Computer Science Journal of Moldova, vol.4, no.1(10), 1996

Parallel logical control algorithms: verification
and
hardware implementation

A.Zakrevskij

Abstract

A formal language (PRALU) has been proposed for repre-
sentation of parallel algorithms for logical control. The paper
contains a short description of its syntax and semantics, meth-
ods of checking PRALU-algorithms for correctness and methods
for their hardware implementation. They include using suggested
parallel automata as a standard form of algorithms, coding their
partial states by ternary vectors, and obtaining appropriate min-
imized systems of logical equations of the sequent type. The lat-
ter ones could be easily implemented by logic nets with matrix
structure.

1 Introduction

A proper interaction between components of computers, industrial sys-
tems, communication nets, robotic complexes, etc., can be provided by
logical control devices. They are discrete dynamic systems, exchang-
ing information with controlled objects by means of logical variables.
Generally speaking, these devices can be looked at as asynchronous
systems controlling parallel and concurrent processes. They are diverse
and their design implies the solution of numerous hard combinatorial
problems.

It is natural to begin the design of these devices with formulating
a logical control algorithm, deriving it from a notion of the behaviour

(©1996 by A.Zakrevskij



A .Zakrevskij

of a system that has to be put under control. The formal language
PRALU has been proposed for the description of such algorithms [1,2].

Any logical control algorithm is represented in PRALU as a set of
chains — linear algorithms composed of waiting and acting operations.
These chains can be fulfilled in parallel and interact both directly, with
the help of a mechanism analogous to the Petri net [3], and information-
ally, by means of some common Boolean variables. The representation
of hierarchical structures is possible.

The elaboration of logical control algorithms entails their verifi-
cation. The verification is decomposed into the syntax checking and
the testing for correctness carried out automatically, and also seman-
tic testing in interactive mode when the algorithm is simulated on a
computer. The check-up of correctness is reduced to a great extent to
that of safety and liveliness of ordinary Petri nets, which turn out to
be extended nets of free choice [4] — under the restrictions adopted in
PRALU.

Rather complicated problems arise when synthesising switching cir-
cuits implementing parallel logical control algorithms. Their solution
is facilitated by preliminary transformation of control algorithms to
“automata” representation using traditional notions of state and tran-
sition. But the classical finite automaton turns out to be inadequate,
and that is why the notion of the parallel automaton (a peculiar hybrid
of the sequent expressions with the Petri net) has been introduced.
A parallel automaton can find itself simultaneously in several states
(partial), and the transitions are defined not between single states but
between some groups of states. Such a model is more compact in prac-
tical situations compared with the classical one and principally cannot
be reduced to the latter in case of the asynchronous control.

The well-known problem of state assignment is much more difficult
in the case of parallel automata. It has been reduced to coding of
partial states by ternary vectors of minimum length, in such a way that
parallel states (that can exist simultaneously) have to be represented
by compatible (not orthogonal) vectors.

Having coded the states of a parallel automaton we get a system of
sequents k; - &} with elementary conjunctions k; and k}. Each sequent

4



Parallel logical control algorithms: verification and...

is interpreted as follows: if at some arbitrary moment k; = 1, then
immediately after that k} = 1 has to be satisfied.

Going further, we have to implement this system of sequents, syn-
thesising a corresponding switching circuit in some basis, for instance
in PLAs, that are the most convenient for that purpose.

2 PRALU language

PRALU language has been proposed for the description of asynchronous
parallel logical control algorithms in terms of input and output Boolean
variables of control devices.

Two operations, action and waiting, defined on an elementary con-
junction k, are the main elements of this language. The action oper-
ation — k assignes to the variables of k£ such values that satisfy the
equation £ = 1. The waiting operation —k does not change any val-
ues but waits until £ becomes equal to 1, and only then its fulfillment
terminates.

The sequences of action and waiting operations are considered as
linear algorithms. In general case, a logical control algorithm is pre-
sented as an unordered set of expressions «;, or chains, of the form

pi s —ki i = g,

where /; denotes some linear algorithm (in particular, it may consist of
only one action operation or be “empty”), and p; and v; respectively
denote the initial and terminal chain labels represented by some subsets
of the set M = {1,2,...,m}.

The chains are controlled by means of the variable starting set N
which takes as its current value IV; some subset of the set M. If the
condition (u; € N;)&(k; = 1) is satisfied at some instant ¢, the chain
a; will be started. In that case p; is expelled from Ny, then the linear
algorithm [; is executed and, in conclusion, the transition operation
— v; will be performed adding the set v; to the set N. As a result, the
new value of N becomes equal to (N¢\u;) Uwv;. The initial value Ny,
which is one-element as a rule (for example, Ny = {1}), is assigned to



A .Zakrevskij

the set N when starting the algorithm. Before the algorithm is started,
all chains are assumed to be passive (i.e. they are not being performed).

This mechanism is strong enough for alternative branching and for
making the processes concurrent, for the convergence of alternative
branches and for the merging of concurrent ones. The chains which can
be performed simultaneously are called parallel chains; the algorithm
with such chains is also called a parallel one.

Alternative branching is ensured by the following constraint intro-
duced into the language:

(¢ # 5)&(ps N pj # 0) — (ki&k; = 0).

For convenience, chains with similar initial labels are united in a sen-
tence wherein the chain-alternatives are written one under another.

The other constraint

(i # 7)&(pi Mg # 0) — (i = py) (1)

simplifying the interpretation of algorithms follows from the graphical
definitions, which facilitate application of PRALU language in engi-
neering practice.

It is desirable to single out for further consideration the two-terminal
algorithms (with initial and final values of the starting set), and also
cyclic algorithms to which two-terminals are easy to reduce. The two-
terminals may be used as blocks in hierarchical algorithms (instead of
some action operations); the cyclic algorithms are widely used when
representing production processes and are of convenience in the inves-
tigation of the algorithm correctness problem.

We shall illustrate the PRALU language with an example of a cyclic



Parallel logical control algorithms: verification and...

algorithm

[a—y

r—u—ab—u— 2.3
2: —tw —bc—W—b—C— 2
—v = ac— 4.5
3:—uv —-d—6
4: —uv—>a—u—>a—4
—u—ab—>7
9: —vw — ¢ — 8
6.7.8: = ad—w — 1

The algorithm is initiated by the assignment of the value {1} to the
starting set N. First the chain 1 is executed: we wait until the input
Boolean variable u takes the value 1, then give the same value to the
output variables a and b, then wait for the event © = 0, and after that
split the process starting both the sentences 2 and 3 simultaneously.
The sentence 2 contains two chains, beginning with the waiting opera-
tions —vw and —wv. Ounly one of those chains is initiated — immediately
after the condition vw = 1 or v = 1 is satisfied. The other sentences
are executed in the same manner when started. At last the chain with
the initial label 6.7.8 is executed — after the fulfillment of the chains
with the final labels 6,7 and 8. After that the process is repeated.

3 Parallel automaton

When solving a number of problems pertaining to the analysis of hier-
archical algorithms and the synthesis of some structures realizing them,
it is expedient to reduce the algorithm (by cutting “long” chains) to a
standard form in which all chains look similar:

wi s —ki =k — v

Presented in such a form, PRALU-algorithm may be considered as an
automaton. It is not however the traditional sequential automaton,
but the parallel automaton with partial states (these are the elements
from M) that can find itself in several of these states at the same time

[5]-



A .Zakrevskij

The chains are interpreted as follows: if the automaton is in the
states listed in the label p; (and, perhaps, in some others) and if the
variables in the conjunction term k; assume the values at which &} = 1,
then the variables from the term k' accept the values at which &} =1,
and the states forming the label p; are substituted by the states from
the label v;. Thus a transition is made between groups of states rather
than between separate states. The states not listed in p; and v; will
not be affected by any transitions: if the automaton is in any of them,
it will remain in it, otherwise it will not enter this state.

This model differs basically from the classical sequential automaton
model. In the case of synchronous interpretation, it may be reduced to
the latter, yet practically this is not desirable: for example, a parallel
automaton with 3n partial states may generate a sequential automaton
with 3" states (when the transition graph of the parallel automaton
consists of n parallel chains, having 3 partial states each). In the case
of asynchronous interpretation, reflecting the local interactions between
some variables (these interactions can take place when the transients
corresponding to the change of values of other variables have not yet
been attenuated) such reduction is not possible at all [5].

Two mechanisms of interaction between chains are used in the
model.

One of them is a simplified version of the ordinary Petri net [3] and
is called a-net. It is defined as a system consisting of the set Ny and
the unordered set of pairs p; — v(i = 1...n; Ng, ui, v; € M), obeying
the constraint (1). By analogy with the Petri net it is interpreted as
a dynamic model with the set of places M, the initial state Ny and
a current state IV; that is changeable on transitions p; — v; (denoted
hereinafter as 7;). It is supposed that transitions 7; may occur, one by
one, when the conditions p; C N; are satisfied, and that execution of
7; consists in replacing the current value Ny by (NV;\p;) U v;.

Let us call an a-net safe if for any reachable (from Nj) state Ny
and for any transition 7; the condition

(i © Ny) = ((Ne\pi) Ny = 0)

is satisfied.



Parallel logical control algorithms: verification and...

The following theorem establishes a relationship between a-nets
and expanded nets of free choice (EFC-nets) investigated by Hack [4].

Theorem 1 Safe a-nets are equivalent to safe expanded nets of free
choice.

The second mechanism of interaction between chains of a parallel
automaton is presented by pairs of operations —k; — k. Such a pair
is similar to the sequent k] F k!, specifying the condition-event rela-
tionship between simple events represented by the conjunction terms &
and kI': the event k] gives rise to the event k). A system of such pairs
may be interpreted as a simple sequent automaton [6]. Obviously, the
chain «; is able to control the chain «; if o} N o} # 0, where o} and
o} denote the sets of Boolean variables in k;' and kj, respectively. If
of Noj # 0 and of N o} # 0, then the chains «; and «; will be able to
carry on a dialog.

Therefore, the parallel automaton is a peculiar combination of two
formal tools: the a-net and the simple sequent automaton. The sec-
ond one is more powerful, and the information contained in an a-net
can easily be “pumped” into a system of simple sequents. However,
this operation is essentially complicated when the system has to be
minimized.

4 Correctness verification

Of great importance is the verification of algorithm correctness, i.e. its
quality which may be established formally, without knowing the specific
purpose of the algorithm and just on the basis of general requirements
to the algorithms of the class under consideration.

Correctness of parallel logical control algorithms was defined in [7]
as the combination of five qualities: consistency, persistency, irredun-
dancy, recoverability and self-coordination.

The algorithm is consistent if any of its parallel chains, «; and «;,
are compatible. In particular, in that case the condition k' A k] # 0
must be satisfied. The algorithm is persistent if the completion of



A .Zakrevskij

one of the parallel chains being performed does not destroy conditions
for executing the others (k; A k7 # 0 and k' A K} # 0 for parallel
chains). The algorithm is irredundant if it contains no chains that can
never be executed. The algorithm is recoverable if it can return to its
initial state from any reachable state. This requirement is characteristic
of cyclic algorithms and is identical to reenterability in the theory of
programming. The algorithm is self-coordinated if none of its chains
can be reinitiated during its execution (for example, a new workpiece
cannot be fed to the machine-tool until the previous one has been
machined).

Note that irredundancy and recoverability requirements are appli-
cable both to parallel and purely sequential algorithms, whilst consis-
tency, persistency and self-coordination are the specific properties of
correct parallel algorithms.

The verification of each of these properties represents a non-trivial
combinatorial problem. Let us consider some of them.

As shown in [7-9], the verification of the cyclic logical control al-
gorithm A is, to a great extent, reduced to the analysis of the corre-
sponding a-net «(A) formed by label pairs p; — v; and by the value
Ny. Of great importance in this analysis is the verification of safety
and liveliness of the net a(A). The notion of a-net safety was defined
above, and we shall call an a- net live (without departing from the
terminology adopted in the Petri net theory) when any transition in
any sequence of transitions can take place again (some time later).

It will be natural to draw the analogy between such properties of
the algorithm A as irredundancy and recoverability, on the one hand,
and liveliness of the net «(A), on the other, and then to try to re-
duce the verification of the first two properties to that of the latter.
It should be borne in mind, however, that for some algorithms such
reduction will not be complete, since the net a(A) does not contain
data on informational interactions between the chains of the algorithm
A. Actually, there exist irredundant and recoverable algorithms with
corresponding unlive a-nets and, on the other hand, there exist live
a-nets corresponding to redundant or unrecoverable algorithms.

One can speak more definitely about the relationship between the

10



Parallel logical control algorithms: verification and...

algorithm self-coordination property and the safety of the correspond-
ing a-net.

Theorem 2 If the net «(A) is safe, then the algorithm A is self-
coordinated.

In any case, the verification of algorithm correctness is, to some
degree, reduced to that of liveliness and safety of the a- net «(A).
The verification of liveliness is known to be somewhat easier and may
be performed by the method suggested for ordinary Petri nets. This
method reduces the problem to the solution of logical equations [10,11].
It is more difficult to verify the safety property. The direct method of
integrated verification of these two qualities is known to be applicable
to a-nets and Petri nets of a much wider class. This method involves
the construction of a set of all reachable states and is practically real-
izable only for small nets. More promising for the purpose seem to be
the reduction methods using local simplification operations, which se-
quentially decrease the dimensionality of the net being analysed [12,8].
In case of a-nets, we may confine ourselves to a pair of such operations:
loop removal and substitution [13].

Loop Removal Operation. The transition 7; is removed from
the net if ;; = 1; and the net contains another transition 7; so that
pi © pjoor v C vy

Substitution Operation. Let some unmarked (not intersecting
with Ng) set of places m satisfies the following conditions for every
transition 7;:

1) if mNp; # 0, then 7 = p; and 7Ny =0,
2) if rNy; # 0, then 7 C vy,
3) if m = p; and © C vj, then vj Ny; =0,

Then the set m and all the transitions 7;, for which = = u;, are
eliminated; and each transition 7;, for which = C v, is replaced by the
set of transitions obtained from 7; by substituting m for v; taken from
the eliminated transitions.

11



A .Zakrevskij

Let, for example, 7 = {2,3} and 7 N Ny = (0, with places 2 and 3
come across only in the following transitions:

2355 2317 74523, 48423

Then the substitution operation consists in replacing the given frag-
ment by the following one:

745 T4-—17, 4.8 545, 4.8—4.1.7

Theorem 3 «-net liveliness and safety are invariants of the transfor-
mations performed by the loop removal and substitution operations.

The following theorem affirms the convergence of the reduction pro-
cess.

Theorem 4 The reduction of any live and safe a-net by means of loop
removal and substitution operations can be carried on till its completion,
i.e. till a net with a single transition Ng — Ny is obtained.

5 Partial state assignment

Both software and hardware implementation of PRALU-algorithms are
possible. In the case of the latter the logic circuit synthesis is preceded
by the “standardization” of the algorithm, i.e. by changing it for an
equivalent parallel automaton and by coding its partial states.

Traditionally, when all the states are incompatible, each of them
can be represented by a Boolean vector that can be implemented, for
example, as a combination of flip-flop states. But in the case of a
parallel automaton which can find itself in several partial states at the
same time, this method is inadequate.

A trivial method of partial state assignment can be suggested. Let
us take a special coding Boolean variable z; for each partial state p;
(element of M) and assume that the automaton is in the state p; if and
ounly if z; = 1. It follows that the transition pu; — v; can be carried
out in two steps: first, the value 0 is given to the variables z; for which

12



Parallel logical control algorithms: verification and...

pj € pg; second, the value 1 is given to the variables z; for which
Dk € V.

Though simple, this method has a drawback: the number of vari-
ables to be introduced for coding may appear to be unjustifiably large,
and that impedes the subsequent hardware implementation. In order
to facilitate the latter, one has to minimize the length of the code.

It was suggested in [14] that partial states can be coded by ternary
vectors (with components 0,1 and -, where the symbol - is interpreted
as an arbitrary value of the corresponding Boolean variable) which
have to be non-orthogonal for parallel states. In this case the latter
ones can be implemented by a single Boolean vector. For instance, if
1—0—-0,—10— — and — — —10 are the coding ternary vectors for three
parallel states, then the vector 11010 does implement all of them.

In order to minimize the code length it is useful to take orthogonal
vectors for any states which are not parallel (i.e. are incompatible).
By that sometimes another good quality of the code can be reached:
the quality of displacing. In that case the execution of any transition
can be completely reduced to the transfer the automaton into the states
forming the set v;\i; as to the states from p;\v;, the automaton leaves
them automatically. The code with such a property has been called the
displacing ternary code (DT-code).

Assume that when constructing the DT-code we do not use the
entire information contained in the set 1I' of the transitions u; — wv;,
but instead of that take into account only the set .S of all global states
(i.e., the sets of partial states which can exist simultaneously). In other
words, we admit direct transitions between any elements of the set S.
The DT-code that can be found under such restrictions has been called
the universal one (UDT-code). But it can exist not for every parallel
automaton.

Let us call a global state c-maximum if it corresponds to a maxi-
mum complete subgraph of the graph G, representing the relation of
parallelism on the set of partial states.

Theorem 5 The UDT-code for a parallel automaton exists iff every
its global state is c-mazimum.

13



A .Zakrevskij

Let p; be an arbitrary partial state, P; is a global state, c¢(p;) and
¢(P;) correspondingly are their coding vectors. If p; does not belong to
Pj, then some state pj can be found belonging to P; and not parallel
with p; (otherwise the complete subgraph G(P;) corresponding to P;
would not be maximum). When assigning orthogonal coding vectors to
non-parallel partial states we get ¢(P;) orthogonal with ¢(p;), so that
the state p; would be displaced any time when the global state P; is
realized. But if G(P}) is not maximum, then such a partial state p; not
belonging to P; can be found, that is parallel with every partial state
from P;, so ¢(p;) would not be orthogonal with ¢(P;), and, consequently,
p; could not be displaced by P;. =

Suppose, for instance, that some automaton with partial states
1,2,3,4,5,6 has the transitions 1 —23, 2—45, 35—6, 4.6—
1, from which it is not difficult to find all the global states P, =
{1}, P, = {2,3}, P; = {3,4,5} and Py = {4,6}. The following UDT-
code can be found in that case:

1 2 3 4 5 6
z1 100 — 01
z 11 - 000

It gives rise to the coding vectors of the global states: ¢(Py) = 11,
c(Py) = 01,¢(Ps) = 00 and ¢(Py) = 10. It is easy to verify that each
of them is orthogonal to the coding vectors of the partial states not
belonging to P;: for instance ¢(P,) is orthogonal with ¢(4) = —0, etc.

A useful consequence of the theorem 5 can be mentioned.

If the condition of the theorem 5 is fulfilled, then there is no need
in getting all the global states for construction the UDT-code: finding
the relation of parallelism on the set of partial states is quite sufficient
for that purpose.

It was proved by Hack in [5] that when EFC-net is live and safe,
the set P of all places can be covered by the subsets of P having each
exactly one common element with every reachable marking. This result
can be used for proving the following

Theorem 6 FEvery reachable marking of a live and safe EFC-net is

14



Parallel logical control algorithms: verification and...

c-mazimum.

Indeed, if some of those markings is not c-maximum, there exists a
place compatible with all elements of this marking. From one side it
has to belong to some of the mentioned subsets, from the other it has
not, because each of them contains already one element of the marking
and cannot contain another. This contradiction proves the theorem.

The next theorem follows, in its turn, from the previous two.

Theorem 7 Assigning orthogonal ternary vectors to every pair of non-
parallel partial states and non-orthogonal vectors to parallel ones, we
get the UDT-code for every correct parallel automaton.

The construction of the UDT-code becomes difficult if only we strive
to find the minimal code, i.e. a code with minimal number of coding
Boolean variables. The arising problems can be expressed and solved
in terms of the graph theory.

Theorem 8 The constructing of the minimal UDT-code for a correct
parallel automaton A can be reduced to covering the graph G(A), sup-
plementary to G(A), with minimal number of complete bipartied sub-
graphs.

In general case the problem of finding minimal UDT-codes is NP-
hard. But there were proposed practically good algorithms solving it
for small automata or when suboptimal solutions are admitted [14,15].
6 Concluding steps
Having obtained the UDT-code, it is easy to pass from every chain

wi s —ki = k' — v

to a simple sequent
kT F kT

executing it. This is done as follows:

15



A .Zakrevskij

(1) The ternary vectors, presenting the result of “intersection” of
the vectors coding the label components, are assigned to the labels y;
and v;.

(2) The obtained vectors are interpreted as conjunction terms +,
and /'

(3) The sequent terms are found from the formulae

1= ’Yzl‘&kgv

As an example, consider the chain
5.6 : —ac — uvx — 4.6.9.

Assume that the partial states forming the chain labels are coded
by the sets of values of the variables 21, 29, z3 and z4 as follows:

4 5 6 9
Al — 1 — 0
Z9 1 - 1 -
z3 - - = 0
24 1 - -

Then the vector 11— is assigned to the initial chain label, and the
vector 0101 is assigned to the terminal one. On the whole, the chain is
implemented by the simple sequent

2129aGC - UvTZ12324.

Therefore, having coded the partial parallel automaton states, we shall
obtain a system of simple sequents:

FRE*i=1...n

which can be implemented in some or other element basis.

Suppose we shall confine ourselves to the basis of programmable
logic arrays (PLA), with RS-flip-flops used as storage elements which
fix the values of coding variables. In this basis, the system of simple

16



Parallel logical control algorithms: verification and...

sequents is implemented in a rather easy way: the conjunction terms
kT and k]* are represented by ternary vectors, and the system as a
whole is represented by a pair of ternary matrices which are further
interpreted as tuning matrices for two PLA stages, a conjunctive and
a disjunctive ones [6].

This simple solution is however feasible only for comparatively small
systems of sequents “accommodated” on one PLA. In general case, one
has to construct a logic circuit composed of several PLAs. It is neces-
sary for that to decompose a large system of Boolean functions given
in the sum-of-products form into a set of similar systems of limited
dimensions.

Some methods of solving this problem based on an application of
matrix logical equations have been suggested in [6,18].

References

[1] ZAKREVSKL) A.D. To the theory of parallel algorithms of logi-
cal control (Russian). - Izvestija AN SSSR. Technicheskaja kiber-
netika, 1989, No 5, p.179-191.

[2] PETERSON J.L. Petri net theory and the modeling of systems. -
N.J., 1981.

[3] ZAKREVSKLJ A.D., VAsiLJONOK V.K. The formal description of
logical control algorithms for designing discrete systems (Russian).
- Electronnoje modelirovanie, 1984, v.6, No 4, p.79-84.

[4] ZAKREVSKL) A.D. Parallel automaton (Russian). - Doklady AN
BSSR, 1984, v.28, No 8, p.717-719.

[5] HAck M.T. Analysis of production schemata by Petri nets. -
Project MAC TR-94. Cambridge, 1972.

[6] ZAKREVSKIJ A.D. Logic synthesis of cascade circuits (Russian). -
Moscow, Nauka, 1981.

17



A .Zakrevskij

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ZAKREVSKIJ A.D. The analysis of concurrent logic control algo-
rithms. - Lecture Notes in Computer Science, v.278, Spinger- Ver-
lag, 1987, p.497-500.

ZAKREVSKIJ A.D. The reduction method for verification of the

correctness of parallel logical control algorithms (Russian). - Dok-
lady AN BSSR, 1983, v.27, No 7, p.617-619.

ZAKREVSKIJ A.D. On the correctness of parallel algorithms of log-
ical control (Russian). - Izvestija AN SSSR. Technicheskaja kiber-
netika, 1987, No 4, p.106-112.

SIFAKIS J. The computing of traps in the condition-action systems
(Russian). - In: The theory of discrete control devices. Moscow,
Nauka, 1982, p.182-190.

ZAKREVSKLJ A.D. To the checking of ordinary Petri nets liveliness
(Russian). - Doklady AN BSSR, 1985, v.29, No 11, p.1006- 1009.

BERTHELOT C., ROUCAIROL C. Reduction of Petri nets. - Lecture
Notes in Computer Science. Springer Verlag, 1976, v.45, p.202-
209.

ZAKREVSKIJ A.D. The checking of correctness of parallel logical
control algorithms (Russian). - Programmirovanije, 1987, No 5,
p-31-35.

ZAKREVSKIJ) A.D. The execution of parallel logical control al-
gorithms on programmed logic arrays (Russian). - Avtomatika i
telemechanika, 1983, No 7, p.116-123.

ZAKREVSKIJ) A.D. Block coding of partial states of automata
performing the concurrent logical control algorithms (Russian).
- Izvestija AN SSSR. Technicheskaya kibernetika, 1983, No 5, p.3-
11.

ZAKREVSKIJ A.D. State assignment problem in hardware imple-
mentation of parallel algorithms of logical control. Preprint No 16.
- Minsk, Institute of Engineering Cybernetics. 1993, 11p.

18



Parallel logical control algorithms: verification and...

[17] ZAKREVSK1J) A.D. On minimizing the coding matrix of partial
states (Russian). - Doklady AN BSSR, 1993, v.37, No 6, pp.8-10.

[18] BOCHMANN D., ZAKREVSKIJ A.D., PosTHOFF CH. Boolesche
Gleichungen. - Berlin, VEB Verlag Technik, 1984.

Arkadij Zakrevskij, Received 13 December, 1995
Institute of Engineering Cybernetics,

Surganova str. 6,

220012 Minsk, Belarus,

e-mail: zakr@newman.basnet.minsk.by

19



