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Replicable functions:

a computational approach

Mihai Cipu∗

Abstract

Methods for investigating replicable functions and a computer
program which implements these methods are under development
by the author. This research announcement contains the theo-
retical background of the method and the basic ideas of imple-
mentation.

1 Introduction

Besides the attraction inherent to any mathematical items, the topic
of our research is significant for several reasons.

1. The notion alluded to in the title appeared as a surprising prop-
erty shared by modular functions and head representations of
the largest sporadic simple group. This connection between au-
tomorphic functions and finite simple groups is just the tip of
a deep phenomenon explained by some work due to I.B.Frenkel,
J.Lepowsky and A.Meurman and R.E.Borcherds.

2. The central notion and the problem itself arose in a manner called
by several people numerology: some numbers appearing in dis-
tinct reasearch areas are strikingly close and the fact calls for an
explanation. The first remarks of this kind are due to J.McKay in
1978. Thompson has noticed further relations and passed them to
other people working on the classification of finite simple groups.
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They were convinced that the numbers mirror a hidden unifying
structure lying deep enough to escape the experts in each field.
Revealing the ultimate explanation seemed to be the privilege of
those who succeed to master both fields. Actually, it turned out
that a completely different research area has provided the tools
needed to clarify the connections.

3. It is one of the first manifestations of the present direction mathe-
matics is moving in, that of an experimental science. Essentially,
mathematical research means making conjectures and providing
proofs for them. Since very powerful computers are generally
available, they may be helpful in the first phase of this simpli-
fied scheme. Looking at many computer-generated examples and
noticing patterns, mathematicians can infer new properties of
known objects or the existence of other interesting concepts.

The paper is organized as follows. First, we recall some of the no-
tions needed to introduce the concept and the problem we are interested
in. The second section contains several characterizations and properties
of replicable functions, as well as the statement of Norton’s conjecture
aiming to give another description of replicability. The approach we
took to prove there are only finitely many non-trivial replicable func-
tions is presented in Section 3. The algorithm description rests at a
conceptual level, without implementation details–these will be deferred
to another paper. Section 3 also contains results obtained so far. The
next section is devoted to an independent proof of Norton’s theorem
asserting that all replicable functions are determined by 12 of the first
23 coefficients of their q-expansions. Since our approach heavily relies
on Norton’s result, we strived for a proof which is suitable for direct
and efficient implementation in a programming language. Finally we
note some of the conclusions of the work developed so far and discuss
possible improvements for the implementation of the algorithm, as well
as ideas for further work.

343



Mihai Cipu

2 Preliminaries

As mentioned above, replicable functions emerged in between two old
and very respectable research areas: the theory of modular forms and
group theory. We briefly review here some of the concepts needed to
understand the native environment of the problem we are dealing with.

2.1 Modular functions

A very important tool in complex analysis is represented by lattices in
the complex plane. Each of this is described as {mω1 + nω2 : m,n ∈
ZZ} for two periods ω1 , ω2 ∈ C. The basis ω1 , ω2 can be replaced by
any other pair ω′1 , ω′2 provided that ω′1 = aω1 + bω2 , ω′2 = cω1 + dω2

for some integers a, b, c, d. To obtain precisely the same lattice, one
has to impose the condition ad− bc = 1. However, in many questions
what really matters is the shape of the lattice, not its orientation or its
size. So, if one doesn’t distinguish two rotated or dilated versions of the
same lattice, the shape is described by the complex number τ = ω1/ω2

as well as by τ ′ = ω′1/ω′2. If one works it out, one finds

τ ′ =
aτ + b

cτ + d
.

Thus a quotient space arises naturally and the discussion sketched
above will be formalized and detailed below.

The group SL2(IR) of real 2 × 2 matrices of determinant 1 acts on
the upper half-plane

H := {z ∈ C : =z > 0} (1)

by fractional linear transformations
(

a b
c d

)
· z =

az + b

cz + d
. (2)

The action of SL2(ZZ) on IR := IR ∪ {∞} is transitive and only ±1
fixes as many as 3 points. A matrix δ is called parabolic if it fixes a
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unique point of IR, and the fixed-point is called a cusp of G. For instance,

if x is a non-zero real number, then the translation δ =

(
1 x
0 1

)
is

parabolic and the cusp is ∞. The cusps of SL2(ZZ) are the rationals
Q∪∞ on which SL2(ZZ) acts transitively. Thus we can take ∞ as the
representative set of the orbit space SL2(ZZ)/Q∪{∞} whose compact-
ification is a sphere.

A subgroup G ⊆ SL2(IR) is commensurable with SL2(ZZ) if G ∩
SL2(ZZ) has finite index in both G and SL2(ZZ). If G is commensurable
with SL2(ZZ), then G is discrete (i.e. the natural topology of SL2(IR)
induces the discrete topology on G), G has only finitely many orbits
on its cusps, and adjoining these to the quotient space H/G yields a
compact Riemann surface XG := H/G. Unlike the case of SL2(ZZ)
itself, the genus of XG will in general not be zero.

Example. For any positive integer N one denotes by Γ(N) the ker-
nel of the epimorphism SL2(ZZ) −→ SL2(ZZ/NZZ), while Λ(N) denotes
the normalizer of the group

Γ0(N) := {
(

a b
c d

)
∈ SL2(ZZ) : c ≡ 0 mod N}

in SL2(IR). It is not hard to see that Λ(N) is commensurable with
SL2(ZZ), as indeed is any subgroup intermediate between Γ0(N) and
Λ(N).

Given G commensurable with SL2(ZZ), one associates to it the com-
pactification XG of the quotient space H/G and the field K(XG) con-
sisting of all meromorphic functions f : XG −→ C∪{∞}. The compact
Riemann surface XG has genus zero precisely when the field K(XG)
is a purely transcendental extension of C, K(XG) = C(t) for an inde-
terminate t. In such a case we say that G is a genus 0 group and any
homeomorphism f : XG −→ C ∪ {∞} is called a Hauptmodul for G.
Clearly, a generator for the field K(XG) is determined up to rational
transformations. If f is a Hauptmodul then,being one-to-one, it has a
unique pole, and such a pole is necessarily simple. One may chose f so
that the pole is at ∞, and the residue is 1.
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All discrete groups G will contain some Γ0(N). In particular, they

contain the translation map z 7→ z + 1 given by the matrix

(
1 1
0 1

)
,

so that we may take ∞ as a cusp. One usually identifies ∞ with
limy→+∞ iy, so that under the map q : z 7→ exp 2πiz which maps
H onto the interior of the unit disk, ∞ is mapped to the origin. In
the complex structure of XG one may take q as a local parameter
at the point ∞. Thus any G-invariant function f ∈ K(XG), being
meromorphic at each point of XG, has a Laurent expansion about ∞
in terms of q: f(q) =

∑
n≥n0

anqn , an0 6= 0.
If f is a Hauptmodul, its q-expansion looks like

f = q−1 + a0 +
∞∑

n=1

anqn .

The constant term a0 will vary according to the location of the unique
zero of f , which once specified determines f uniquely. We may nor-
malize it so that its zero is at 0.

For instance, the meromorphic modular-invariant functions on H
comprise precisely the field of rational functions of

j(z) :=
(1 + 240

∑
n>0 σ3(n)qn)3

q
∏

n>0(1− qn)24
=

q−1 + 744 + 196884q + 21493760q2 + . . . ,

where
σ3(n) :=

∑

d|n
d3

is the sum of the cubes of the divisors of n.
Considering G = Γ0(2), one finds that H/G is a sphere with 2

points removed, so that G is a genus 0 group. The q-expansion of its
normalized Hauptmodul is

24 + q−1
∏

q>0

(1− q2n+1)24 = q−1 + 276q − 2048q2 + 11202q3 + . . . .
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Similarly Γ0(N) is a genus 0 group in the cases N ≤ 10.
However, the genus of Γ0(N) tends to infinity as N increases (a

stronger theorem has been proved by Thompson in [9]). A related
result is due to Ogg [7] : the normalizer of Γ0(p) for prime p is a genus
0 group iff p ∈ {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 47, 59, 71}.

2.2 Finite simple groups

This strange set of prime numbers coincides with the prime divisors of
the order of the sporadic finite simple group M whose existence has
been predicted in 1973 by B.Fischer and B.Griess. By the time when
Ogg obtained his result, the existence of the group M still was a matter
of speculation, so this coincidence was intriguing indeed. Were it not
only a mere coincidence, it would point to a unexpected relationship
between automorphic functions and group theory.

The huge work deployed to construct the group M is very inter-
esting. At least at the beginning, the approach was very similar to
the reasoning usual in elementary particle physics: one infers many
properties of an object before one asserts its existence.

From the very beginning it was conjectured that M has an irre-
ducible rational character χ2 of degree χ2(1) = 196883. Admitting this,
Thompson [8] has shown that M must be unique and the entire charac-
ter table has been constructed by Fischer, Livingston and Thorne [4].
They found 172 irreducible rational characters χ1 = 1 , χ2 , . . . , χ172

ordered by increasing degrees (recall that a, b ∈ M are rationally equiv-
alent if there exist an element x in M and some integer s relatively
prime to the order of M such that a = xbsx−1 ).

In 1978, J.McKay observed that the coefficient of q in the modified
elliptic modular function J(q) := j(q) − 744 is a1 = χ1(1) + χ2(1).
Likewise Thompson discovered that higher coefficients can be expressed
as simple linear combinations

J(z) = q−1 + (χ1(1) + χ2(1))q + (χ1(1) + χ2(1) + χ3(1))q2+

(2χ1(1) + 2χ2(1) + χ3(1) + χ4(1))q3 + . . . .
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This suggests that other interesting series might be

Tg(q) := q−1 +
∑

n>0

Tn(g)qn ,

where Tn(g) are rational characters of M and g is an element of the
Monster group. Note that J(z) depends only on the rational equiva-
lence class of g. Thus we get 172 meromorphic functions on H, with a
simple pole of residue 1 at ∞ and vanishing 0-th coefficient there and
with all Fourier coefficients in ZZ.

2.3 Monstrous Moonshine

The mysterious connections between the biggest finite simple group M
and modular forms have been investigated by many other people aware
of Ogg’s result and McKay’s observation. J.Conway and S.P.Norton [3]
made a number of remarkable conjectures concerning these series for
which they coined the term “monstrous moonshine”. Some of their
guesses have been proved, others turned out to be false, and a few of
them are still open. One of them is the following:

Conjecture 2.1 There are only finitely many subgroups G ≤ SL2(IR)
satisfying:

1. G contains some Γ0(N)

2. G is a genus 0 group

3. the translation z 7→ z + k is in G exactly when k is an integer

4. the coefficients in the canonical Hauptmodul for G are algebraic
integers.

The main conjecture in Conway and Norton’s paper has been finally
proved by Borcherds: each rational conjugacy class in M gives rise to
a Hauptmodul for a genus 0 subgroup of SL2(IR). His result relies on
previous work done by I.B.Frenkel, J.Lepowsky and A.Meurman:
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Theorem 2.2 ([5]) There exists an infinite dimensional ZZ -graded
representation V =

⊕
Vn of the Monster simple group such that the

dimension of Vn is equal to the coefficient an of the elliptic modular
function J .

Theorem 2.3 ([2]) Suppose that V is the graded representation of M
constructed by Frenkel et.al.. Then for any element g of the Monster
group the Thompson series Tg(q) =

∑
n∈ZZ Tr(g | Vn)qn is a Haupt-

modul for a genus 0 subgroup of SL2(IR).

3 Replicable functions

3.1 Definition, characterizations

Let f be a function having q-expansion

f(z) = q−1 + a1q + a2q
2 + a3q

3 + . . . , (3)

where q = exp 2π
√−1z. Such a function is called replicable if there are

replicate functions {f (u)}u≥1 such that for all n ≥ 1, the expression

Pn(f) :=
∑

ud=n

0≤b<d

f (u)(
uz + b

d
) (4)

is a polynomial in f with q-expansion

Pn(f) = q−n + terms of degree > 0 ,

i.e.
Pn(f) ≡ q−n mod qZZ[q] .

One can show that Pn(f) is given by a unique monic polynomial
from ZZ[a1, a2, . . . , an−1][t].

The prototypical replication relation is that for Thompson series
Tg(z) for g ∈ M . The uth replicate for Tg(z) is Tgu(z). Here one notes
that all replicates are replicable as well (some people would phrase this
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property: the monstrous moonshine functions are completely replica-
ble). In particular, the modular elliptic function J is replicable. How-
ever, the simplest example of replicable function is q−1 + aq.

Admittedly, definition (4) seems intricate. It looks more natural as
soon as one introduces the twisted Hecke operator which acts linearly
on q-coefficients yet takes the function f(z) to 1

nPn(f). A very useful
description has been provided by Norton [6]. In that paper it is shown
that the generating function for all twisted Hecke operators is

∑

n≥1

Pn(t)
n

qn = − ln(q(f(z)− t)) .

This relation yields recursively the polynomials invoked in the defini-
tion of replicable functions:

P1(t) = t, P2(t) = t2 − 2a1 , P3(t) = t3 − 3a1t− 3a2 , . . . .

One finds also that Pn’s satisfy the recurrence relation

tPn−1(t) = nan−1 +
n−2∑

k=−1

akPn−k−1(t) , r ≥ 1 , v (5)

with initial condition P0(t) = 1.
Following Norton [6], let us consider the coefficients

{Hm,n}m,n≥1 introduced by

Pn(f) = q−n + n
∑

n≥1

Hm,nqm , for n ≥ 1

and the slightly modified ones

hm,n := (m + n)Hm,n .

From (5) it readily follows that hm,n’s are given recursively by

hm,n = (m + n)am+n−1 +
m−1∑

r=1

n−1∑

s=1

ar+s−1hm−r,n−s . (6)

The result quoted below provides an alternative description for
replicable functions, more convenient for numerical computations.
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Theorem 3.1 A function is replicable if and only if

Hm,n = Hr,s (7)

for all r, s,m, n positive integers satisfying

rs = mn and gcd(r, s) = gcd(m,n). (8)

Once one tries to check either definition or the equivalent property
stated above, it readily becomes apparent that it puts strong restric-
tions on the function. In order to motivate this feeling, we mention the
fact that a function having finite q-expansion f = q−1 +

∑n
k≥1 akq

k is
replicable exactly when n = 1. An even more impressive result is also
due to Norton [6] :

Theorem 3.2 Any replicable function is determined by the values of
12 of its coefficients:

a1, a2, a3, a4, a5, a7, a8, a9, a11, a17, a19, a23. (9)

3.2 The problem

In the fundamental paper [6] Norton conjectured the following state-
ment:

Conjecture 3.3 A function f = q−1 +
∑

n≥1 anqn with integer coeffi-
cients is replicable if and only if either f is of the form q−1 + aq, or
it is the Hauptmodul for a subgroup G of PSL2(IR) of genus 0 contain-
ing a Γ0(N) with finite index and such that G contains a translation
z 7→ z + k precisely when k is an integer.

Admitting the truth of Conjecture (2.1), as well as the validity of
Conjecture (3.3), it follows that there are only finitely many non-trivial
replicable functions.

The aim of my research is to tackle the following
Question. Are there only finitely many replicable functions apart

from the family q−1 + aq ?
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Replicable functions are important tools in the study of the so-called
head representations of the Monster group. Actually, the experts of the
field have put forward the statement and provided heuristic reasoning
that points to a positive answer to the question.

There is additional evidence that the problem could be solved in
the affirmative. Some time ago, D.Alexander, C.Cummins, J.McKay
and C.Simons [1] have obtained 326 replicable functions with integer
coefficients whose replicates are themselves replicable (in other words,
completely replicable functions). Their approach is entirely different
from ours, so their result could serve to check our solution. Recently,
V.Ufnarovski [10] has announced a partial affirmative solution: there
are only finitely many replicable functions modulo 2 and modulo 3.

3.3 The method

Our approach heavily relies on Norton’s result (3.2). Accordingly, to
settle in the affirmative the problem, it is sufficient to compute all solu-
tions of a suitable system of polynomial equations in 12 indeterminates
with integral coefficients. Stated this way, the problem hints to an
approach using computer algebra systems.

The method consists of three major steps.
Phase 1. For t below a certain bound Ncoef , express at in terms

of the 12 variables.
This is achieved by using relation (7) for integers r, s,m, n satisfying

(8) and moreover

m + n < r + s ≤ Ncoef + 1 . (10)

Phase 2. Generate equations in 12 indeterminates.
More precisely, for u at most Nnum one tries to decompose it as

u = rs = mn for r, s, m, n subject to conditions (8) and (10). Then
one rewrites (7) using the expressions obtained in Phase 1.

Phase 3. Solve the system of equations previously obtained.
This step is done via a Gröbner basis computation. The lexico-

graphic ordering is best suited for the task, since the Gröbner basis is
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obtained in a triangular form. To effectively obtain the solutions, one
has to factor univariate polynomials of high degree.

The above sketched algorithm has an additional advantage: in case
of successful termination, it will provide us with replicable functions
whose q-expansions have algebraic integers coefficients.

Actually, to answer the Question as stated above, it is sufficient to
replace Phase 3 by the following step:

Phase 3′. Determine the dimension of the ideal generated by the
polynomials previously obtained.

From the computational point of view, the task is now easier, since
one may use a cheaper ordering instead of the lexicographic one. More-
over, there are a number of quite efficient computer algebra systems
for obtaining the dimension of a polynomial ideal.

3.4 Implementation

I have written a program implementing in MATHEMATICA the algo-
rithm sketched above.

Since the definition (6) is recursively invoked many times, the func-
tion computing hr,s is memorizing its value. This leads to high space
requirements. The Gröbner–basis computation is also very demanding
in this regard. As the modular elliptic function shows, the solutions
themselves consist of large numbers, so the amount of memory needed
is an inherent difficulty of the problem.

The running time is also very high. In all steps one has to ma-
nipulate very large expressions. The time needed in the worst case
of a Gröbner–basis computation is doubly exponential in the number
of variables. Moreover, it depends in an unpredictable way upon the
ordering of the variables. Hence, it will be helpful to exercise a few of
the 12! = 479001600 permutations of 12 variables.

Due to space and time restrictions, it was not possible to obtain suf-
ficiently many equations (i.e. to generate a 0–dimensional ideal). One
may try to play with the value for Nnum in Phase 2. The underlying
idea is to obtain equations from “sporadic” pairs, hoping that they will
reduce the dimension of the ideal they generate.
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3.5 Results obtained so far

The cost of computations increases dramatically with the value of
Ncoef . For no other reason than the limits of the available configura-
tion we chose Ncoef = 58. The expressions giving the 46 dependent
variables in terms of the independent ones occcupy 500 Kb.

As it is apparent from the example of elliptic modular function, the
coefficients of a replicable function could be huge. Apart from large
number of indeterminates and polynomials, this is a reason for the long
time needed by the computer to manipulate expressions. Using about
20 hours on the IBM/R6000 cluster and about 150 hours running time
for PC486, I have obtained 82 equations in the 12 independent vari-
ables. An amount of 1.5 Mb of memory was needed just to store these
polynomials. One point should be emphasized: it is not at all clear
that the equations obtained so far are sufficient in the sense that the
polynomials already available form a system of generators for the ideal
generated by all relations of type (7). With the present choice of Ncoef
there is available sufficient information to generate more equations, but
due to space limitations we had to restrict ourselves to consider only
82 polynomials.

As a first attempt to simplify the computations, I have imposed the
vanishing of the first 3 variables. Then I chosed 14 polynomials in the
remaining 9 indeterminates, hoping that I shall obtain a 0-dimensional
ideal. But the computer didn’t succeed to find the Gröbner basis for
the ideal (it ran out of memory).

4 Proof of Theorem (3.2)

The main idea is deceivingly simple. We record it in the next lemma
for later reference.

Lemma 4.1 If n has two distinct prime divisors, then it has two co-
prime divisors a and b with 1 < a < b < n. Thus H1,n = Ha,b.

This obvious remark allows us to restrict ourselves to prime powers
n. So from now on we shall assume
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Standing hypothesis:
There are a prime p and a positive integer a such that n = pa ≥ 24.

To deal with values not covered by (4.1), one needs a refined idea.
Specifically, one looks for a decomposition of n + 1 as a sum of two
integers r, s having the same product and greatest common divisor as
another pair u, v whose sum is less than n + 1. Then one can obtain
an in terms of ai’s with i < n from the relation obtained by expanding
(7) according to defining relation (6). Having in view the recurrence
involved in the computation of the h function, one tries to keep a
summand as small as possible. Such decompositions are obtained with
reasoning having a number-theoretic flavour.

As a typical case we shall examine first a simple situation:

Lemma 4.2 If n = 8m + 5, then H2,n−1 = H4,(n−1)/2.

Proof. Since n − 1 = 4(2m + 1), one has (n − 1)/2 = 2(2m + 1)
and gcd(2, n − 1) = 2 = gcd(4, (n − 1)/2). Clearly n + 1 = 8m + 6 >
4m + 6 = 4 + (n − 1)/2, so one has got an admissible decomposition
for n + 1.

Next we deal with the values of n congruent to 1 modulo 8. The
first case is easy:

Lemma 4.3 If n = 2am + 1 for some a,m > 1 and m odd, then
H2,n−1 = H2a,2m.

Lemma 4.4 For n = 24a + 1 with a > 1 one has n − 2 = 3bc with
b ≥ 1, c > 1 and 3 6 |c. Therefore H3,n−2 = H3b,3c.

Proof. Clearly 3 is a divisor of n−2, so one must show that n−2
is not a power of 3. This follows from the fact that n − 2 has residue
−1 modulo 8, while the powers of 3 give residues 1 or 3 modulo 8.

Lemma 4.5 For any a ≥ 2, 22a+1 + 1 is not a prime power.
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Proof. Otherwise one must have 22a+1 + 1 = 3b with b ≥ 3.
Taking residues modulo 8 yields b = 2c, so that 3c − 1 = 2α and
3c + 1 = 2β for positive integers α, β with sum 2a + 1. Then it follows
2 = 2β − 2α, which is possible only for β = 2, α = 1. This results in
a = 1, a contradiction.

Lemma 4.6 There is no a ≥ 1 such that 24a+2 + 1 is a prime power.

Proof. Suppose there exists a ≥ 1 for which the statement does
not hold. Then 24a+2 +1 = 5b for an integer b ≥ 1. As above b is even,
say b = 2c, and therefore one has 5c− 1 = 2α and 5c + 1 = 2β. But the
last equality is impossible modulo 8.

Now we shall examine the situation n congruent to 3 modulo 8. A
reasoning similar to that used to prove (4.4) gives the next statement.

Lemma 4.7 If n = 2am + 3 with a ≥ 3 , m > 1 and m odd, then
H4,n−3 = H2a,4m.

Lemma 4.8 If n = 24a+2 + 3, then there are coprime odd integers
b, c > 1 such that n− 1 = 2bc. Hence it follows H2,n−1 = H2b,2c.

Proof. The conclusion is equivalent with the fact that 24a+1 + 1 is
not a prime power. This statement has been already proved in (4.5).

Lemma 4.9 If n = 24a + 3, then n − 4 = 5bc for some integers b ≥
1 , c > 1 , 5 6 |c. Therefore H5,n−4 = H5b,5c.

Proof. Clearly 5 is a divisor of n−4 = 24a−1 = (22a−1)(22a +1).
Since the numbers in the parentheses are odd with difference two, they
are coprime.

Lemma 4.10 If n = 24a+3 + 3, then there are odd coprime integers
b, c > 1 such that n− 1 = 2bc and H2,n−1 = H2b,2c.

Proof. See (4.6).

Lemma 4.11 For any a ≥ 1, n = 24a+1 + 3 is not a prime power.
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Proof. Since n is a multiple of 5 and its residue modulo 8 is 3, it
cannot be equal to a power of 5.

Finally, let us consider the values of n congruent to 7 modulo 8.

Lemma 4.12 If n = 2am+7 with a ≥ 4 and m > 1 odd, then H8,n−7 =
H2a,8m.

Lemma 4.13 There is no a ≥ 1 such that n = 22a+1 + 7 is a prime
power.

Proof. The only possibility n = 3b is ruled out by considering the
residues modulo 8.

Lemma 4.14 If n = 24a+2 + 7, then n − 1 has at least three prime
divisors.

Proof. It follows from n− 1 = 2(24a+1 + 3) and (4.11).

Lemma 4.15 If n = 24a+7 with a ≥ 2, then n−3 has at least 3 prime
divisors.

Proof. It is a consequence of the relation n− 3 = 4(24a−2 +1) and
of (4.6).

Lemma 4.16 If m is an odd multiple of 3 and n = 8m + 7, then
n − 1 = 2 · 3b · c for some b ≥ 1 , c > 1 and 3 6 |c. Therefore one gets
H2,n−1 = H2c,2·3b.

Proof. Let p be such that m = 6p+3. Then n−1 = 6(8p+5) and
8p+5 is an odd integer which cannot be a power of 3 (look modulo 8).

Lemma 4.17 If p ≥ 1 ,m = 6p− 1 and n = 8m + 7, then there exist
b ≥ 1 , c > 1 such that n− 2 = 3bc and 3 6 |c.

Proof. We have n − 2 = 3(16p − 1) and the expression in the
parenthesis is congruent to 7 modulo 8, while the powers of 3 give
residues 1 or 3 modulo 8.
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Lemma 4.18 If m = 6p + 1 , p ≥ 1, then n = 8m + 7 is not a prime
power.

Proof. The statement holds because n is a multiple of 3 and its
residue modulo 8 differs from the residues given by the powers of 3.

5 Conclusions

The algorithm consisting of Phase 1, Phase 2 and Phase 3 is intended
to solve a problem more general than that stated in Section 3. Its aim
is to obtain all replicable functions whose q-expansions have algebraic
integer coefficients.

However, at the time of writing, even the successful termination of
Phase 3′ is out of reach for the MATHEMATICA implementation. The
reasons have already been mentioned: huge coefficients, large expres-
sions, high space requirements, very long running time.

Perhaps the Phase 3′ or Phase 3 might be accomplished migrat-
ing from MATHEMATICA to a computer algebra system dedicated
to computational commutative algebra. Quite recently COCOA 3.0,
MACAULAY 2 and SINGULAR have been released, and each of these
packages seems more adequate for the task of computing a Gröbner
basis for a polynomial ideal.

Additionally, one needs a criterion to recognize when we have gen-
erated enough equations (i.e. a system of generators for the ideal gen-
erated by all relations of type (7)). The work needed to settle this
point of theoretical interest is deferred to the near future.
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