02] FF 02 F* Y
inv[-1 + X ** Y] ** inv[Y] ** z +

tplz] ** inv[Y] ** inv[-1 + Y ** X] #FY FK tp[C2] ¥* C2 ** Y **
vl 4+ X FF Y] R X RE

tplz] ** inv[Y] ** inv[-1 4+ Y ** X] #RY ** tp[C2] ¥* C2 ** Y **
vl 4+ X FF Y] R X RE 4

tplz] ¥* inv]Y] ** inv[-1 4 Y ** X] **F Y #* gp[C2] ** (2 Rx Y *
inv[-1 + X ** Y] ** inv[Y] ** x +

tplz] ¥* inv]Y] ** inv[-1 4 Y ** X] **F Y ** gp[C2] ** (2 R* Y
inv[-1 + X ** Y] ** inv[Y] ** 2

fig 1.1

The notation: ** is used for matrix multiplication, tp[] for transpose,
inv([] for inverse. All other symbols are names for particular (but un-
specified) matrices.

This expression can be seen to be a polynomial expression in a set

of simpler expressions. Introduce the symbols

a=A h = inv[-1+XY] o = tp[C2]

b = Bl i = inv[-1+YX] p = tp[x]
c=DB2 j = inv[Y] q = tp|z]
d=2C1 k = tp[A] r=x
e= (2 1 = tp[B1] sS=12
f=X m = tp[B2]

g=Y n = tp[C1]

362

Rewrite Rules and Simplification of Matrix Expressions

We find that H becomes

H = qjigoeghjs - gjigoeghjr - qjigoeghfs + qjigoeghfr - qfigoeghjs
+ qgfigoeghjr + qfigoeghfs - gfigoeghfr - pjigoeghjs + pjigoeghjr +
pjigoeghfs - pjigoeghfr 4+ pfigoeghjs - pfigoeghjr - pfigoeghfs +
pfigoeghfr + qoeghjs - qoeghjr - qoeghfs + qoeghfr + qjigoes -
qjigoer - gfigoes + gfigoer - poeghjs + poeghjr + poeghfs - poeghfr
- pjigoes + pjigoer + pfigoes - pfigoer + qjbljs - qjbljr + gfcmfs

- qfemfr - gfblfs 4+ qfblfr - pjbljs + pjbljr - pfemfs + pfblfs +

gkjs - gkjr - gkfs + gkfr + gjas - gjar - qfas + gfar + pndr - pkjs
+ pkjr + pkfs - pjas + pjar + pfas

fig 1.2

This is a polynomial with 57 terms in 19 non-commuting variables.
The largest term has 10 factors. In this paper we will consider matrix
expressions which, like H, can be written as polynomials in a set of
subexpressions (which we regard as “atomic”). A simplification of this
expression, using the technology introduced in this paper, will be given
in Section 3.

The use of rewrite rules to simplify expressions formalizes the pro-
cess used to simplify these expressions by hand.

Example 1 It is easy to see, for example, that 1 —x 'z + 22 simplifies
to 2. Here we replace the subexpression v~ x by the equivalent, but
simpler, expression 1. We have applied the rewrite rule x 'z — 1.
This example uses an obvious rewrite rule which arises when a matriz
s adjacent to its inverse in a term. Not all simplification rules are this
obuvious.

Example 2 The expression 1 — = (1 — zy)~'a simplifies to 1 — (1 —
yx)~'. Here we use the rule (1 — zy)~!
although not obvious.

r — x(1 — yx)~1 which is true

363

John J Wavrik

An expert in this area has a repertoire of matrix identities which can
be used for simplification. Expressions are scanned for subexpressions
to which these rules may be applied. This is the essence of simplifica-
tion by the use of rewrite rules. We would like to automate the process.
If we have sufficiently many rules available, we might hope not only to
produce simplified expressions but also to determine whether two ma-
trix expressions are equivalent by reducing them to the same simplified
form. We will also discuss simplification and equivalence.

2 Rewrite Rules and Simplification

Let E be a set (expressions) equipped with a partial ordering, > (notion
of simplicity), and an equivalence relation, ~ . A reduction process
is a set of pairs (f,g) € ExE with f > gand f ~ g in this case we write
f — g and think of it as a process for getting from the expression f to
an equivalent and simpler expression g. We may iterate this reduction
process. Let —* denote the reflexive, transitive closure of —.

We will say that g € E is irreducible (or reduced) with respect
to — if there is no A with ¢ — h. We will say that g is a normal form
for f (9 = normal_form(f)) if f —* g and g is irreducible.

In what follows, we will assume that — is noetherian: there are no
infinite chains of the form f; — fo — Thus any f can be reduced
to a normal form by repeatedly applying — . It should be noted that
we do not assume that a given f is the source of only one arrow (and
this is not the case in our application). There will usually be several
ways in which f can be reduced to a normal form. The normal form
is not, in general, unique. We say that — is complete if reduction
to a normal form gives the same result no matter what sequence of
reductions is used.

A simplifier is an effective procedure S : £ — E with the prop-
erties e > S(e) and S(e) ~ e Ve € E. Thus a simplifier is a process
for replacing expressions by equivalent but simpler expressions. In the
setting of a reduction process we may take S(e) = normal_form(f).
A canonical simplifier is an effective procedure S : E — E with the

364

Rewrite Rules and Simplification of Matrix Expressions

properties S(e) ~ e and e ~ f <= S(e) = S(f) Ve, f € E. Thus S
selects a unique representative, S(e) (called the canonical form of e)
from the equivalence class of e.

If we have a reduction process, «+*, the reflexive, symmetric, tran-
sitive closure of — is an equivalence relation on E. If we take the
equivalence relation ~ to be «<* then there are general criteria for the
normal form simplifier S described above to be a canonical simplifier

(or, equivalently, for — to be complete). Notation: f | g will mean 3 h
with f —* h and g —* h.

Proposition 1 The following conditions are equivalent [see BuchLoos|.

(1) — is complete

(2) (Church-Rosser Property) f<*g < flyg
(3) (Confluence) h —=* fand h—*g = flg

(4) (Local Confluence) h — fandh—g = flg

We will now specialize to the case in which E is F/(z1, .., z,), the ring
of polynomials, in a finite set of non-commuting variables over a field F
(usually the rational numbers). We will see that, in this case, the test
for local confluence can be restricted to a smaller (sometimes finite)
collection of (f,g,h). We will also introduce a completion algorithm
that attempts to extend a reduction process to a complete reduction
(with the same equivalence relation).

The reduction process will be given by rewrite rules. A rewrite rule
is a pair (LHS, RHS) where LH S is a monomial, RH S is a polynomial.
A rewrite rule r : LHS — RHS is applied to a polynomial f by
scanning the terms of f for an occurrence of LHS as a factor. If
such a term is ¢c£(LHS)R (where c is the coefficient and £ and R are
monomials) we replace this term by ¢£(RHS)R to obtain a polynomial
g. Thus g = f — cL(LHS)R + cL(RHS)R. The notation for this is
f —» g and we will say that f reduces to g (by applying the rule r).
A set, S, of rewrite rules defines a reduction process where f —g g if
f — g for some r € S.

The following lemma is an adaptation of [BeckWeis Lemma 5.25].

365

John J Wavrik

Lemma 2 (Translation Lemma)
Let f,g,h,h1 € E, and let — denote a reduction process given by a set,
S, of rewrite rules.

(i) If f—g=hand h—*h; then 3f1, g1 € F with
fi—go=hi, [="fi,9-"n

(i) If f—g—"0, then f | g and so, in particular, f <* g
Proof: (ii) follows from (i) with h = 0. We prove (i) by induction on
the number of steps, k, in the reduction h —* h1. If K =0 then hy = h
and we may take fi = f and g1 = ¢g. Suppose, then, that h —* h; takes
n + 1 steps and that hy is the result of applying the first n steps. By
induction, we have fs and go so that f —* fo, ¢ =™ go and fo — go =
he. Moreover ho — hj in one step. Thus hg has a term cL(LHS)R
corresponding to some rule in S and hy = ho—cL(LHS)R+cL(RHS)R
Let c1£L(LHS)R be the term with monomial part L(LHS)R in fa (take
c1 = 0 if there is no such term) and similarly coL(LHS)R for go. Let
f1 and g1 be the reductions obtained by replacing LHS by RHS in
these terms. We then have f; — g1 = h1 as required.

A connection can be established between the ideal theory of the
polynomial ring and a reduction process using rewrite rules. This con-
nection depends on a choice of ordering for the terms of polynomials. A
rewrite rule LHS — RHS corresponds to the polynomial LHS—RHS.
In the other direction, a term ordering will give each polynomial, g, a
leading term, LT (g). We willset LHS = LT (g) and RHS = LT (g)—g.
This is made precise in the following way:

Let W be the set of words on the alphabet zi,..,2, . A term
ordering is a total ordering on the words in W which satisfies

(1) S>T=RS>RT and SR>TR VR,S,T €W
(2) > is a well-ordering (no strictly descending infinite chains)
(3) S>1 VSeW, where 1 is the empty word.

Graded lexicographic orderings satisfy these properties: these are or-
derings induced by choosing an ordering for the polynomial variables,
and then defining an ordering on words by:

T > S if and only if either length(T) > length(S)

366

Rewrite Rules and Simplification of Matrix Expressions

or length(T) = length(S) and T comes after S in a dictionary!

Example 3 If x1 > x9 > x3, the words of length 3 are ordered as
follows:

T1X1T1 > T1T1T2 > T1T1T3 > T1T2X1 > X1T2T2 > T1T2x3 >
r1x3x1 >

T1X3T2 > T1T3T3 > ToT1T1 > TaX1T2 > X2T1T3 > ToX9x1 >
xToToXo >

ToTox3 > T2X3T] > T2X3T > IToX3T3 > T3T1Xx1 > T3T1T2 >
xr3r1r3 >

T3TT1 > X3TaT2 > T3T2X3 > T3X3L] > T3T3T2 > TIT3T3

Once an ordering is chosen, every non-zero polynomial, f € E, can

be uniquely written as a finite sum f = Z’f c;W; where W1 > Wy >

. > Wy. cqW1 will be called the leading term of f and denoted

LT(f); c1 is the leading coefficient, denoted LC(f), and W; will be
called the leading monomial and denoted LM (f).

Once a term ordering is chosen, a set, G, of polynomials gives rise
to a set of rewrite rules, and hence a reduction process. The require-
ment that the term ordering be a well-ordering makes this a noethe-
rian reduction process. We may now connect the reduction process
with the ideal Z = (G) generated by the set G. It is quite clear that
f—9=f—g€T(ie. f=gmodZI). Itis therefore clear that if
f =" 0then f € Z. In general, the converse will not hold. A set G for
which the converse holds (i.e. for which f € Z = f —* 0) is called a
Grobner Basis for 7.

Lemma 3 ([/BeckWeis Lemma 5.26])
Let f,g € E, — the reduction process defined by G C E, and T = (G)
the ideal generated by G. Then f =g mod I < f <% g.

Example 4 Consider the set G = {ca — ¢,ab — a}. The polynomial
cab can be reduced in two ways, depending upon which subexpression is

'Pure dictionary (lexicographic) order, > , is not a well-ordering because xy
> xxy > xxxXy > ... is an infinite descending chain.

367

John J Wavrik

replaced first. We have cab = c(ab) — ca — ¢ and we also have cab =
(ca)b — cb. Both c¢b and c¢ are irreducible, so are normal forms for
cab. Thus the reduction process defined by G is not complete. Notice,
that, indeed, this is a failure of local confluence: We have cb «+— cab —
¢ but we do not have cb | c¢. The source of the problem should be
clear: ¢b and c are equivalent with respect to the reduction process, but
we do not have enough rules to reduce them to the same (canonical)
form. The solution is to extend the set G to include more rules, without
changing the notion of equivalence. In fact, as our later discussion will
show, G* = G U {cb — ¢} does give a complete set of reduction rules.
It is certainly obvious that, in this example, adding cb — c to the basis
takes care of the fact that cab does not have a unique normal form. It
s nmot obvious that adding just this polynomial will assure that every
polynomial has a canonical form. An algorithm for extending a basis
will be discussed in the next section.

2.1 The Basis Algorithm

We are given a basis, G, for an ideal. The idea behind a completeness
algorithm is to find situations in which local confluency might fail and
add new rules to take care of such situations. The local confluence crite-
rion requires that we examine all cases in which a polynomial i reduces
in two ways. We show that it is enough to examine h which arise in
a specific way from pairs of basis elements. In the case of polynomials
in commuting variables [Buch], it is enough to check, local confluence
in the case in which f,g € G and where h = lem(LM(f),LM/(g)).
We have two obvious reductions: h —; hy; and h —4 hp. If h; and
ha do not reduce to a common normal form (so local confluence fails
in this case), then normal_form(hy — ha,G) is added to the basis. G
is a Grobner Basis if normal_form(hy — he,G) = 0 for all f and g.
Something similar holds in the non-commutative case as well: the lo-
cal confluence needs only to be checked for several possible minimal
multiples, h, of LT'(f) and LT(g).

Definition 1 We say that two words, S and T, overlap if one of

368

Rewrite Rules and Simplification of Matrix Expressions

the following conditions holds. In each case we indicate a non-trivial
common multiple, M, of S and T obtained from the overlap.

(1) one of the words is a proper subword of the other
IfS=1Tr Set M =8
T =1Sr Set M =T
(2) S =lw,T=wr for some w#1. Set M =Sr=IT
(3) S=wr,T=lwforsomew#1 Set M =15=Tr.
Here is a picture of an overlap:

XyzTx
yxy

Example 5 The words xy and xz have no overlap. The words xyy
and yyx have two overlaps. The words yxyy and yyxy have 4 overlaps.

Definition 2 A match for f,g € G is a sextuple (f,g,l1,71,l2,72)
where S = LM(f) and T = LM/(g) overlap and where M = 1,Sr; =
loT'ro is the common multiple determined by the overlap as in the defi-
nition. We denote the set of matches for f,g by Matches(f,g). This
set may be empty.

Definition 3 Ifm = (f,g,l1,71,l2,72) € Matches(f, g) the S-polyno-
mial of m is Spol(m) =1 fr1 — lagra

Theorem 4 (S-polynomial Criterion - see [FMora))

A set, G, of polynomials is a Grébner Basis for the ideal it generates if
Vf,g € G, Ym € Matches(f,g) we have normal_form(Spol(m),G) =
0 (we can take any normal form — but in this case it can be shown that
all normal forms are the same).

Remark 1 As pointed out above, this is the test for local confluence
applied to a restricted set of triples.

We now give a sketch of a simplifed version of the Grobner Basis
Algorithm. (A more detailed version is found in [FMora))

369

John J Wavrik

Procedure: Make-Basis
NEW =G
While NEW # ()
G =GUNEW
Fill. WAITING
NEW =0
While WAITING # 0
Choose m € WAITING
WAITING := WAITING —m
h := normal_form(Spol(m),G U NEW)
If h #0 then NEW := NEW U {h}

Procedure: Fill WAITING

WAITING =0
Vge G,ne NEW
WAITING := WAITING U Matches(g,n)

The algorithm makes use of two auxiliary sets. The set WAITING
holds the matches yet to be processed while the set NEW holds new
polynomials to be added to the basis. It is essential for the correctness
of the algorithm, particularly since it may not terminate, to ensure that
every match between basis elements would eventually be processed if
the program ran indefinitely. Notice that the mechanism of WAITING
and NEW delays the addition of matches involving newly produced
basis elements until the previous batch of matches has been processed,
and then only matches are added which involve a new basis element.
This simplified version does not specify the order in which matches
are selected for processing; the sequence in which existing rules are
applied; or mechanisms for detecting matches which can, a priori, be
eliminated from consideration. It also does not reduce existing elements
of G by newly produced elements. These are factors which can affect
the execution time of the algorithm. In practice we add a final step,

370

Rewrite Rules and Simplification of Matrix Expressions

reducing every g € G by G — {g} to produce a reduced Grébner Basis.?

The algorithm adds elements to the set G. If this algorithm termi-
nates, it must be because the S-polynomials for all matches of pairs of
elements in G reduce to 0. The S-polynomial criterion shows that G is
a Grobner Basis in this case. In the case of polynomials in commuting
variables, the algorithm always does terminate and so always produces
a Grobner Basis.

In the non-commutative case the algorithm may fail to terminate
(some examples are found in the next section). In this case, a Grobner
Basis can often still be determined by analysing the elements being
added to G. If patterns are found, it may be possible to conjecture the
eventual output if the algorithm ran indefinitely. The S-Polynomial
criterion can then be applied to provide a proof that the conjecture
is correct. The algorithm should be used in an environment in which
the output being generated can be observed, and the algorithm halted
(yielding the current G) when desired.

There are many formulations of the criterion and algorithm (see
[Ufn] for a discussion and further references)

3 Examples From Operator Theory

The matrix or operator expressions which occur in this section are
polynomials in a given set of “atomic expressions”. A collection of
atomic expressions with an imposed order will be called a model. In
our first model, we look at matrix expressions which are polynomials
in the atomic expressions z, !, (1 —z)~!. The atomic expressions
are treated as variables in a polynomial ring. The starting basis for
the Basis Algorithm consists of some obvious relations among these
variables: i.e. polynomials which become 0 if we substitute for z any
matrix or operator for which x and (1 — x) are invertible. All of the
polynomials obtained by the Grobner Basis Algorithm are in the ideal

2We have found it preferable (to facilitate analysis of the algorithm) to leave this
step for last rather than make changes in existing basis elements as the program
executes.

371

John J Wavrik

generated by the starting relations, and so also become 0 under any
meaningful substitution.

Model A
r<zl<(l-2)!

Comment This is the simplest example for which the Grébner Algo-
rithm produces new relations. This is called RESOL in [HWS]
because operator theorists refer to (1 — 2)~! as the resolvent of
x. The relations Ag and A; are called the defining relations
for 27! since they define what is meant by inverse (similarly As
and Aj are the defining relations for (1 — x)~1).

Starting Relations

Ay = 4z tz—1
Ay = +axl-1
Ay = +1—-a2)te—-(1—-2)"1+1
A3 = +2x(l—-a2) -1 -2)"t+1

Ending Relations

Ay = +zlz—1
A = 4z -1
Ay = +(1—-2) o -1 —-2)"t+1

Az = 4z(l—-2) -1 -2)"t+1
Ay = +(1—-a) et -1 —a)t -2t
Ay = 4o tl-2)t-(1—2)t -2t

Observations The two new relations, A4 and A5 are known to op-
erator theorists as the Resolvent Identities. The fact that these
identities were produced by the Grobner Algorithm means that
they are in the ideal generated by the starting relations. One can
easily trace the Algorithm to derive these new relations directly

372

Rewrite Rules and Simplification of Matrix Expressions

from the starting relations:

Model B

A4 = (1 — :L‘)_lAl — AQ $_1
A5 = Ao(l — CL’)_I — .CE_IAg

r<y<zl<yl<l-2)t<(l-y!

Comment This is Model A applied to two different letters.

Starting Relations

= 4o lz—1

= 4zzl-1

= 4y ly-1

= 4yyt-1

= +1-2)lz-(1-2)t+1

= 4z(l-z) -1 -2)"1+1

= +1l-yy-(1-y)+1

= +ty(l-y ' -1-y) ' +1

Ending Relations

+rlr -1
+az~t -1
+y~ly —1
+yy~t -1
+(1—2) -1 —-2)"t+1
+z(l-z) ' -1 -2)"1+1
+l-y)ly-(1—y) " +1
ty(l—y) ' =1 -y) ' +1
+(1—2) et -1 —2)"t -2t
1=y Ty Ay -yt
trl1l—2) -1 —-2)t—2!
+y (1 —y) T = —y) T -y

John J Wavrik

Observations Notice that the starting relations are the disjoint union
of the relations for x and for y. The ending relations are also the
disjoint union of the separate sets of ending relations. We can
see that this is true in general:

Theorem 5 Let F(x,y) be a polynomial ring in two sets of non-com-
muting variables. Let S C F{(x) and T C F(y) be two finite sets. Let
S* and T* be the output sets of Basis Algorithm applied separately to
S and T. Then (SUT)* =S*UT*. If S* and T* satisfy the Grobner

property, then so does S* UT™*.

Proof. New basis elements are added by reducing S-Polynomials of
matches. The formation of a match between two polynomials requires
an overlap of the leading monomials. If the polynomials are in disjoint
variables, no match can occur. When a match does occur (between
two polynomials in the same set of variables) reductions only occur
using polynomials in the same set of variables. The Grobner Property
can be verified by applying the S-Polynomial Criterion. Here again,
matches and reductions will occur among polynomials in the same set
of variables.

Model C
r<y<zl<yl<l-ay)t<(l-yr)!

Comment This is called EB in [HWS] because expressions involving
these atomic expressions underlie energy balance equations in
H*-Control. The starting relations are the defining relations for
the 4 inverses.

374

Rewrite Rules and Simplification of Matrix Expressions

Starting Relations

Cy = +rlr—1
Ch, = —1—1’1’_1 -1
Cy, = 4y ly—1
C3 = +yy~'—1
Cy, = +(1—ay)toy— (1 —2y)~ 1—1—1
Cs = +ay(l—ay) ' —(1—zy)t+1
Co = +(1—yx) lyr—(1—ya) " +1
Cr = +yz(l—yx) ' —(1—yz)" 1 +1

The ending relations are found on the next page. Notice that the
algorithm terminates and so the ending relations are a Grobner Basis.
Cy4 and Cg, which appear in the starting relations above, do not appear
in the ending relations. They are reduced to zero by the others. Here,
as in other reports of output, we have preserved the numbering of the
starting relations in the list of ending relations. Relations which are
reduced to zero are left out of the list, but the numbers are not changed.
The “quasi-commutativity” relations C12 and Ci3 are very important
in later examples. Notice that they are a consequence of the starting
relations in this model:

Ciz = (1-yz)"'yCs — Coy(l —ay)™
Ciz3 = (1—ay)'aCr—Cya(l —yx)™!

375

John J Wavrik

Ending Relations

Co = +axlz—1

C: = 4z t-1

Cy = 4y ly—1

C3 = +yy ' -1

Cs = +ay(l—ay) " —(1—ay) " +1

C; = +yz(l—yx) ' —(1—yz)" 1 +1

Cs = +(1—yr) a7t —y(l—ay)~t —a!
Co = +(1—ay)ty -2l —yr)t -yt
Cio = +o '(1—ay) —y(l—ay) ' —a"
Cn = +y '(1—yx)™ ' =zl —yz) ' =y
Ciz = +(1—yz) 'y —y(l —ay)™

Ciz = +(1—ay) e -2l —yz)"

The large expression which started this paper (Fig 1.1) contains
only a few variables for which there are simplifying relations. The
other variables are disjoint. We may simplify this expression using just
the relations found in this model. The starting relations have no effect,
so the expression cannot be simplified by locating expressions adjacent
to inverses. When we apply the ending relations we obtain

H = +qjbljs-qjbljr+qfemfs-qfemfr-qfblfs+qfblfr-pjbljs
+pjbljr-pfemfs+pfblfs-qoes+qoer+qgkjs-qkjr-qkfs
+qgkfr+qjas-qjar-qfas+qfar+poes-poer+pndr-pkjs
+pkjr+pkfs-pjas+pjar+pfas

Which, while still complicated, now has only 29 terms (rather than
57) the largest of which has only 6 factors (rather than 10). The def-
inition of simplicity we are using is based primarily on the number of
factors in a term. We expect reduction to lower the number of factors.
On the other hand, we are using a Grobner Basis for the reduction —
so that equivalent terms reduce to the same canonical form. In this
case, the reduction process discloses terms which can be combined or
cancelled — which explains why, in practice, there is a decrease in the
number of terms.

376

Rewrite Rules and Simplification of Matrix Expressions

Model D
r<y<zl<yl<l-2)t<l-y)t<@—2y)t<(l—yzx)!

Comment This is the first example in which the Grobner Basis is
infinite. It is called preNF in [HW] because it is a preliminary
to the Nagy-Foias model. Notice that Djo and D;3 are actually
generated from the other starting relations (and they appeared
in Model C). It was found, however, that they occur fairly late
in the output and that they are very effective in reducing other
relations. So they are included in the starting relations for the
sake of efficiency. The starting relations are the union of those
for Models B and C.

Starting Relations

Dy = +rlr—1

Dy = +$$_1 -1

Dy = +yly—1

Dy = +yy ' -1

Dy = +(1-2)tlza-—(1-2)"1+1
Dy = +z(l—2)'—(1-2)"1+1
Dg = +(1-y)ly-—(1-y)"+1
D = +y(l—y) ' =(1-y) ' +1
Dy = +(1—ay)loy—(1—azy) " +1
Dy = +4zy(l—ay) -1 -2y t+1
Dy = +(1—yx) lyz—(1—yx) 1 +1
Dy = +yr(l—yz) ' —(1—yx)"t+1
Diz = +(1—-azy) 'z -z —yz)!

Diz = +(1—yz)ly—y(l —ay)™

The ending relations for this model are found on the next page. In this
case, the output of the Basis Algorithm ultimately produces instances
of 8 parametrized families of relations together with a collection of
“special” relations which are part of the basis but are not instances of
the parametrized families. The S-Polynomial criterion can be used to
show that this is indeed a Grébner Basis.

377

John J Wavrik

This model results from combining Model B and Model C. These
two models have finite Grobner bases. All of of the infinite families,
and the special relations D_SPCy and D_SPC5 result from interaction
between the two sets of relations. D_SPC', for example, results from
a match between Bg and C7. The family D_I[n] starts from a match of
Bs and (43 (the later members of this family are obtained recursively
by matches of their predecessor with Ci3). In section 4 we will take a
closer look at some of the ways that infinite bases arise.

Ending Relations — Special Relations

D.SPC; = +(1—-y) te(l—yz) ™t -1 —y) (1 —yx)!
—2(1—yz) '+ (1 -y~

D.SPCy; = +(1—-2)ly(l—zy) ™t -1 —2)71(1 —ay)~!
gl =) + (1 -)

D.SPC; = +yz(l—yr) ' —(1—yx)t+1

DSPCy = +ay(l—azy) ' — (1 —ay) 1 +1

D.SPCs; = +(1—yz) ot —y(l—ay)™t -2
D SPCs = +(1—yz) 'y —y(l —ay)™!
DSPC; = +(1—ay) ty t—2(l—yx) "t —y!
D.SPCy = +(1—ay)le —2(1l—yz)™ !
DSPCy = +(1—y) 'y ' =(1—y)" =y
DSPCyy = +(1-y)'ly—(1-y) ' +1
DSPC;y = +(1—a2) a7t -1 —-2)"t—27!
DSPC;; = +(1-2) v —(1—2)"1+1
DSPCi3 = +y t(1l—yz) t—2(l —yx) -yt
DSPCu = +y'(1-y) ' =1—-y)~" -y
D.SPCy5 = +yly—1

D.SPCys = +o t(1l—ay) -yl —ay)~t -2t
DSPCy; = 4z '(1-2)t-(1—-2)t—2!
D_SPCis = +r e —1

DSPCy = +y(l-y)'=(1-y) " +1
D.SPCyy = +yy'—1

D.SPCy = +z(l—-2)'—(1-2)"t+1
D.SPCy = +zx -1

378

Rewrite Rules and Simplification of Matrix Expressions

The special relations are listed in decreasing order of their leading
term. It should be noted that, with the exception of D_SPC, and
D_SPC(Cs,, each of the special relations occurs in the Grobner bases for
Models B and C.

Ending Relations — Infinite Families

DI[n] = z(1—yx)"(1—2z)' =1 —ay)"(1—xz)!
+(1 —zy)™
D.IIln] = z(l—yx)"(1—y) (l—xy) "1—y)t
—o(l—y2) " + (1~ ay)" (n=1(1 — y)~?
D IIIn] = y(1—=zy)~ "1—a2)"t—(1 -)"(1—:1:)*1
—y(1—ay) ™"+ (1 —ya)~ (= 1)(—z)7!
DIVin] = y(l—ay) "(1—y) ' =1 —yz) "1 —y)"

+(1 —yz)™"

(I—az) A —yz)"(l—az)t=(1—2z)!

(I—zy)™"1—2)' = (1—yz) (1 —2)""

+(1—z) M1 —zy)™

DVIn] = (1—z)'1—yz)"1—y) ' —(1—2)"!

(I—zy)"(1-—y) ' = —yx) 1 —y)!

—(1—2) ' A —y2) "+ (1 —2) (1 —ay)~

(I—y) '+ 1 —yx)™

(I—y) 1l —yz)Q—a) ' =(1—y*

Yl-2) ' +2(1 -2+ (1-y) s

S —-(1-y)t(1—a)t

DVIIIn] = (1-y)'Q—yx)Q—-y) ' =1—-y) "
(I—zy) "(A—y) '+ A —zy) 1 —y)!
~(1—y) A —yx)™"

D Vin] =

D.VIIn] =

Where ¥ = 37 (1 — zy)~*

Model E
r<y<zl<yl<(l-2)"'<(l-y!<h(zy) <hlyz)

Comment We have in mind the situation in which x and y are opera-
tors on a Hilbert space with x, y, 1 —x and 1 —y invertible, and A

379

John J Wavrik

a function analytic on the spectrum of xy and yx. The relations
FEs and Eg can be shown to hold under these conditions. This
example is the genesis of the GENR rules in [HWS]. We again
obtain an infinite basis.

The most interesting aspect of this model is that it is a collection
of models: for various choices of h. Examples of A which satisfy
the conditions are h(s) = (1 —s)~!, h(s) = V1 —s, h(s) = (1 —
s)™™, h(s) = e®. Thus the simplification rules we obtain hold
very generally. It should not be expected, for a particular h, that
we find all relations for this h by specializing this general set of
rules. In particular, for h(s) = (1—s5)~! we have the same atomic
expressions as in Model D, but the starting relations here do not
include the defining relations for (1 —zy)~! and (1 —yx)~! (D1
to D13).

Starting Relations

Ey = +z7lz—1

Ei = 4zz7' -1

E, = 4y ly—1

By = +yy'-1

E, = +(1-2)lv—1-2)"1+1
By = +z(1—-2)'-(1-2)"t+1
Be = +(1—y)ly—(1—y)"+1
Er = +y(l-y) ' = (1-y) ' +1
Ey = +h(zy)z — zh(yx)

Rewrite Rules and Simplification of Matrix Expressions

Ending Relations - Infinite Families

E.In] = +xh(yz)*(1—2)~t —h(zy)"(1 — 2)~1 + h(zy)"
EIIn] = 4yh(zy)"(1—y)~" = h(yx)"(1 —y)~' + h(yz)"
EIIIn] = +ath(zy)"(1 —2)~t - h(yz)"(1 —2) !
—z~ h(zy)"
E1Vn] = +y 'h(yz)"(1—y)~' = h(zy)"(1 —y)~*
—y th(yz)"
EVn] = 4+(1—xz) " h(yz)"(1—2)~" — (1 —z) ' h(zy)"
(1—2)' = h(yz)"(1 —z)"" + (1 —2)" ' hlzy)"
EVIn] = +(1—y) 'h(yzx)"(1—y)~ ' = (1 —y) hzy)"

(1—y) '+ h(zy) (1 —y)~" = (1 —y) h(yz)"
These hold for n =0, ...

Ending Relations - Special Relations

ESPCy = +h(yz)z~' — 2z 'h(zy)

E_SPCy = +h(yz)y —yh(xy)

E SPC3; = +h(zy)y~t —y ‘h(yz)

ESPCy = +h(zy)z — xzh(yz)

ESPCs = +(1-y)lyt-(1—-y) -yt
ESPCs = +(1—-y)ly—(1—-y)t+1
ESPC; = +(1—-2) a7t -(1—2)t -2t
ESPCy = +(1—2)loe—(1—-2)"1+1
E_SPCy = +yly—1

E_SPCyy = —|—l’_1£L' -1

ESPC;; = —i—yy‘l -1

E_SPCy, = —|—I‘I‘_1 -1

Notice that the starting relations hold if we substitute h(xy)™ for h(zy)
and h(yx)" for h(yx). As a result, the same must be true of the ending
relations. In particular, all of the infinite families are obtained by
making this substitution in the relations for n = 1. Notice also that

381

John J Wavrik

the rules are symmetrical upon interchanging = with y (and h(zy) with
h(yz)) The basis can be completely described by a finite set of relations,
called GENR in [HWS] (which also contains an interpretation in terms
of the functional calculus in operator theory).

GENR RELATIONS

1 The relations By .. By
2 The relations
GENRy = +h(zy)x —xh(yz)
GENR; +h(yz)r=t — 27 h(zy)
GENRy; = +zh(yz)(1—2)™' — h(zy)(1 —)~ + h(zy)
GENR;3 +a 7 h(zy)(1 —2)~ — h(yx)(1 —2)~ — 27 h(zy)
GENRy = +(1—z) th(yz)(1—2)~t - (1 —2) th(zy)
(1 =)' = h(yz)(1 —2)~" + (1 —2) " h(zy)
3 The relations
GENRy — GENR4 with x and y interchanged

Model F
r<y<azl<yl<l-2t<l-y)t<@—ay !
<(1—yx) ' <@ —zy)/? < (1—yx)V/?

Comment This is called NF in [HW] because expressions of this type
arise in the Nagy-Foias Model in operator theory. It might be
useful to remind the reader that, although the notation (inten-
tionally) suggests an analytic interpretation, (1 — zy)'/2 is just
the name for a variable in a polynomial ring. The fact that we
intend to substitute a matrix expression involving a square root
for this variable is indicated by the fact that that we take Fio as
one of the starting relations.

As we observed in Model D, the relations Fi4 and Fi5 are actually
algebraic consequences of the other starting relations. They are
included for reasons of efficiency. The relations Fig and Fi7,
however, are not in the ideal generated by the other relations.

382

Rewrite Rules and Simplification of Matrix Expressions

They can be easily shown to hold by an analytic argument (see
Model E).

Starting Relations

Fy = +ztz—1
F = 42z 1 -1
B = 4y ly—1
F3 = +yy'—1
Fy = +1-2)'z-1-2)"t+1
Fs = +x(l—-2) ' —(1-2)"t+1
Foo= +1-yly-(1-y»'+1
Fro= +y(l-y) ' =(1-y) ' +1

Fs = +(1—ay)tay—(1—ay) t+1
Fy = Foy(l—ay) ' —(1—ay)~ ' +1
Fio = +(1—y2) lyz—(1—yz) ' +1

Fii = Hyz(l—yx) ' —(1—yx) ' +1
Fio = +(1—ayp)?(1—ay)? +2y—1
Fis = +(1—y33)1/2(1—yx)1/2+y:1:—1
Fiy = +(1—-azy) 'z -zl —yz)!

Fis = +(1—y2) 'y —y(1 —ay)™!

Fig = +(1—ay)e—a(l —ya)'/?
Fir = +(1—ya) 2y —y(1 —ay)'/?

The special relations from Model D together with:

383

John J Wavrik

Ending Relations — Special Relations

F.SPEC, = +y '(1—yx)2(1—y)~' — (1 —ay)'/?
1=y =y (1 —ya)'/?

F.SPEC, = 4z '(1—ay)/?(1 —2)~' = (1 — yz)'/?
(1—z) ' =z 11— ay)/?

F_SPEC, +(1 — yx)2(1 — ya)' 2 4 yx — 1

F.SPEC; = +(1—yx)Y?(1 —yz)~' = (1 —yz) (1 — yx)/?
F.SPEC; = +(1—yx) 22! — 2711 — ay)'/?

F.SPECs = +(1—yx)Y?y—y(1 — xy)'/?

F.SPEC; = +(1—ay) 2?1 —ay)'?+ay—1

FSPEC; = +(1—ay)'?(1—zy)™' = (1 —2y) "' (1 - ay)'/?
F.SPECy = +(1—xy)Y 2y~ —y1(1 — yx)'/?

F_SPECy = +(1—ay)'?z —2(1 — yx)'/?

There are a total of 16 infinite families. The 8 families from Model
D together with the following

384

Rewrite Rules and Simplification of Matrix Expressions

Ending Relations — Infinite Families

Fln] = z(l—yz)™(1—yz)21—2)t—(1—ay)™
(1—ay)/2(1—2)~ 1+(1—$y) "1 -)1/2

FIIn] = z(l—yz) "(1—yz)?2(1—y) =1 —ay)™
1=y 21 —y)™ ' — (1l —yz) (1 — ya)'/?
+(1 —zy) "D —ay) 2 (1 —y)~!

P = (1=) (1=)21 —a) = (1= o)
1—1‘) —y(1 —zy)~ ”(1—wy>1/2

(1— ya)V/%(
(1 = ya)~ D1 — ya)/2(1 1’) !
FIVin] = y(l-zy)™(1- wy)”?(—y) = (L—yx)™
(1—y2) 21 —y) ™'+ (1 —ya) (1 — ya)'/?
FVn = 1-2) Y1 -yz)™1—yz)/2(1—2)7!

—(1—2)"' 1 —zy) (1 —ay)2(1 - 2)7!
—(1 = yz) (1 — y2)'/2(1 —)~
+(1 - fﬂ)_l(l — ay) (1 — ay)!/?

FVIn] = (1—z)7'1—yz)"(1-)1/2(—y) = (1—x)?
(1—=y)~ (l—xy)1/2(1 y) — (1 —yx)™"
(1—yx) 21 —y) = (1—2)" 1(—yz) "
(1—yz)2 4+ (1—2)7 11— ay)" D1 — ay)l/?
(1—y)t+ (1 —ya)™(1 — ya)'/?

FVIIn] = (1-y) Y(1—y2)™"1—yz)/?(1—2)t = (1—y) !

YA-a) T+ Y1 —a) T (1)

¥ = (1 —y) (1 —y2) 2 (1 —)7
FVIIn = (1—y)'(1—yz)™1- yx)l/Q(Y =1-y)!

(1—zy) (1 —ay) Pl —y) " + (1 —ay) ™"
(1—ay) 21—y =1 -y~
(

John J Wavrik

4 Infinite Bases

We have seen several examples in which the Basis Algorithm does not
terminate and the result is an infinite basis. As previously noted, these
results are obtained by a three step process: (1) Observations are made
of the new elements being added to G and the process is halted when
enough information is obtained to conjecture the ultimate form of the
output; (2) An analysis of the current G is made to find formulas for the
infinite families; (3) The S-Polynomial Criterion is used to prove that
the conjectured basis has the Grobner property (in the process, it is
shown that the basis elements would eventually arise if the procedure
were allowed to run indefinitely). At the moment, steps (2) and (3)
are not completely automated, so the whole procedure involves human
assistance. In particular, the verification of the S-Polynomial criterion
can involve the detailed examination of a large number of “pairings”
between parametrized families to identify both the general form for
matches and for their reduction.

It should be pointed out, however, that both the truncated G and
the description of the infinite families of rules can be quite useful in
practical computation. Since our chosen ordering depends on the num-
ber of factors in a term, simplification of any given polynomial expres-
sion, f, will only require rules whose left hand sides are lower in order
than the leading term of f. It is therefore only necessary to store a
finite set of rules to simplify any f up to a certain level of complex-
ity. One can also actually implement the infinite collection of rules. In
practice we have stored a large finite subset and we can generate any
other rules as they are needed. A simple hashing algorithm is used to
identify cases in which the leading term of an infinite family occurs as
a factor and when a rule needs to be computed.

4.1 Infinite Bases and Ordering

It should be noticed that the set of rules depends on the chosen or-
dering. There are cases in which a change in the term ordering will
produce both finite and infinite bases. Here is an example:

386

Rewrite Rules and Simplification of Matrix Expressions

Example 6 Let = and y be invertible matrices which commute with
each other. The starting relations are

Ay rlr—1 Ay = yly—1 As = yxr—xy
Ay = zaz~l -1 Ay= yyt-1

Case A:z <z l<y<y!

In this case the algorithm terminates with the following additional
rules

Case B:z<y<zl<y!

In this case we have B; = A; for ¢ = 1...5. There are the same
three additional rules (but note the change in order in the first) together
with two infinite rules

By = a 'y—yz
By = ylz—ay!
By = ylal—azly!
I(n) = ay"z™t —y"
II(n) = yz "y t—z™

To see that this is a Grobner Basis we need only check matches
which involve the two infinite classes (the other matches are checked in
the process of running the Basis algorithm and can also be easily veri-
fied by machine). We recall that a match is a sextuple { f, g, l1,71,l2, 72}
with [y LM (f)ry = loLM(g)re which comes from an overlap of LM (f)
with LM (g).

387

John J Wavrik

f g L T2 Spol(m)

II(m) | I(n) |y 1| a=(m=Dy-1 y" I(m—1)>
—I(n—1)z=(m=1

I(TL) ‘B1 :L‘_l ynx—l * _x—lyn —l—y"x_l

B, I(n) | xy™ T * 1y — xy"

I(n) Bs Y Yot I(n+1)

Bg I(n) | zy” Yy —I(n+1)

In) [Br |y ' |yla! ey lyhat -
y 'y

II(n) | B3 y ! z "yt k| gyl +
x—ny—l

B3 II(n) | yz=™™ |y Ty — oy

II(n) | Bg z ! x "yt II(n+1)

By II(n) | yz=™ |z 2 | yr ey —ax "

Bg II(n) | yz=™ |yt —II(n+1)

*If ba — ab is a reduction rule then b"a — ab™ reduces
to 0.

1 2By to=to —Byy" 1o I(n—1)

2 —yz~ (" UBy o 4 UB > —1I(n —1)

The notation g1 > go > ... indicates the sequence of mul-
tiples of basis elements used in reduction. In practice we
reduce the first term in an expression in which the LHS
of some rule occurs, and we use the first occurrence (when
scanning from left to right) within a term.

We see in this example one of the mechanisms by which an infinite
family of relations is produced. Notice that the main consequence of the
change in ordering is the change in “sidedness” of rule Ag. The family
I(n) would not appear if this rule were applied in its original order.
Rule Bg, however, does not permit y to be moved to the right past
2%, Another point of view is that I(n) is really just the rule zz~! —1
which is multiplied on the left by y™ then reduced by Bg. This, in
fact, is the way the sequence I(n) is produced: The S-polynomial of

388

Rewrite Rules and Simplification of Matrix Expressions

I(n) and Bs produces I(n+1). In any event, the infinite families seen
here result from the choice of an ordering in which a rule which could
be used to simplify them has the wrong “handedness”. In this case, a
change in the ordering of polynomial variables produces a rewrite rule
with the proper handedness to eliminate the infinite families. Some of
the infinite families that appear in the models of the previous section
are of this sort — although, in those cases, changes which eliminate
some families produce others.

While it is unlikely that rearrangement of the variables in a graded
lexicographic ordering will make the families in our models finite, we
have found an ordering for which they have finite Grobner bases. In
the case of Model D, for example, we let <1 be the graded lexicographic
ordering with r < y <z ' <yt < (1 -2)"! < (1 -y)~! and we let
<9 be the graded lexicographic ordering with (1 — 2y)~! < (1 — yx)~!
The wreath product <; ! <sis a term ordering on the full set of
variables. (see [Sims]). If we use the wreath product, we obtain a finite
basis for Model D. Notice, however, that this ordering does not reduce
the number of factors in a term so it is not as well suited to the task
of simplifying expressions.

If X and Y are two sets of letters whose words are ordered by
<xby <y the wreath product on the words in X UY is defined by
comparing two such words written in the form W = Wya W1 ... asWs
and Z = Zob1Zy...0Z;. where the W; and Z; are (possibly empty)
words in the letters in X while the a; and b; are letters in Y. We then
say W < Z if

either aj...as <y by...b; (as words in V')
or ai...as =by...b

and (Wy, , Ws) <* (Zo,, Zs)

where <* is the lexicographic product ordering defined by <x (i.e.
for some j, W; = Z;, i =0...j —1 but W; <x Zj)

389

John J Wavrik

Model D
Wreath Ordering

Dwry = 4z 'z —1

Dwry = +4zz~ ! -1

Duwry = +yly—1

Duwry = +yy'-1

Dwrs; = +(1—z)lz—(1-2)"1+1
Dwrg = +zx(l—2)t—1—-2)"t+1
Dwr; = +(1—-y)ly—(1—-y)t+1
Dwrsg = +y(l—y)t—(1—-y)t+1
Duwrg = +(1—ay) oy — (1 —ay) ' +1
Duwryy = H4azy(l—ay) -1 —ay)~t+1
Dwryy = +(1—yz) ' —y(l—ay)lz -1

Duwryy = +(1—-2) a7t —(1—-2)"t -2t

Duriy = +(1—y) ly ' —(1—y) =y

Dwryy = +(1—2y) ly ' -1 —ay)to—y!

Dwris = +(1—2y) ezl —y) ' — 1 —zy) (1 -9y !

~(l—ay) e+ (1-y)!

Dwrig = 4z '(l—-z) ' —(1—2)t -2t

Duwri; = +a7'(1—ay) 't —y(l—ay) ™ —a™

Duris = 4y '(1-y) ' =(1-y) 't —y!

Durig = +(1-2)"'y(l —ay)™ = (1-2)7' (1 —ay)™!

It should be noted that the wreath product does not produce sim-
plification in the same sense as the graded lexicographic orders used in
the earlier models. In particular, it does not reduce the number of fac-
tors in terms. It should also be noted that there are finitely generated
ideals which have an infinite Grobner Basis for every ordering [TMora].

4.2 Infinite Bases and Transformations

Model E in section 3 provides another way in which infinite families can
occur. Notice that without the two relations involving h(xy) and h(yz)

390

Rewrite Rules and Simplification of Matrix Expressions

this is the same as Model B, which has a finite basis. The introduction
of two new variables and the “pseudo-commutative” relations in which
they occur produces infinite families. The power transformation which
replaces h(zy) by h(zy)" and h(yx) by h(yx)"™ converts the starting
relations to a set of relations which can be reduced by the starting re-
lations. This will also be true of any relations which are obtained, using
the Basis Algorithm, from the starting relations. We expect, therefore,
that new relations can be obtained by applying this transformation to
simpler relations. The infinite families for Model E are all obtained
from the instance for n = 1 by using this transformation. These have
been called the GENR rules. This provides an example of infinite fam-
ilies which arise by applying a sequence of transformation rules to a
finite set of relations.

Notice that the first 4 families (E_I to E_IV) are also like the
families in Case B above: they would reduce to 0 if the “handedness”
of a simpler rule is changed. The remaining rules (E_V and E_VI) are
not of this type. They can be derived from simpler rules by the power
transformation, but cannot be reduced by a change in “handedness” of
simpler rules.

4.3 Infinite Bases and Recursion

The the infinite families are generated by a process which produces
higher order rules from lower order. We may trace this process to
obtain recursion relations for these families. The recursion relations
can be an important tool in proofs which involve the infinite bases. In
the example above we have the following formulas:

Recursive Formulas for Case B
Iln]= yln—1]— Bsy" 127!

0= By
II[TL] = $_1II[’I’L _ 1] . Bﬁl'_(n_l)y_l
II[0]= By

A much more complicated set of recursion formulas comes from the
infinite families in Model D. In this case, most of the recursion relations
express the instance for n of a rule in terms of the instance for n — 1

391

John J Wavrik

of the same rule. This is true of the rules I-IV. In the other cases, the
instance for n of the given rule uses the instance for n of another rule.
In each case we have also explicitly written the rule forn =0orn =1
from which the recursion starts. A list of the special rules needed in
the recursion has been included for reference.

Recursive Formulas for Model D
In]= (1 —axy) ' n—-1]—-SPCs(1—yz) " D(1—xz)"
I0]= SPCy

IIn] = (1—ay) 'II[n—1] — SPCs(1 — yz)~ 1
{A-y»'-1}

H]= 2l -ya) "1 -y ' = (L —ay) (1 -y "
—r(l-yzr) '+ 1y

IIIn]= (1-— yx)—lnf[n — 1] - SPCs(1 — zy)~ =D
{a-a-1)

il = y(l-zy)'(1-2)"' = (1—yz)" (1 —2)""
—y(l—ay) '+ (1)

IV n] (1 —yz) " "UVn—1] - SPCs(1 — zy)~ =D

IV[0] = SPCig

Vin]= (1—-2)"n] - SPCi2(1 —yx) (1 —x)!
Vo= 0

VI[n] (1 —2)~tIn] — SPC12(1 — yx)™
{A-y»'-1}

VI= (1-2)'(1-y2) ' Q-y) " = (1—a)!
1-ay) '(1-y) ' = (1—yz) (1—y) "
—(l-2) M (l-yr) '+ (1 -2) (1-y)!
+ (1 —yx)~t

VIIn]= VIIn—1]—-(1—-y)~II[n]+ SPCy
(A1)

VIIM= (1-y)~"(1—yz)” ()= (1-y)!
(1—my)~ 1(1—56) +(l—zy) ' (l-a)!
+(l-y(l-zy) ' = (1-y)'1-2)"
—(1—ay!

VIII[n)= SPCp(l—ay) (1 —-y) -1 -y)1V[n]

VIII0]= 0

392

Rewrite Rules and Simplification of Matrix Expressions

SPCq (1—yz) ly—y(1 —ay) ™
SPCy = (1—ay) o —a(l —yz)™!
SPCi = (1-y)~'y—(1-y " +1
SPCiy, = (1—z)lz—Q—2)"'+1
SPCy = y(l—y) ' —(L—y) " +1
SPCy = z(l—z)'-Q—-2)"'+1

5 Software Considerations

The results obtained in this paper required computer assistance. The
simplification methods and the algorithms used are beyond the scope
of hand computation. Moreover, a great deal of the work involved gen-
erating and analysing the output of computer runs and the operation
of algorithms. This type of work benefits from a congenial comput-
ing environment. It is therefore appropriate to make some comments
about the software used for this project.

This work involves symbolic computation. The currently most pop-
ular commerical symbolic algebra systems (Mathematica, Maple, and
Macsyma) are rather weak in their provisions for non-commutative
operations. They allow operators to be declared non-commutative,
but they have very few algorithms and functions dealing with non-
commutative operations. While they do have matrix packages, these
treat matrices of specific finite dimension, but they do not effectively
deal with general symbolic matrices of arbitrary dimension. Thus this
project could not have been done with packaged software. Some of the
results of this research, however, have been incorporated in a Mathe-
matica package [NCA] designed primarily for engineers.

The research for this project was conducted using an approach in
which a core language, designed for the specific research project, is
written first. This core system is then modified and expanded as the
research is conducted. The end result is a special-purpose software

393

John J Wavrik

system designed to meet the needs of a specific research project. There
are several benefits to this approach to research software:

1 The software provides an interactive computing

environment.

The system is extensible

Modifications can be made with relative ease

The language and commands are natural to the researcher

It reduces the gap between the concepts of the mathemat-

ics and the means of expression provided by programming

language

6 The data representation can be tailored to the project to
provide for efficiency

7 The inner workings of algorithms can be examined with rel-
ative ease

8 It provides a good medium for experimenting with data rep-
resentation and algorithms

9 The researcher retains a high degree of control over, and
knowledge of, the software

O i W N

A suitable base language is needed to carry out this approach. The
computer language Forth has been found to be very effective. Forth
can be seen as a language for writing languages. It is built around
an expandable dictionary which contains a compiled form of the com-
mands (words) it currently knows. These words can either be executed
interactively or used in the definition of new words. Programming in
Forth is equivalent to extending the dictionary. The end product of
programming is an “application”: a collection of words related to a
task. These words can be executed interactively or used in the defini-
tion of still further words. As in most interactive environments, data
is persistent in the sense that values are retained after a command
performs its action.

This is not the place for a tutorial on the Forth language. It is
important, however, to at least say something about the structure of
dictionary entries and the way that compilation is carried out. A new
word is defined in terms of previous words together with words that

394

Rewrite Rules and Simplification of Matrix Expressions

implement the traditional control structures®. The body of the new
word’s dictionary entry consists of a sequence of addresses of its com-
ponent words punctuated by branching instructions which implement
the control flow. Rather than passing source code through a separate
program, Forth uses an unusual approach to compilation: words like IF
and THEN are written in Forth, are part of the dictionary, and carry
out actions during compilation. Thus when IF is encountered it puts
in place a conditional jump instruction and leaves space for the ad-
dress or displacement to the target of the jump (which is not known
when IF is encountered). The action of THEN is to resolve the address
of the conditional branch. The functions of a conventional compiler,
therefore, are distributed to the action of words in the dictionary — and
these actions can be modified and extended.

Since the act of programming in Forth consists in adding new words
to the dictionary. Forth is extensible. This extensibility includes what,
in conventional languages, would require extending and modifying the
compiler. Most of a Forth system is written in Forth itself and the
“virtual machine code” is easily decompiled. Thus Forth systems tend
to be open and provide the user with a very high degree of control over
language features. The Forth system is conceptually simple. The lan-
guage can be learned relatively easily by understanding how it works.
An important asset is that it is a language which can be used effectively
by someone who is not a professional programmer. The effect is to bring
to the working mathematician some of the control over language that
is usually only available to a computer specialist.

It should be mentioned that the “virtual machine code” into which
high level Forth is compiled executes relatively rapidly. If one adds
the ability to code time-critical words directly into assembly language,
a Forth application will run at a rate comparable to conventionally
compiled programs. Some timings comparisons found in [HSW] show
that some of the main algorithms coded in the Forth based research
system run substantially faster (about 40x) than the same algorithms
coded in Mathematica.

3There is also a provision for defining words in the assembly language of the host
computer and for defining words for data structures.

395

John J Wavrik

Some references on Forth are included. I would like to thank

Michael Gassanenko and Mikhail Kolodin for supplying references to
the Russian literature on Forth and Anton Ertl for some helpful dis-
cussions about the Forth language.

Books and Articles

Baranov S.N.; Nozdrunov N.R. Yazyk Fort i ego realizatsii. - L.
Mashinostroenie, 1988. - 158 p. (Baranoff S.N., Nozdrunoff N.R.
“The Forth Language and Its Implementations”, in Russian.)*

Burago A.Yu., Kirillin V.A., Romanovskij I.V. Fort - yazyk dlya
mikroprotsessorov. - L.:Znanie, 1989. - 36 p. (Forth: a Language
for Microprocessors, in Russian.)

Broudi L. Nachalnyj kurs programmirovaniya na yazyke Fort. -
M.:Finansy i statistika, 1990. - 352 p. (translation of Brodie
L. Starting FORTH. Prentice-hall,Inc.:Englewood Cliffs,New Jer-

sey.)

Kelli M., Spais N. Yazyk programmirovaniya Fort. - M.:Radio i
svyaz’, 1993. - 318 p. (translation of Kelly M., Spies N. “Forth:
a Text and Reference”. Prentice-Hall, N.J., 1986.)

Tuzov V.A. Funktsionalnye metody programmirovaniya. Instrumen-
talnye sredstva podderzhki programmirovaniya. - LIIAN: Lenin-
grad, 1988. - p. 129-143°

Tuzov V.A. Yazyki predstavleniya znanij. LGU:Leningrad, 1990.
(The Languages of Knowledge Representation, in Russian).®

4This is the best book on Forth published in Russian.
5An excellent paper about the technique known in the West as “data-driven

programming”.

5This book describes what an ideal language for Knowledge Representation

should be, the system is an extension of Forth.

396

Rewrite Rules and Simplification of Matrix Expressions

Forth Compilers

There are a large variety of Forth compilers, both commercial and
public domain, available for many platforms. The research for this
project used F-PC by Tom Zimmer and others (for MS-DOS, 16-bit).
F-PC has many features, is well written and well documented. It is
in the public domain and can be obtained free from many places (in
particular, it can be obtained at the Web site www.forth.org or by
FTP ftp.taygeta.com). It adheres primarily to the Forth-83 standard
which is the language standard used in the books mentioned above.

A version of Forth which adheres to the recent ANS-Forth standard
is Gforth written by Anton Ertl and Bernd Paysan. The kernel of
Gforth is written in 'C’ (rather than assembly language) so that it
can be compiled on many platforms but the majority of the system
is written in Forth. It is a 32-bit implementation and is distributed
free under the conditions of the GNU General Public License. Copies
of the most recent release can be obtained from www.forth.org and
www.complang.tuwien.ac.at/forth/gforth/.

References

[BeckWeis] . Becker & V. Weispfenning, Grobner Bases, A Computa-
tional Approach to Commutative Algebra, Springer-Verlag, Under-
graduate Texts in Mathematics, 1992.

[Buch] . Buchberger “Grobner bases: an algorithmic method in poly-
nomial ideal theory” Recent Trends in multidimensional system
theory, Reidel (1985) pp.184-232.

[BuchLoos| uchberger, B. & Loos, R. “Algebraic Simplification” Com-
puter Algebra - Symbolic and Algebraic Computation, Springer-
Verlag (1982), pp.11-43.

. . Helton, M. Stankus and J. avrl omputer Sim-

HSW| . W. Hel M. Stank dJ. J Wavrik “C Si
plification of Formulas in Linear Systems Theory.”, submitted to
IEEE Transactions on Automatic Control

397

John J Wavrik

[HW] . W. Helton and J. J. Wavrik “Rules for Computer Simplification
of the formulas in operator model theory and linear systems”,
Operator Theory: Advances and Applications 73 (1994), pp.325—
354.

[FMora] . Mora, “Groebner Bases for Non-commutative Polynomial
Rings” Lecture Notes in Computer Science, number 229 (1986)
pp.353-362.

[TMora] . Mora, “An introduction to commutative and noncommuta-
tive Grobner Bases”, Theoretical Computer Science, vol.134 (1994)
pp.131-173.

[NCA] .W. Helton, R.L. Miller and M. Stankus, “NCAlgebra: A Math-
ematica Package for Doing Non Commuting Algebra” available
from ncalg@ucsd.edu

[Sims| harles C. Sims, Computation with Finitely Presented Groups
Cambridge Univ Press, 1994.

[Ufn] . Ufnarovski, “Combinatorial and asymptotic methods in alge-
bra”. (Russian) Current problems in mathematics. Fundamental
directions, Vol.57 (Russian), 5-177, Itogi Nauki i Tekhniki, Akad.
Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow,
1990.

John J Wavrik, Received 14 November, 1996
Department of Mathematics,

University of California,

San Diego, California, USA

e—mail: jjwavrikQucsd.edu

398

