Computer Science Journal of Moldova, vol.4, no.2(11), 1996

Implementation and usage of the Bergman
package shell

A .Colesnikov

Abstract

This article is the survey of author’s work on dialog shells
over interpreting systems. Aspects of the shell for the computa-
tional algebra package Bergman are presented: the solved task,
homogenization algorithm, input data checking, approaches to
implementation. The shell automatizes and strongly simplifies
data preparation and monitoring of the Bergman package.

1 Introduction

There is a lot of popular and frequently used batch or teletype-dialog
programs which were embellished by attaching to them correspond-
ing shells. Restricting ourselves by MS-DOS systems only, we have
DosShell, Norton Commander (and many others) for MS-DOS, Shez
(and many others) for archivers, TEXshell and Scientific Word for TEX,
etc.

We present here a shell for a computational algebra package called
Bergman [5, 7, 8]. Bergman was developed in the Stockholm University,
Sweden, by J.Backelin to calculate the Grobuner basis in the commu-
tative and non-commutative cases. The package was implemented in
the Portable Standard Lisp (PSL), firstly under UNIX. Then efforts
were applied to further develop the implementation in the cooperative
project with the Academy of Sciences of Moldova. The package was
successfully transferred to MS-DOS. Now the project is continuing.

Engineering aspects of the Bergman shell are discussed in [1]. An-
other example of an interpreter shell may be found in [4].

(©1996 by A.Colesnikov

260

The Bergman package shell

2 Algebraic task solved by the Bergman pack-
age

We give here only a brief survey of the algebraic backgrounds. See [2,
pp. 2767, 161-163] for more details and further refernces.

2.1 The non-commutative case

Let A = K(X) be a free associative algebra with the unity, and let S
be the set of all words in the alphabet X. The empty word A € S is
identified with the unity 1.

If f,g € S then we denote by degy g the number of different oc-
curences of the word f inside the word g. E.g., deg,, zzx = 2,
deg,, yz = 0. It F¥ C S is a set of words then we denote degpg =
> rerdegyg. In particular, degy g = |g| is the length of the word g.

Let us assume that the set of words S is well ordered, namely:

e every two different words are comparable;
the induction is possible in order >;
the smallest word is always the unity A;
the order > is preserved after multiplication (1).

f>gh>k = fh>gkihf>kg (1)

Onune such order is the homogeneous lexicographic order when words
are at first ordered by their lengths and words of the same length are
ordered lexicographically.

Let us denote by @ the leading word in the order > of the non-zero
element u € A. We can now extend the word order > to a partial
order on A: u,v € A u > v & 4 > 0. If U C 2, then we define
U ={i: ueU}. Our last definition of degree is deg; v = deg 0.

E.g., degy v is a usual degree (power) of the polynomial v. Another
example:

3 _
deg:r2—:v,xy—y:1: Ty—x =3

Let I be an ideal of the free algebra 2.

261

A .Colesnikov

A word s € S is called normal relative to the ideal I, if s is not the
leading term of any element in I. Let N be the linear hull of the set of
normal words. The following theorem is true [2, p. 28§]:

Theorem 1 The following direct sum decomposition of vector spaces
holds: A =N & 1.

Because of this theorem, IV is called the normal complement of the
ideal I. For an element u € 2, its normal form @ is the image of u by
the natural projection 2 — V.

If we define a new operation x on N by s xt = st then N with
this introduced operation is isomorphic to the factor algebra A = 2/I.
To work with A within the free algebra 2 it is necessary to be able to
find normal words and to reduce any word to its normal form. This
problem is algorithmically unsolvable. A very effective approach to its
solution in many important cases is the use of the Grobner basis.

A subset G of the ideal I is called a Grdbner basis if (Vv €
I) deg;v > 0. E.g., the ideal I itself is a Grobner basis. The fol-
lowing is true:

Theorem 2 A word s is normal if and only if degg s = 0.

There are many Grobner bases, however there is always a minimal
Grébner basis no proper subset of which is a Grobner basis. If G is a
minimal Grobuer basis, then (Vv € G) degg, v = 0 (for elements of
G, none of leading words is a subword of another leading word). The
minimal Grobner basis is called reduced if every v € G is represented
in the form % — 0. The reduced Grébner basis is uniquely determined.

Let us assume that the ideal I is generated by the set of elements
R. The following three-stage process permits to get a minimal Grobner
basis starting with R.

Step 1: Normalization. Every element v € R is replaced by its
proportional of the form o — w (i.e., the coefficient of the leading word
is made into 1). After normalizing all the elements from R, perform
Step 2.

262

The Bergman package shell

Step 2: Reduction. Let u and v be such normalized elements
that deg, u > 0. Then @ = gth. The reduction is the substitution of u
by the result of the normalization of u — gvh. If the reduced element
is 0 then we remove it. Otherwise, the reduced element is smaller than
u (2).

u=14—w=goh—w; v=">0—1; = uis replaced by w — glh (2)

It guarantees the stop of the reduction process. If all possible reductions
are fulfilled, perform Step 3.

Step 3: Composition. Let v and v be such normalized elements
that some ending of 4 is the beginning of 4. Then (Jy # 1) 4 = xy, ¥ =
yz. Then we add to R a new element obtained by the normalization of
xv —uz (3).
u=t—w=ay—w;,v=0—l=yz—1; = 2v—uz = wz —«l is added

(3)
Even one pair may produce several compositions. If all possible com-
positions are fulfilled, return to Step 2.

The process may be infinite, but the result is a minimal Grébner
basis. The minimal Grobuner basis can be easily transformed to the
reduced one by normalizing its elements and reducing all non-leading
words with the aid of the basis itself into their normal form.

2.2 The commutative case

In commutative case, the definition of the Grobner basis is slightly
different because the above defined basis may remain infinite. 2 is now
not a free algebra, but the algebra of polynomials K|z, ...,z,]. Its
basis is the ordered set of monomials z{* - - -z,

The requirements for the order > are not so strong, namely:

e the unity is the smallest element;

e the order is preserved after multiplication: f > g = fh > gh.

The notion of degree is not necessary, and we use divisibility instead.
If A = K[X]/I then a normal monomial is a monomial not equal to
any of leading monomials of the elements of I. K[X] = N @ I, where

263

A .Colesnikov

N is the linear hull of the set of normal monomials. A subset G C I is
called the Grobner basis of the ideal I if the leading monomial of every
element from [is divisible at least by one monomial from the set F
of leading monomials of elements from G. A minimal Grobner basis is
always finite in the commutative case.

2.3 The importance of the calculation of the Grobner
basis

The calculation of the Grobuer basis, even the infinite one, permits
to solve many algebraic problems and has many applications, e.g., in
theoretical physics. Investigations in the area are strongly supported
from many sources. To understand it, let us suppose that the we are
to solve a system of non-linear polynomial equations r; = 0, where
ri € K(X). Let R = {r;}. You can see that the above described process
is analogous to the Gaussian method of solving linear equation systems
[2, p. 42]. Calculating the the Grobner basis we can find the exact
number of solutions (it is infinite if the algebra A = /I is infinite),
and to find solutions themselves. The process may be performed by a
computer program. Moreover, in the commutative case the process is
always finite.

2.4 Homogeneity, Hilbert and Poincaré series, Anick’s
resolution

If the factor-algebra A is definer by homogenoeus relations, then the
elements of a reduced Grobner basis will be also homogeneous. In that
case the algebra A may be presented as the direct sum of homogeneous
components A = @y° A,. Homogeneous components A; correspond to
the normal words of the same length, and

AiAj C Ay, (4)

Such an algebra A is called a graded algebra. If all the components
A; are finite dimensional, we can consider the formal series H4(t) =
>0 (dim A;)t', which is called the Hilbert series of the algebra A.

264

The Bergman package shell

For any graded algebra, it is possible to generalize the notion of de-
gree in such a way that the algebra can be obtained from homogeneous
relations. If the degree is the word legnth, the graduation is called
natural. The graded algebra A is supposed to be an assosiative algebra
with unity, with 1-dimentional component Ay generated by the unity.

The calculation ot the Hilbert series is very useful in the infinite
(non-commutative) case. Other useful constructions are the Anick’s
resolution and the Poincaré series. Due to the volume of the corre-
sponding definitions, we can only refer here to [2, pp. 43—-62].

In the Bergman package, the defining relations should always be
homegenous.

3 The purpose of the shell

The main goal of the Bergman shell was to simplify work with the
Bergman package.

The Bergman package has three LISP function of the uppermost
level which perform typical calculations in three cases. These three
function are composed from about of twenty function of the lower level.
In some cases the user may wish to compose his own upper level func-
tion from those twenty. There is a lot of internal variables and flags
whose values control modes of the calculation.

The used software, Reduce+PSL, is a teletype-dialog system for all
platforms. So, to perform a calculation with Bergman, the user is not
only to prepare the source data, but to type manually all necessary
flags and variables assignments, then, possibly, to enter a new upper
level function definition, and, finally, to call the function to solve his
problem.

In MS-DOS case, the work was partially automatized with the
Bergman shell. Using the shell, the user has advantages of the intuitive
and simple interface, when he clicks buttons and check boxes instead of
entering LISP commands (see Sec. 4.3 below). The DOS-LISP interac-
tion was implemented in the first shell version through disk files. It was
the compromise solution chosen for its simplicity. With it, the possi-
bility to compose own procedures from the intermediate level functions

265

A .Colesnikov

still exists (see Sec. 4.3, page 274 on the Task: Run batch menu item).
But the user has no possibility to interact with the system during the
LISP calculations.

3.1 Input data checking

The input data for Bergman are the polimomials making up the restric-
tion set. They may be represented in two different forms, named LISP
and MAPLE (algebraic). The output may be presented in three forms,
LISP, MAPLE, and MACAULAY. In MAPLE and MACAULAY forms, the polyno-
mials are distributed, i.e., written without parentheses. The Bergman
shell makes some checking of input data.

3.1.1 Commutative case

Suppose we have a commutative polynomial in n variables:

T n
P(U17"'7UH)ZZCiHUTi‘7 (5)
=1 j=1

where c1, ..., ¢, are integer coefficients, vy, ..., v, are variables, and
m;j are non-negative integer exponents.

The LISP representation of the commmutative polynomial (5) is a
list of r elements each of them is a list of n 4 1 integers:

(cr m11 oo mip) .. (eemgr .. Mpn))
The MAPLE representation of the same polynomial in output is
C1¥V1 "M% ... %0, " Mp + ...+ Cp*¥01 T M1 * L. *0, TNy

Occurences of *v;70 and of ~1 are omitted. + is omitted before -.
If a coeflicient ¢; = 1, it is omitted with the following *.
In the MAPLE input additional variations are allowed:
e xx may be used instead of ~;
e blank space may be inserted, except within identifiers, integers,
or the combination *x*;

266

The Bergman package shell

e exponents 0 and 1 may occur;

e the order of the variables in a monomial is arbitrary.

The variable names vy, ..., v, may be any valid LISP identifiers.
In Bergman implementation, uppercase and lowercase letters are not
distinguished. Therefore, to use in a LISP identifier a lowercase letter

or a specail sign like * or ~ it is necessary to precede such symbol by a
'

For example, if we have the following commutative polynomial in 3
variables z, y, and z:

zt — 232 — bry’z + 6y%2% — 18223

its LISP representation is:

((1400) (-1301)(5121) (6022) (-1810 3))
and one of possible MAPLE representations is:

X**4—Xk k¥ Z—-DF Xk Yk K2 Z+Gkyhk Dk Z k%2 -1 8k x*kZ**3

The output MACAULAY representation is similar to MAPLE, but with-
out * and ~:

x4-x3z-5xy2z+6y2z2-18xz3

3.2 The polymomial homogeneity

The polynomial is to be homogeneous, that is, the following equalities
are to be satisfied (d is the degree of all monomials):

n n
d:Zmlj:...:me’ (6)
j=1 Jj=1

In the commutative case, the non-homogeneous polynomial may be
homegenized. Suppose that (6) does not hold:

n
dizzmij; d = max(dy,....d,) (7)
j=1

267

A .Colesnikov

To homegenize the polynomial, it is necessary to introduce a new

variable v,41 and to replace the polynomial P(vy,...,v,) by [2, p.
164]:
v v
Pi(vy,...,vp41) = vi P(——, .., —) (8)
Un+1 Un+1

The following algorithm (Fig. 1) in Common Lisp [9] may be pro-
posed for a LISP form polynomial to homogenize it.

1 (DEFUN SUMCDR (X) (APPLY ’+ (CDR X)))

2 (DEFUN MINMAX (X) (LIST (APPLY ’MIN X) (APPLY ’MAX X)))

3 (DEFUN HOMOMONO (MONO)

4 (SETQ MONO (APPEND MONO (LIST (- DEGREE (SUMCDR MONO0)))))
5)

6 (DEFUN HOMOGENIZE (POLYNOMIAL)

7 (PROGN

8 (SETQ MM (MINMAX (MAPCAR ’SUMCDR POLYNOMIAL)))

9 (COND

10 ((= (FIRST MM) (SETQ DEGREE (SECOND MM))) POLYNOMIAL)
11 (T (MAPCAR ’HOMOMONQ POLYNOMIAL))

12)

13)

14)

(setq testpolyl ’((1 2 0)(-2 1 1)(1 0 2)))
; XT2 - 2%xxy + y©2
(print (homogenize testpolyl))
((120(-211)>1 0 2)
; The result is equal to the argument

(setq testpoly2 ’((1 2 1)(-2 1 1)(1 0 1)))
; x”Q*y - 2*x*y +y
(print (homogenize testpoly2))
(12102111101 2))
3 XT2%y - 2%xky*z + y*kz"2

Figure 1:Homogenization of a commutative polynomial in the LISP
form

The function SUMCDR (line 1) calculates the sum of the elements of

268

The Bergman package shell

the list X except the first one.

The result of the function MINMAX (line 2) is the list of two elements.
The first element of the result is the minimal element of the argument
list X, the second one is the maximal element of X.

The function HOMOMONO (lines 3-5) homogenizes a monomial MONO
by appending to the end of its representing list the difference of DEGREE
and the sum of powers of variables.

The HOMOGENIZE function is defined in lines 6-14 of the algorithm.
In line 8, the function SUMCDR if applied through the standard function
MAPCAR to all elements of the POLYNOMIAL list, obtaining the list of pow-
ers of monomials. Then the minimal and maximal powers are obtained
by MINMAX. The conditional calculation checks firstly the equality of
minimal and maximal of monomial powers (line 10). As a side effect,
the maximal monomial power is assigned to the variable DEGREE. If the
equality holds, the argument POLYNOMIAL is returned untouched as the
result. Otherwise (line 11) the function HOMOMONO is applied to each
monomial of the argument, and the list of resulting monomials with
one additional element is the final result.

For simplicity, some details of real algorithm are omitted in line 11.
They are the generation of a name for a new variable, the notification
for the user, the incrementing of the internal variable EMBDIM and other
corresponding changes.

The algorithm was implemented on a computer. Example results
are shown on Fig. 1.

3.2.1 Non-commutative case

In the non-commutative case, the following homogeneous polynomial
of degree d

T d
P=% ci[]vy 9)

i=1 j=1
where v;; € X are variables, is represented in the LISP form as a list
of lists of integers of length d + 1:

((Cl mi1 ... ’I’I’le) (CT’I’I’LH ’I’I’ern))

269

A .Colesnikov

Here 1 < m;j < n are indices of variables in their order by increas-
ing significance in the list (vy ... vy).
The MAPLE representation of the same polynomial in output is

C1¥V11% ... XV + ...+ CpXUp X .. ¥y,

Occurences of *v;70 and of ~1 are omitted in MAPLE output. + is
omitted before -. If a coefficient ¢; = 1, it is omitted with the following
.

In MAPLE input format, the identical sequential factors may be col-
lected and represented through exponents. E.g., if the order of three
variablesis (x y z), and the LISP formis ((6 1 1 1 3 2 2 1)), then
the MAPLE output is 5*x*x*x*z*y*y*x, but it may be typed in input
as SxxkkJkzkykkkx,

4 The presentation and behavior of the Berg-
man shell

4.1 The shell running loop

The Bergman shell is launched from the PSL interpreter. The sequence
is as follows:

1. The Reduce interpreter is started consuming a standard script as
the input program. This input script contains Reduce commands
switching to PSL mode, the LISP function DOSSHELL definition
and the infinite LISP loop calling this function.

2. The PSL calls DOSSHELL.

3. Through the MS-DOS PSL extension — the SYSTEM function — the
MS-DOS shell executive module BERGM_SH.EXE is started under
MS-DOS. It is important that in the moment the PSL interpreter,
the compiled image of the BERGMAN package and all memory
allocated for them is used. We have MS-DOS and the Bergman
shell in the lower memory and the package waiting in the upper
(extended) memory. For all shell operation we have no more than
400 Kbytes.

270

The Bergman package shell

4. The shell is utilized by the user to prepare LISP input files with
function calls, and data files with polynomials.

5. The shell finishes its work writing prepared files to the disk and
rerouting the PSL interpreter input from that file containing func-
tion calls.

6. The interpreter interprets newly created file and calls functions
solving the algebraic task. The LISP teletype-mode output is
seen on screen.

7. The interpreter input from files is nested. Finishing the algebraic
calculations, it returns to the infinite loop calling shell (step 2).

8. To break the loop, the user may, within the shell, press the
+ key combination or to click with the mouse the Exit
menu item. The shell writes to the disk the program of the single
LISP command ‘(QUIT)’. This command is interpreted on step
6 and forces the loop break by simply stopping the interpreter.

(During the LISP interpretation, the user may press +
to stop.)

4.2 Usual menu items

The Bergman shell was implemented using Borland Pascal with Objects
7.01 and its supplied package Turbo Vision [6]. Its external represen-
tation is usual for such programs.

You see on the screen the shell desktop between the menu bar at
the top and the status line at the bottom. The menu items may be
selected by keys or mouse. We have six usual menu items (File, Edit,
Search, Options, Window, and Help), and three specific items (Task,
View, and Additions).

Through the File menu item we can open files for editing, saves
files, change the current directory, exit temporarily to MS-DOS, etc.
The File: Exit item means writing the LISP program ‘(QUIT)’ as the
next interpreter input before terminating the shell (see step 8 above).
The exit from the shell to LISP calculations (not stopping the inter-
preter) is performed from another item (see below).

We had used a standard Turbo Vision implementation of the File

271

A .Colesnikov

item. Our experience shows that in many cases the desired extension
to this submenu is File: Erase to delete a file from the disk.
Other usual menu items do not need any comment.

4.3 Specific menu items and their functions

To define the solved task, the user is to pass three menu items —
Task: Options, Task: Flags, and Task: In/0Out.

When the user selects the Task: Options menu item, he sees the
Options dialog. This dialog contains the calculation defining panel —
the Commutativity radio buttons, the Strategy radio buttons, and the
Poincaré-Betti and Hilbert series check box. Combining these setting,
the user selects one of the three possible calculations:

Simple Commutative or non-commutative algebra, ordinary Buchber-
ger’s algorithm, no Poincaré-Betti and Hilbert series.

StagSimple Commutative algebra, staggered linear basis algorithm
with substance (SAWS), no Poincaré-Betti and Hilbert series.

NcPBH Non-commutative algebra, Buchberger’s strategy, double Poin-
caré-Betti and Hilbert series of the associated monomial ring cal-
culation.

For the Simple calculation the user is to select the Ordinary Strat-
egy not checking PBH Series box. He can select any Commutativity
— commutative with lexicographical order, commutative with reverse
lexicographical order, and non-commutative.

For the StagSimple calculation the user is to select the SAWS
Strategy, commutative (lex or rev-lex) Commutativity not checking
PBH Series box.

For the NcPBH calculation the user is to select the Ordinary Strategy,
non-commutative Commutativity, checking PBH Series box.

The dialog automatically blocks illegal calculation option combina-
tions. To change previously set options, the user may need to mark
them in some order. E.g., if he had solved the StagSimple problem
before, he had marked commutative (lex or rev-lex) and SAWS but-
tons, not marking PBH Series box. In the case the non-commutative
button and PBH Series box are disabled, and the user can not mark

272

The Bergman package shell

them. To select the non-commutative variant, he marks at first the Or-
dinary Strategy — then non-commutative button will be enabled (but
PBH Series box remains disabled until the user does select the non-
commutative radio button).

The selected calculation mode is indicated in the lower-right corner
of the screen (in the status line).

Other elements of the Task: Options dialog are independent and
may be selected in any order.

The Task: Flags dialog permits to define desired flags. Depending
of the calculation mode, some flags may be disabled. Except specific,
there are non-specific flags, e.g., if the user wants verbose garbage col-
lection, he marks Verbose GC checking box. It corresponds to the
standard PSL flag ‘GC’.

The last dialog is the Task: In/Out dialog where the user points
to or enters input and output information. Depending of the calcula-
tion mode, there are three different dialogs — Simple defines only one
output result, StagSimple — two, and NcPBH — three. Results may be
directed to the file, or to the screen. The input may be written directly
on the screen, or taken from the file. To define this the user selects
the corresponding button and then presses the key, or clicks the
onscreen — with the mouse.

In any file selection dialog the user has the possibility to open file
for editing. Closing the corresponding edit window he returns to the
same file selection dialog.

Having selected the input and output modes and entering data the
user can press of click the Run button in the Task: In/Out
dialog to start the Bergman calculation. It means that the shell writes
on the disk the LISP program. E.g., the program contains a line ‘(ON
flag name)’ or ‘(OFF flag name)’ for each flag flag name meaning-
ful for the chosen calculation mode, depending of the settings in the
Task: Flags dialog. Then the shell reassigns the PSL input from the
formed file and terminates.

When the calculation is finished and the shell is reentered, the user
can view the LISP echo screen pressing +, and view the output
results through the View menu item.

273

A .Colesnikov

The user can prepare the whole task in a single file and run it
through the Task: Run batch menu item.

The Additions menu item calls additional programs not included
in the Bergman package. One such program is the Anick’s resolution
calculation [3]. The algorithm was developed by V.Ufnarovsky and
implemented in C++ by postgraduate student A.Podoplelov. It is
the test variant which had shown satisfactory results (see [8]) and is
supposed to be rewritten in LISP to be included into the Bergman
package itself. The rewriting would enlarge available memory, would
permit to use intermediate results and the Grobner basis from the LISP
memory, and has other advantages.

The Anick’s resolution program has its own parameters and com-
mand language. The Additions: Anick’s resolution dialog has an
additional window showing the formed command sequence whilst the
user clicks buttons and fills input fields. E.g., if the user presses the
Derive all chains button and then fills the input order field with the
number 5, he sees in the command sequence the ‘d 5’ command added
to calculate derivations of order 5 chains. The user may edit the formed
command sequence directly in its window. This property was found a
very useful and demonstrative one so it is planned to implement such
window for the main formed LISP program.

Acknowledgments

The author thanks J.Backelin, S.Cojocaru, J.-E.Roos, and V.Ufnarov-
ski for their help and fruitful discussions.

This work was partially supported by the Royal Swedish Academy
of Sciences, project number 1502, and by the International Association
for the promotion of cooperation with scientists from the independit
states of the former Soviet Union, grant number INTAS-93-0030.

274

The Bergman package shell

References

[1]

2]

[6]

[7]

[9]

A.Colesnikov, L.Malahova. The Bergman package shell: an exam-
ple of interface to the interpreting system. // Computer Science
Journal of Moldova, vol. 3, nr. 2 (8), 1995.

V.A.Ufnarovskij. Combinatorial and Asymptotic Methods in Al-
gebra. / In: A.I.Kostrikin, I.R.Shafarevich (Eds.). Algebra VI. —
Encyclopaedia of Mathematical Sciences, v. 57. — Berlin, Heidel-
berg, New York: Springer-Verlag, 1995.

D.Anick. On the homology of associative algebras. // Trans. Am.
Math. Soc., v. 296, nr. 2, 1986, pp. 87-112.

A.Colesnikov, L.Malahova. A portable interpreter shell and its
implementation for a perspective computer. / In: Computer soft-
ware and programming (Mathematical Investigations, issue 115).
Chiginau, 1990, pp. 92-96 (in Russian).

J.Backelin, R.Froberg. How we proved that there are exactly 924
7-roots. / S.M.Watt, ed. Proc. ISAAC’91, ACM, 1991, pp. 103
111.

Borland Pascal with Objects 7.0. Turbo Vision Version 2.0 Pro-
gramming Guide. — Borland International, Inc., 1992.

J.-E.Roos. A computer-aided study of the graded Lie algebra of a
local commutative Notherian ring. // J. Pure Appl. Algebra, v.
91, 1994, pp. 255-315.

S.Cojocaru, V.Ufnarovski. Noncommutative Grobner basis,
Hilbert series, Anick’s resolution and BERGMAN under MS-DOS.
// Computer Science Journal of Moldova, v. 3, nr. 1 (7), 1995,
pp- 24-39.

Guy L. Steele. Common Lisp the Language. — 2" edition . — Digital
Press: Woburn, MA, 1990.

275

A .Colesnikov

[10] Borland® Pascal with Objects. Version 7.0. User’s Guide. - Bor-
land International, Inc., Scotts Valley, CA, 1991.

Alexander Colesnikov (b.1947) is a scientific re-
searcher at the Institute of Mathematics of Academy of
Sciences of the Moldova Republic. He had graduated

from the Moscow State University. His scientific inter-

ests include compiler construction, computational alge-
bra, natural language processing, computer text process-
ing and computer typography, object-oriented program-

ming, software engineering, man-computer interfaces. He

had published 35 scientific papers and co-authored of the
manual “ETEX prin exemple” (“ITEX by example”, in
Romanian).

Phone: (373-2) 738058

E-mail: kae@Qmath.moldova.su

276

