
Computer Science Journal of Moldova, vol.4, no.3(12), 1996

Some Features of CoCoA 3

A.Capani G.Niesi L. Robbiano

Abstract

CoCoA is a special-purpose system for doing Computations in
Commutative Algebra. It is the ongoing product of a research
team in Computer Algebra at the University of Genova (Italy),
whose members are: Lorenzo Robbiano (team manager), Gian-
franco Niesi, Antonio Capani (CoCoA authors), Anna Bigatti,
Massimo Caboara, Gabriel De Dominicis and occasionally other
researchers and students.

1 Introduction

From the very beginning CoCoA has been designed to offer maximum
ease of use and flexibility to the mathematician with little or no knowl-
edge of computers. It belongs to the class of Computer Algebra Systems
which are specialized in doing computations on polynomials and which
includes for instance Macaulay [BS], Macaulay 2 [GS] and Singular
[GPS].

The architecture of CoCoA is designed to offer flexibility through
efficiency, portability, programmability, and multiple coefficient arith-
metics.

Currently CoCoA runs on the following platforms: Sun4 worksta-
tions, DEC-Alpha station, Macintosh, PC (under DOS and Linux).
The system can be obtained by anonymous ftp from the URL:

ftp://lancelot.dima.unige.it/cocoa

c©1996 by A.Capani, G.Niesi, L.Robbiano

296



Some Features of CoCoA 3

1.1 The History

CoCoA is the name of a research project, which started in the mid-
eighties. It was coordinated by Robbiano and its first official version
was due to Alessandro Giovini and Gianfranco Niesi [GN]. The orig-
inal idea was to bring together high level know-how from Computer
Science and Mathematics, and produce a piece of software which could
be both a useful tool for the working mathematician and a labora-
tory for research in different fields, ranging from Commutative Algebra
to Software Engineering. After the premature death of Giovini (Jan-
uary 1993) a new project started. Robbiano continues to act as the
project manager, Antonio Capani and Gianfranco Niesi are the au-
thors and many other researchers and students contribute at different
levels. We like to mention Anna Bigatti for the Hilbert-Poincaré Pack-
age, Massimo Caboara and Gabriel De Dominicis for the Hilbert-Driven
Package. We are also pleased to thank Martin Kreuzer and Anthony
Geramita for helping our team with their continual support and ideas.

1.2 The Current Use of CoCoA

Currently CoCoA is used by researchers in several countries. Most of
them are Commutative Algebraists and Algebraic Geometers, but also
people working in different areas like Analysis and Statistics have al-
ready benefitted from our system.

CoCoA is also used as the main system for teaching advanced courses
in several Universities. Besides Italy, the most intensive use is by Tomas
Recio at the University of Santander (Spain), Anthony Geramita at the
Queen’s University (Canada) and Martin Kreuzer at the University of
Regensburg (Germany).

1.3 The Main Features

CoCoA is able to perform both simple and sophisticated operations on
multivariate polynomial rings and on various data connected with them
(ideals, modules, matrices, rational functions). Arbitrarily large inte-
gers are also available. Every computation is performed within a ring

297



A.Capani, G.Niesi, L.Robbiano

(or “ring-environment”). The user can define and use many rings, but
at any one time there exists a chosen current ring.

The system is capable of performing basic operations such as: sums,
products, powers, derivatives, gcd, and lcm of polynomials; sums, prod-
ucts, powers, and derivatives of rational functions; sums, products,
and powers of ideals; sums of modules; sums, products, powers, deter-
minants, and adjoints of matrices; operations between heterogeneous
values, like the product between an ideal and a polynomial, and so on.

Besides these, more advanced operations are available. For exam-
ple: Gröbner bases of ideals and modules; syzygies of ideals and mod-
ules; minimal free resolutions of ideals and modules; intersection and
division of ideals and modules; inclusion and equality test for ideals
and modules; elimination of indeterminates; homogenization of ideals;
Poincaré series and Hilbert functions.

The core of the system is a very fast implementation of algorithms
for computing Gröbner bases, syzygies and Poincaré series of ideals and
modules over a polynomial ring whose coefficient ring is a field. These
algorithms have been optimized in several directions [GMNRT, CDNR,
B, T, CDR] and are used as a foundation for many operations. Most
users can, however, completely ignore the theory of Gröbner bases and
even their existence: CoCoA will do all the necessary “Gröbner stuff”
in the background. However, for optimum use of the system some
knowledge of the theory is helpful.

CoCoA offers a Pascal-like programming language, named CoCoAL,
that allows the user to customize the system and extend the embedded
library.

1.4 The Architecture

CoCoA has a kernel written in the C language (about 55,000 lines) for
portability and efficiency, and a library written in CoCoAL (about 1,500
lines), the high–level language of the system.

It has different interfaces for different machines; each interface in-
teracts with the system using a Low Level Protocol (llp) which is
platform independent.

298



Some Features of CoCoA 3

The interface-independent part of CoCoA is divided into two mod-
ules: engine and math. The first one is the main motor: it includes
the interpreter of the CoCoAL language which allows it to exchange llp-
inputs and llp-outputs with the interface. Requests of computations
are forwarded by engine to math, which contains all the mathemati-
cal algorithms to manipulate coefficients, polynomials, ideals, modules
and so on. math accepts llp-requests from engine, converts data from
llp-format into internal data and then performs the mathematical task
in an efficient environment.

2 A Quick Tour

The CoCoA commands can be roughly divided into two classes: simple
commands and structured commands. Examples of simple commands
are: evaluation of an expression, assignment, and printing. Examples
of structured commands are: if-then-else, for-loop, while-loop, foreach-
loop, and function definition.

The expressions follow a simple syntax which is very close to the
usual mathematical one.

2.1 Ring Environments

Every object in CoCoA is defined over a base ring which is a polynomial
ring with some annotations (about ordering or weights or other things).

Each computation in CoCoA is performed in a ring-environment
which consists of a base ring and a local memory where objects like
polynomials or ideals can be stored.

The user can define and use several ring-environments. At any one
time a particular current ring-environment is active within the system.
The system has a default ring-environment named R and whose base
ring is Q[t, x, y, z].

299



A.Capani, G.Niesi, L.Robbiano

2.2 First Examples

The simplest way to use CoCoA after starting it, is to set a ring (or use
the default ring), type a command, and ask the system to execute it.

Example 2.1 To evaluate the expression (x−3/2y +6t)3 in the ring
Q[t, x, y, z], the user just types the command:

(x - 3/2y + 6t)^3;

The output is:

216t^3 + 108t^2x + 18tx^2 + x^3 - 162t^2y - 54txy - 9/2x^2y +

81/2ty^2 + 27/4xy^2 - 27/8y^3

-------------------------------

Note the multiplication operator “*” may be omitted.

Example 2.2 In this example the first two commands assign the
results of the evaluation of the two expressions to the variables I and
J ; the third one prints out the value of J .

I := Ideal(x-t, y)^3;

J := Ideal(x^2-yz, xy-zt) + I;

J;

Ideal(x^2 - yz, xy - tz, - t^3 + 3t^2x - 3tx^2 + x^3,

t^2y - 2txy + x^2y, - ty^2 + xy^2, y^3)

-------------------------------

Note that each command is followed by a semicolon and that each
output is followed by dashes.

Example 2.3 This example shows how to define and use a ring
different from the default ring.

A ::= Z/(5)[xy];

Use A;

(2x^2 - 1/2y)^4;

The first command uses the operator “::=” to define A to be the
polynomial ring in the indeterminates x and y with coefficients in the
field Z/(5) of the integers modulo 5. The second command chooses A
as the current ring. Then the expression (2x2 − 1/2y)4 is evaluated in
A and the result is displayed.

300



Some Features of CoCoA 3

x^8 - x^6y + x^4y^2 - x^2y^3 + y^4

-------------------------------

Example 2.4 Whenever a command is just an expression, the result
is automatically assigned to the CoCoAL variable It. This variable can
be used like any other user-defined variable but one must remember
that each subsequent execution of a “command-expression” will change
its value.

Use R ::= Q[xyz];

(xy+yz)^3;

x^3y^3 + 3x^2y^3z + 3xy^3z^2 + y^3z^3

-------------------------------

Der(It, y);

3x^3y^2 + 9x^2y^2z + 9xy^2z^2 + 3y^2z^3

-------------------------------

The first command defines R to be the polynomial ring in the inde-
terminates x, y and z with coefficients in the field of rational numbers
and makes R the current ring. The second command computes the
expression (xy + yz)3. The last two commands compute and display
the derivative of the last computed value (It) with respect to y.

Example 2.5 In the next CoCoA session we use the structured com-
mand For to compute (x + y)7 in the ring Z/nZ for n ∈ {3, 5, 7, 9}.
Note that any text from a -- to the end of the line is a comment.

For N := 3 To 9 Step 2 Do

S ::= Z/(N)[xy]; --> define the ring S

PrintLn Ring(S); --> display the ring S

S :: (x+y)^7; --> evaluate the power in S and print it

PrintLn; --> start a new line

PrintLn

End;

The output is

Z/(3)[x,y]

x^7 + x^6y - x^4y^3 - x^3y^4 + xy^6 + y^7

301



A.Capani, G.Niesi, L.Robbiano

Z/(5)[x,y]

x^7 + 2x^6y + x^5y^2 + x^2y^5 + 2xy^6 + y^7

Z/(7)[x,y]

x^7 + y^7

WARNING: Coeffs are not in a field

GBasis-related computations could fail to terminate or be wrong

-------------------------------

Z/(9)[x,y]

x^7 - 2x^6y + 3x^5y^2 - x^4y^3 - x^3y^4 + 3x^2y^5 - 2xy^6 + y^7

2.3 Special Orderings

On this section we discuss two problems whose solutions require using a
particular term-ordering. The first problem is how to find the minimal
polynomial of an element of an algebraic extension of Q. The second
one is how to find a cartesian representation of a space curve given
parametrically.

Example 2.6 The minimal polynomial of 4α−1
α3 over Q, where α is

a root of x7 − x − 1 can be found by computing the reduced Gröbner
basis of the ideal (x7 − x − 1, x3y − 4x + 1) of the ring Q[x, y] with
respect to the lexicographic term-ordering with x > y. In CoCoA this
is achieved by using the following commands:

Use R ::= Q[xy],Lex;

Set Indentation;

GBasis(Ideal(x^7-x-1, x^3y-4x+1));

The first command defines R to be the polynomial ring over the
rational numbers, with indeterminates x, y and the lexicographic term-
ordering (Lex) with x > y. The command Set Indentation forces the
system to print each polynomial on a new line. Then a Gröbner basis
of the ideal (x7−x− 1, x3y− 4x + 1) is computed and displayed. Such
a basis contains a univariate polynomial in the indeterminate y which
is the answer. The output is:

302



Some Features of CoCoA 3

[ x - 10022553737/89893683351809y^6 + 49925279149/89893683351809y^5

+ 17282591991/89893683351809y^4 - 2197476813566/89893683351809y^3

- 3212847751937/89893683351809y^2 + 1627614492145/89893683351809y

- 52555866039552/89893683351809,

y^7 - 5y^6 + 147y^4 + 640y^3 - 31y^2 + 2176y - 20479 ]

-------------------------------

Example 2.7 Given the space curve (t31 + t6, t8, t10), its cartesian
equations can be found by eliminating the indeterminate t in the ideal
(t31 + t6 − x, t8 − y, t10 − z). In CoCoA this is achieved by using the
following commands:

Use R ::= Q[xyzt];

Set Indentation;

Elim(t, Ideal(t^31+t^6-x, t^8-y, t^10-z ) );

The system automatically changes the ordering to an elimination
term-ordering for t, performs the computation, and, finally, restores
the original ordering and gives the result:

Ideal( y^5 - z^4,

z^8 + 2xy^3 - x^2yz - z^3,

xy^4z^4 + 1/2yz^7 + 3/2x^2y^2 - x^3z - 1/2yz^2,

y^4z^5 - y^4 + 2xy^2z - x^2z^2,

y^2z^6 + 1/2xz^7 - 1/2x^3y - y^2z + 3/2xz^2,

x^2y^4z^3 + 3y^3z^5 + 2xyz^6 - x^4 - 3y^3 + 4xyz )

-------------------------------

If one wishes to see the entire Gröbner basis with respect to the
elimination term-ordering for t used by the system in the previous
computation, then it suffices to execute the commands:

Use R ::= Q[xyzt], Elim(t);

Set Indentation;

GBasis( Ideal(t^31+t^6-x, t^8-y, t^10-z ) );

The first command defines R to be the polynomial ring in the in-
determinates x, y, z, and t with coefficients in the ring of rational

303



A.Capani, G.Niesi, L.Robbiano

numbers and makes R the current ring. Moreover the “ring modifier”
Elim(t) in the ring definition endows the ring R with an elimination
term-ordering for the indeterminate t.

After the execution of these commands, one gets the following re-
sult:

[ yt^2 - z,

y^5 - z^4,

t^6 + z^3t - x,

z^4t + y^2 - xz,

y^2t - xzt + y^4z,

xt^2 - x^2z^2t + xy^4z^2 + yz^5 - y,

z^8 + 2xy^3 - x^2yz - z^3,

xy^4z^4 + 1/2yz^7 + 3/2x^2y^2 - x^3z - 1/2yz^2,

zt^2 + 2xz^3t - y^4z^3 - x^2,

y^4z^5 - y^4 + 2xy^2z - x^2z^2,

xyz^3t - 1/2z^7 - 1/2x^2y + 1/2z^2,

x^2z^3t - 2/3xy^4z^3 - 1/3yz^6 - 1/3x^3 + 1/3yz,

x^2yt - z^2t - y^2z^3 - xz^4,

x^3t - yzt - x^2y^4 - y^3z^2 - xyz^3,

y^2z^6 + 1/2xz^7 - 1/2x^3y - y^2z + 3/2xz^2,

x^2y^4z^3 + 3y^3z^5 + 2xyz^6 - x^4 - 3y^3 + 4xyz ]

-------------------------------

You may see the term-ordering of the current ring by using the
function Ord. The command Unset Indentation prevents the system
from printing each entry of the matrix on a different line.

Unset Indentation;

Ord();

The result is

Mat[

[0, 0, 0, 1],

[1, 1, 1, 0],

[0, 0, -1, 0],

[0, -1, 0, 0]

]

-------------------------------

304



Some Features of CoCoA 3

2.4 Playing with Several Rings

Two or more rings may be defined. One of these rings is the current
ring, but the user may also compute in a ring different from the current
ring. To do this, the user must specify in which ring an expression
should be evaluated.

Example 2.8 In this example we define two different rings R and S,
and we choose R as the current ring. The coefficient ring of S is Z/5Z.
The ordering on R is DegRevLex by default. Then we define an ideal J
and a polynomial F in R. What we want to do is to print an expression
defined over S if some conditions hold in the ring R. More precisely: if
the normal form of F with respect to the ideal obtained by eliminating
t from the ideal J is zero, then we compute the expressions (a + t)I+1

in the ring S, for I = 3, 5, 7, 9.

S ::= Z/(5)[tabc],Lex;

Use R ::= Q[txyz];

J := Ideal(t^31-t^6-x, t^8-y, t^10-z);

F := y^5-z^4;

If NF(F, Elim(t,J)) = 0 Then

For I := 3 To 9 Step 2 Do

PrintLn;

S :: (a+t)^(I+1);

End

End;

The output is:

t^4 - t^3a + t^2a^2 - ta^3 + a^4

t^6 + t^5a + ta^5 + a^6

t^8 - 2t^7a - 2t^6a^2 + t^5a^3 + t^3a^5 - 2t^2a^6 - 2ta^7 + a^8

t^10 + 2t^5a^5 + a^10

-------------------------------

2.5 Functions

User defined functions may have any number of parameters of any type
and may return a result. They contain sequences of CoCoA commands.

305



A.Capani, G.Niesi, L.Robbiano

Calling a user defined function is achieved by typing its name followed
by a list of arguments, possibly empty, in parentheses. Recursive func-
tion are also allowed.

The following code provides a naive implementation of the primality
test for an integer.

Define Prime(X)

If Type(X) <> INT Then Return Error(’Expected INT’) End;

I := 2;

While I*I <= X Do

If Div(X,I)*I = X Then Return FALSE End;

I := I + 1

End;

Return TRUE

End;

In the following for-loop we use the function Prime defined above to
check the primality of the integer I; in that case we define a polynomial
ring P over the ring of the integers modulo I and compute an expression
in P .

For I := 3 To 10 Do

If Prime(I) Then

P ::= Z/(I)[xyzw];

PrintLn ’I = ’, I;

P :: (x+y+z+w)^I;

PrintLn

End

End;

The output is:

I = 3

x^3 + y^3 + z^3 + w^3

I = 5

x^5 + y^5 + z^5 + w^5

I = 7

x^7 + y^7 + z^7 + w^7

-------------------------------

306



Some Features of CoCoA 3

2.6 Indeterminates with Indices

The next two examples show how to use indeterminates with indices.

Example 2.9 This example produces the leading term ideal of the
ideal generated by three “generic” polynomials of degree 2 in the in-
determinates x[1], x[2], x[3], and x[4] with respect to the lexicographic
term-ordering.

Use R ::= Z/(32003)[x[1..4]],Lex;

F := DensePoly(2);

-- DensePoly(n) returns the polynomial which is the sum of

-- all the terms of degree n of the current ring

L := [ Randomized(F) | I In 1..3 ];

-- Randomized(F) randomizes the coefficients of F

LT(Ideal(L));

The output is:

Ideal( x[1]^2, x[1]x[2], x[1]x[3], x[2]^3, x[1]x[4]^2, x[2]^2x[3],

x[2]^2x[4]^2, x[2]x[3]^3, x[2]x[3]^2x[4]^2, x[2]x[3]x[4]^4,

x[2]x[4]^6, x[3]^8 )

-------------------------------

Example 2.10 In this example we compute the equations of the
sub-algebra generated by the 2 × 2 minors of generic 2 × N matrices
(N = 3, 4, 5).

The following function defines the sub-algebra.

Define Det_SubAlgebra(N)

L := [];

For C1 := 1 To N-1 Do

For C2 := C1+1 To N Do

P := y[C1,C2]-(x[1,C1] x[2,C2] - x[2,C1] x[1,C2]);

Append(L,P)

End

End;

Return Ideal(L)

End;

307



A.Capani, G.Niesi, L.Robbiano

The following function compute and prints out the equations of the
sub-algebra.

Define Det_SubAlgebra_Print(N)

J := Det_SubAlgebra(N);

PrintLn NewLine,’N = ’,N;

PrintLn ’Sub-algebra equations:’;

PrintLn Gens(Elim(x,J))

End;

The following for-loop calls Det SubAlgebra Print for N=3,4,5.

Set Indentation;

For N := 3 To 5 Do

S ::= Z/(32003)[y[1..(N-1),2..N]x[1..2,1..N]];

S :: Det_SubAlgebra_Print(N);

End;

The output is:

N = 3

Sub-algebra equations:

[ 0 ]

N = 4

Sub-algebra equations:

[ y[1,4]y[2,3] - y[1,3]y[2,4] + y[1,2]y[3,4] ]

N = 5

Sub-algebra equations:

[ y[2,5]y[3,4] - y[2,4]y[3,5] + y[2,3]y[4,5],

y[1,5]y[3,4] - y[1,4]y[3,5] + y[1,3]y[4,5],

y[1,5]y[2,4] - y[1,4]y[2,5] + y[1,2]y[4,5],

y[1,5]y[2,3] - y[1,3]y[2,5] + y[1,2]y[3,5],

y[1,4]y[2,3] - y[1,3]y[2,4] + y[1,2]y[3,4] ]

2.7 Rapid Prototyping

The CoCoA language can be used for “rapid prototyping” of algorithms.

308



Some Features of CoCoA 3

Example 2.11 The following is not an efficient algorithm for the
computation of the ideal of points, but it works.

The example shows an advanced use of error handling. The function
IdealOfPoint may return two different errors.

Define IdealOfPoint(P)

-- first check if the number of the coordinates is correct

If Len(P) <> NumIndets Then

Return Error(’Wrong number of indeterminates’)

End;

-- then compute the index of the first non zero component of P

F := 1;

While F <= NumIndets And P[F]=0 Do

F := F + 1

End;

-- if all components of P are 0 then reject P

If F>Len(P) Then Return Error(’Not a projective point’) End;

-- otherwise return the ideal of P

L := [ Indet(K)*P[F] - Indet(F)*P[K] | K In 1..NumIndets And K <> F ];

-- Indet(N) gives the N-th indeterminate of the current ring

Return Ideal(L)

End;

The function IdealOfPoints(L) returns the ideal of the points in the
list L through multiple calls to IdealOfPoint. If IdealOfPoint fails, then
the command “catch” intercepts the error, and IdealOfPoints immedi-
ately returns the error together with the bad point.

Define IdealOfPoints(L)

-- Ideal of N points in the array L

Catch I := IdealOfPoint(Head(L)) In E End;

If Type(E) = ERROR Then Print Head(L), ’: ’; Return E End;

Foreach P In Tail(L) Do

Catch J := IdealOfPoint(P) In E End;

If Type(E) = ERROR Then Print P, ’: ’; Return E End;

I := Intersection(I,J)

End;

Return I

End;

The following commands prepare a list of points [P1, ..., P5] in the
projective space P3.

309



A.Capani, G.Niesi, L.Robbiano

Use R ::= Q[xyzw];

A := [

[1,0,1,0];

[0,1,1,0];

[1,1,1,1];

[0,0,0,0];

[0,1,0,3]

];

The for-loop computes the ideal of the points [P1, ..., Pi], for i =
1, . . . , 5.

For I := 1 To Len(A) Do

IdealOfPoints(First(A,I));

-- First(A,I) gives the list of the first I elements of the list A

PrintLn;

End;

The output is

Ideal(y, - x + z, w)

Ideal(w, x + y - z, y^2 - yz)

Ideal(x + y - z - w, zw - w^2, y^2 - yz, yw - w^2)

[0, 0, 0, 0]: ERROR [stdin] Not a projective point

-------------------------------

Since P4 is not a projective point, the loop terminates with an error
generated by the function IdealOfPoint.

2.8 Minimal Free Resolutions

Example 2.12 In this example we present some new features avail-
able in the forthcoming version of CoCoA (see Sect. 3). We compute the
minimal free resolution of the ideal I generated by the 2 by 2 minors
of a catalecticant matrix A, using the interactive environment.

First we load the ‘gb’ package. Then we define the ideal I and start
the computation of its minimal free resolution using the Hilbert-driven
algorithm described in [CDNR].

310



Some Features of CoCoA 3

<< ’gb.pkg’;

Use R ::= Z/(32003)[z[0..3,0..3,0..3]];

A := Mat[

[z[3,0,0], z[2,1,0], z[2,0,1]],

[z[2,1,0], z[1,2,0], z[1,1,1]],

[z[2,0,1], z[1,1,1], z[1,0,2]],

[z[1,2,0], z[0,3,0], z[0,2,1]],

[z[1,1,1], z[0,2,1], z[0,1,2]],

[z[1,0,2], z[0,1,2], z[0,0,3]]

];

I := Ideal(Minors(2,A));

GB.Init_Computation(I,’Res_Hilbert’);

Now we ask the system to perform 1000 steps of computation and
then we explore the partial result.

GB.Steps(I,1000);

GB.Get_Res(I);

0 --> R^159(-5) --> R^189(-4) --> R^105(-3) --> R^27(-2)

-------------------------------

GB.Res_Report(I);

--------------------------------------------------------------

Minimal Pairs, : 754

Groebner Pairs : 48

Minimal (Type S) : 706

Minimal (Type Smin) : 453

Minimal (Type S0) : 253

H-Killed (Type S0) : 9

Hard (Type S0) : 244

--------------------------------------------------------------

Finally we complete the computation and see the result.

GB.Complete(I);

GB.Get_Res(I);

0 --> R(-9) --> R^27(-7) --> R^105(-6) --> R^189(-5) --> R^189(-4)

--> R^105(-3) --> R^27(-2)

-------------------------------

311



A.Capani, G.Niesi, L.Robbiano

3 Work in Progress and the Future

The next version (3.1) of CoCoA will present many new features.
We have designed an interactive environment which can be cus-

tomized in such a way that the user can, for instance, execute Gröbner-
related computations step by step and explore every partial result. In
particular it can be used with the new algorithms for the computation
of the minimal free resolution of a module [CDNR].

The Input/Output management has been completely redesigned.
It is now based on the notion of “device” which is characterized by its
type (file, string, . . . ) and the protocol for the communication with
the interface.

The CoCoA library has been organized into “packages”, a new fea-
ture of the language which allows better modularity and solves the
problem of “name clashes”.

Some work is in progress on the interfaces. The next version will
feature an enhanced Macintosh interface and a WWW interface. The
latter has been designed to allow the user to interact with a CoCoA
“server” using any web browser; see [CD] for more details.

In the near future many features are going to be added to the
system; in particular an advanced package of Linear Algebra, an im-
plementation of the Tangent Cone Algorithm, Gröbner bases over the
integers, homomorphisms, more general rings (for instance quotients
and localizations of polynomial rings), an interface to OpenMath [ADS]
(by means of a new protocol for the devices), and a graphical interface
for Windows 95.

References

[ADS] J. Abbott, A. Diaz, R. Sutor, A Report on OpenMath, SIGSAM
Bulletin, 30(1996), 21–24.

[AL] W.W. Adams, P. Loustaunau, An Introduction to Gröbner Bases,
Graduate Studies in Mathematics, AMS, 1994.

312



Some Features of CoCoA 3

[B] A.M. Bigatti, Computations of Hilbert-Poincaré Series, J. Pure
Appl. Algebra, to appear.

[BS] D. Bayer, M. Stillman, Macaulay : A system for computation in
algebraic geometry and commutative algebra, 1992. Available via
anonymous ftp from math.harvard.edu.

[CD] A. Capani, G. De Dominicis, Web Algebra, In Proc. of WebNet
96. Association for the Advancement of Computing in Education
(AACE) Charlottesville, USA, 1996.

[CDNR] A. Capani, G. De Dominicis, G. Niesi, L. Robbiano, Com-
puting Minimal Finite Free Resolutions, J. Pure Appl. Algebra, to
appear.

[CDR] M. Caboara, G. De Dominicis, L. Robbiano, Multigraded Hilbert
Functions and Buchberger Algorithm, In Y.N. Lakshman, editor,
Proc. ISSAC ’96, 72–78, New York, 1996. ACM Press.

[CNR] A. Capani, G. Niesi, L. Robbiano, CoCoA, a system for doing
Computations in Commutative Algebra, (1995). Available via anony-
mous ftp from lancelot.dima.unige.it.

[E] D. Eisenbud Commutative Algebra with a View Toward Algebraic
Geometry, Springer Graduate Texts in Mathematics 150, (1995).

[GMNRT] A. Giovini, T. Mora, G. Niesi, L. Robbiano, C. Traverso,
“One sugar cube, please” or selection strategies in the Buchberger
algorithm, In Editor Stephen M. Watt, editor, Proc. ISSAC ’91, 49–
54, New York, 1991. ACM Press.

[GN] A. Giovini and G. Niesi, CoCoA: A user-friendly system for com-
mutative algebra, In Design and Implementation of Symbolic Compu-
tation Systems – International Symposium DISCO’90, Lecture Notes
in Comput. Sci., 429, 20–29, Berlin, 1990. Springer Verlag.

[GPS] G. M. Greuel, G. Pfister, H. Schönemann, Singular:, A System
for Computation in Algebraic Geometry and Singular Theory. De-

313



A.Capani, G.Niesi, L.Robbiano

partment of Mathematics, 1995. Available via anonymous ftp from
helios.mathematik.uni-kl.de.

[GS] D. Grayson, M. Stillman, Macaulay 2, 1996. Available via anony-
mous ftp from math.uiuc.edu.

[T] C. Traverso Hilbert functions and the Buchberger algorithm, J.
Symbolic Computation. To appear.

Antonio Capani, Gianfranco Niesi,
Lorenzo Robbiano, Received 28 November, 1996
Department of Mathematics,
University of Genova
Via Dodecaneso, 35
I-16146 Genova, Italy

314


