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Abstract

This study presents a feature-level analysis of text complexity
using large language models (LLMs) in a two-phase design. Phase
I operationalized six core features – lexical diversity, density,
syntactic complexity, coherence, named entities, and readability
– achieving Spearman correlations of 0.55–0.60 across domains.
Phase II employed indirect prompting to surface additional qual-
itative dimensions (e.g., inferential load, rhetorical structure),
yielding a mean correlation of 0.42 and revealing that the six
features account for 40% of complexity variance. Domain de-
pendencies were limited to named entities and lexical diversity.
We propose a hybrid model combining normalization, root-based
synergies, and newly quantified metrics with domain-tuned for-
mulae for improved prediction.

Keywords: Text Complexity, Large Language Models, Fea-
ture Decomposition, Spearman Correlation, Prompting Strategy,
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1 Introduction

Text complexity is a fundamental factor that influences readability,
comprehension, and effective communication in a wide range of fields,
including education, linguistics, and natural language processing. A
precise understanding of the multifaceted nature of text complexity
is crucial for developing robust assessment tools that enable the cre-
ation of customized educational materials, reliable automated read-
ability metrics, and advanced language models. Traditionally, text
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complexity has been treated as a holistic construct, often quantified
by composite indices that aggregate lexical, syntactic, and discourse-
level features [1]. However, such aggregation may obscure the distinct
contributions and interactions of individual linguistic components that
collectively shape complexity.

Our primary goal is to develop an intelligent content generation and
search system tailored to university needs. The foundational concept
was introduced in “E-course: Developing a Model for Content Gen-
eration” [2], and further expanded in “Elearning Content Processing
Situations and Their Solutions” [3], which detailed the extraction pro-
cesses for images, text, and video. As the project evolved, we noted
the absence of a recommendation mechanism for ranking sources by
quality.

We also addressed challenges in content presentation. Rather than
merely reproducing original sources, our research turned to summa-
rization techniques to enhance delivery. In [4], we evaluated extractive
and abstractive approaches, selecting extractive summarization as the
most effective. Graph-based methods, the Edmundson heuristic, and
the TextRank algorithm emerged as top performers. This informed the
development of our recommendation system (RS), presented in “The
Design of a Recommendation System for Generating Content: Context
of the Sources. Part I” [5].

The present study advances previous methodological frameworks by
emphasizing the role of text complexity in enhancing content ranking
within the RS. The module, Context of the Sources, classifies texts
into academic, non-academic, and security domains – a crucial step
for universities, which prioritize credible sources, though alternative
content from blogs or forums may occasionally prove more informative.
By integrating complexity metrics, our system aims to better match
content to individual users’ comprehension and preferences, thereby
improving the overall impact of personalized content generation.

The dual objectives of this paper are: (1) to systematically an-
alyze and classify the complexity features of text according to their
relative importance, and (2) to examine the consistency of these dom-
inant features in various textual domains. By addressing these goals,
the research seeks to answer a critical question: Is text complexity a
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stable construct with invariant defining features, or does it vary signif-
icantly depending on the domain and context?

2 Related Work

Recent studies emphasize the multidimensional nature of text com-
plexity. Biber, Larsson, and Hancock argue that traditional “one-
dimensional” metrics (e.g., sentence length, clause counts) are insuf-
ficient [6]. Empirical evidence shows that complexity spans grammar,
lexis, and discourse structure, requiring both quantitative (e.g., fre-
quency, length) and qualitative (e.g., meaning levels, organization, con-
text) features to accurately predict reading outcomes [7].

Text Complexity refers to the inherent, objective features of a text.
These features include vocabulary sophistication, sentence structure,
grammatical patterns, discourse organization, and text structure. In
essence, text complexity measures the intrinsic intricacy of the written
language, independent of any reader’s abilities or background.

A range of linguistic and cognitive features contribute to text com-
plexity:

1. Lexical Complexity involves word frequency, abstractness, and
variety; rare or abstract terms increase processing effort [8].

2. Syntactic Complexity includes sentence length, clause embed-
ding, and variation – heightening difficulty as structural density
grows [9].

3. Discourse and Cohesion reflect coherence across sentences and
paragraphs; texts with nonlinear narratives or implicit meanings
require active integration [10].

4. Qualitative Dimensions, such as inference demands, organiza-
tional depth, and figurative language, affect comprehension be-
yond what quantitative measures capture [11].

Text Difficulty, on the other hand, is a more subjective concept.
It describes how challenging a text is for a particular reader or group
of readers and depends on factors beyond the text itself, such as the
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reader’s prior knowledge, cognitive skills, motivation, and context. A
text might be complex in its structure and vocabulary yet not be dif-
ficult for an experienced reader, while the same text could pose signif-
icant challenges for someone with less background in the subject [1].
Finally, while text complexity is about the static, measurable character-
istics of the text, text difficulty reflects the dynamic interplay between
these characteristics and the reader’s individual context [12].

Recent progress in text complexity analysis highlights persistent
gaps. Existing tools overemphasize formulaic readability scores (e.g.,
Flesch-Kincaid [13], SMOG [14]), while underrepresenting qualitative
aspects like genre conventions and disciplinary demands [15], lead-
ing to mismatches—especially for multilingual learners and specialized
texts [16]. In academic settings, systems rarely translate explainability
gains (e.g., +3% precision) into meaningful insight [17], often reduc-
ing complexity to generic scores. Our research addresses these short-
comings by leveraging NLP and large language models to uncover the
features that define complexity in academic discourse.

3 Feature-Level Decomposition of Text Com-
plexity

Our research identifies six key features influencing text complexity:
lexical diversity, lexical density, syntactic complexity, text coherence,
named entities, and readability. These align with four overarching cat-
egories – lexical, syntactic, discourse, and semantic – enabling multidi-
mensional analysis of textual structure and meaning.

� Lexical Features:

– Lexical diversity (LD) reflects vocabulary range via indices
like TTR, D, or MTLD.

– Lexical density (LDen) measures the ratio of content words,
indicating informational load and inferencing demand.

� Syntactic Features:
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– Syntactic complexity involves sentence length, clause em-
bedding, and variation. Elevated syntactic sophistication
correlates with higher cognitive load and overall complexity.

� Discourse Features:

– Text coherence reflects logical and semantic connection
across sentences and paragraphs. Coherence – local and
global – enhances comprehension and reduces processing ef-
fort [18].

� Semantic Features:

– Named entities (NE) add semantic richness by introducing
domain-specific terms and requiring background knowledge,
with growing emphasis in academic literature (2015–2024)
[19].

� Readability:

– A cross-cutting feature influenced by lexical, syntactic, se-
mantic, and discourse aspects. Defined as an objective, text-
based measure of comprehension ease, it aligns with metrics
like Flesch-Kincaid and Dale-Chall [20].

4 Experimental Analysis of Text Complexity

4.1 Methodology

Research Objectives and Hypotheses

This study aims to (1) rank text complexity features by importance
and (2) assess their consistency across domains. We hypothesize that,
while all features contribute, semantic and discourse elements impose
a higher cognitive load due to their role in meaning construction and
organization.

Data Selection and Preparation

We compiled a corpus of 100 documents across five domains – Quan-
tum Computing, Cloud Computing, Dark Web, Dark Romanticism,
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and Semantic Web – to examine how subject matter shapes text com-
plexity. Alongside academic articles, we included encyclopedias, web
pages, and forum posts to capture broader complexity patterns. Pre-
processing steps (tokenization, part-of-speech tagging, normalization)
were applied using NLTK [21], spaCy [22], and Pylexitext [23].

Given the novelty of the research, we explored text complexity
through a mathematical lens, testing several prompts and ulti-
mately adopting ”Prompt 1 Formula Generation” [24], based on
the RCTC framework (Role, Context, Task, Constraints): “Role:
You are an expert NLP researcher specializing in text-complexity mod-
eling. Context: I am designing an empirical study on text complexity.
My corpus is mixed-domain, and I have already extracted six feature
families:

� Lexical diversity (e.g., type–token ratio variants)

� Lexical density (content-word ratio, information density)

� Syntactic complexity (e.g., mean clause length, subordination in-
dex)

� Text coherence (discourse-connective density, entity-grid scores)

� Named-entity load (NER counts, % of tokens that are NE)

� Readability metrics (Flesch, SMOG, etc.)

Task 1 – Feature grouping. Logically cluster these six families into
higher-level dimensions (max 3 groups) and justify each cluster in 1-
2 sentences. Task 2 – Formula design. 1. Propose 10 distinct,
mathematically explicit formulas for a composite Text-Complexity Score
(TCS). 2. For each formula, list: (a) the normalized feature terms
it uses; (b) the weighting scheme (constant weights, learned weights,
log-scaling, etc.); (c) a one-line rationale (e.g., “emphasises syntactic
difficulty for academic prose”)...”.

Using this prompt, we employed diverse AI models to generate 161
formulas centered on six key features (see file ”161 formulas” in [24]).
LLMs were selected prior to April based on accuracy, accessibility (open
source or subscription type), and computational efficiency (compatible
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with 32 GB RAM). This enabled a robust assessment of feature inter-
actions shaping text complexity (see Table 1).

Table 1. AI models contributing to formula generation

Model name Nr. of parameters Notes

ChatGPT o1 Not disclosed paid subscription

ChatGPT o3-mini Not disclosed paid subscription

ChatGPT o3-mini-high Not disclosed paid subscription

Copilot Pro Not disclosed paid subscription

GROK v.2 Not disclosed paid subscription

Claude Haiku ≈ 20 billion parame-
ters

paid subscription

Llama 3.1 405 billion parame-
ters

paid subscription

Gemini 1.5 Pro Not disclosed free subscription

Gemini 2.0 Flash Not disclosed free subscription

Mistral Large 2 123 billion parame-
ters

free subscription

DeepSeek v3 671 billion total pa-
rameters

free subscription

DeepSeek R1 671 billion total pa-
rameters

free subscription

Aria (Opera) Not disclosed browser free AI as-
sistant

Qwen 2.5 MAX Not disclosed free subscription

Qwen 2.5 Instruct 14 billion parameters open source LLM

PHI 3.1-MINI 3.8 billion parame-
ters

open source LLM

For the expert role in our experiment, we selected only models
equipped with reasoning capabilities, meaning they can perform com-
plex thought processes (see Table 2).
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Table 2. AI models acting as experts

Model name Notes

ChatGPT 4o multimodal model that incorporates
reasoning elements

ChatGPT o3 most advanced reasoning model of
OpenAI

ChatGPT o4-mini uses normal inference effort

ChatGPT o4-mini-high uses increased inference effort

Mistral Large 2 optimized for high-complexity reason-
ing tasks

DeepSeek v3 emphasizes efficient reasoning
through selective parameter acti-
vation

DeepSeek R1 is a reinforcement learning-optimized
variant of v3

Qwen 2.5 MAX versatile reasoning (not reasoning
mode)

Qwen 2.5 MAX Reason-
ing

versatile reasoning (with reasoning
mode)

Experimental Design and Grouping Strategy
Recent advances in prompt engineering emphasize two core strate-

gies for interacting with large language models (LLMs): direct (ex-
plicit) prompting, which provides explicit instructions for precision-
driven tasks, and indirect (implicit) prompting, which relies on
minimal guidance and the model’s inferential capabilities. While di-
rect methods excel in structured, technical domains, indirect ones of-
ten perform better in creative or cross-disciplinary contexts. Effective
prompt design requires balancing both approaches to align with task
goals and model strengths.

In our study, we were initially uncertain which approach would be
most effective. To address this, we designed an experiment with two
parallel phases: Phase 1 — LLMs operating under explicit prompting
(see file “Prompt 2 Direct Approach” in [24]): “I want you to act
as a text complexity analyzer and ranker. Your task is to analyze a set
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of text files and rank them based on their text complexity. Text com-
plexity should be evaluated as a generalization of the following features:
1. Lexical Diversity: Measure the variety of words used in the text.
(Consider using metrics like Type-Token Ratio or more sophisticated
measures like Moving-Average Type-Token Ratio – MATTR). 2. ...”,
and Phase 2 – LLMs engaged through implicit prompting (see file
“Prompt 3 Indirect Prompting” in [24]): “You are given a set of
texts intended for use as sources for university lectures, targeting an
audience of students and professors. Your task is to rank these texts
from most complex to least complex based on the following features of
text complexity: 1. Vocabulary Sophistication and Diversity: Presence
of rare or specialized terms. 2. ...”. Given the methodological con-
trast, the results generated by LLMs through implicit prompting could
potentially validate those obtained from explicit prompting or uncover
distinct insights not accessible through direct instruction.

All phases followed the same processing pipeline and shared a com-
mon objective: to estimate text complexity for each document within a
thematic group (Quantum Computing, Cloud Computing, Dark Web,
Dark Romanticism, and Semantic Web) and to rank the files in de-
scending order of complexity. The only distinction lies in the prompting
strategy applied to the LLMs – implicit versus explicit.

Procedure and Implementation

This study adopts a structured, two-tiered methodology that com-
bines formula-based analysis with expert evaluations to assess text com-
plexity across diverse domains.

1. Formula Generation. An ensemble of advanced AI mod-
els generated 161 unique analytical formulas (see file “161 formulas”
in [24]), each incorporating six key text complexity features. This en-
sured broad analytical diversity and multiple perspectives on feature
interaction.

2. Automated Document Ranking. Within each thematic do-
main (e.g., Cloud Computing, Dark Web), every document was eval-
uated using a distinct formula. This yielded 161 ranked lists of file
names, ordered in descending complexity according to the respective
formula.

3. Expert-Based Document Ranking. A set of high-
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performing LLMs (see Table 2) served as expert agents. Each model an-
alyzed documents within a specific thematic group and independently
produced a complexity-based ranking. These domain-sensitive evalua-
tions were treated as benchmark standards for comparison.

4. Aggregation via External Merge Sort. To consolidate
multiple expert rankings into a single consensus sequence, we employed
the External Merge Sort algorithm [25]. Each document, identified by
a filename prefixed with a numeric ID (e.g., “1-article.txt”), appeared
in ordered lists from different expert models. External Merge Sort
efficiently merged these sorted runs – even when they exceeded memory
capacity – into one unified ranking. This approach minimized disk I/O,
ensured scalability, and enhanced robustness by capturing the collective
expert consensus while filtering individual variation.

5. Comparative Evaluation. The aggregated expert sequence
was then compared against each of the 161 formula-generated rank-
ings. Spearman’s rank correlation coefficient was used to quantify the
degree of alignment between expert judgments and automated outputs,
measuring how closely the orderings matched [26].

6. Identifying Feature Importance. Correlation scores were
analyzed to identify which formulas—and by extension, which text fea-
tures—most closely aligned with expert assessments. This enabled a
data-driven evaluation of the relative importance of each feature in
predicting text complexity.

By following this systematic framework, the study ensured a rig-
orous, scalable, and interpretable evaluation of how different textual
features contribute to perceived complexity across thematic domains.

4.2 Results and Discussion

The analysis of the obtained results was conducted across three dimen-
sions: by domain, by feature, and by formula.

To begin the analysis, we selected the top 10 formulas from each
thematic domain and compiled a table summarizing the coefficients as-
signed to the six core text features. As an illustrative example, Table 3
displays the top three formulas from Phase I.

The 161 formulas differ not only in their coefficient values but also
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Table 3. Summary table for phase 1. Top 3 formulas

LexDiv LexDen SynCplx Coher NE Read Dom Formula

1 1 1 1 1 0 Cloud
comp

34

1 0 1 0 1 0 Cloud
comp

27

1 1 0 1 1 0 Cloud
comp

54

1 1 0 1 1 1 Dark
rom

7

0.15 0.15 0.15 0.25 0.1 0.2 Dark
rom

15

0 0 0.4 0.4 0.2 0 Dark
rom

48

0.25 0.2 0.25 0.2 0.1 0 Dark
web

104

1 1 1 1 1 1 Dark
web

40

1 1 1 1 1 1 Dark
web

69

1 1 1 1 1 1 Quant
comp

8

1 1 1 1 0.1 0.1 Quant
comp

74

1 0 1 0 0 1 Quant
comp

28

0.2 0.2 0.1 0.15 0.15 0.1 Sem
web

152

0.2 0.2 0.2 0.2 0 0.2 Sem
web

17

1 1 1 1 1 1 Sem
web

47
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in their mathematical structure and the presence or absence of specific
features. Some formulas assign equal weights (e.g., coefficient = 1) to
all features, suggesting equal influence on text complexity. To enable
consistent comparison, we standardized the data by assigning a value
of 1 to each feature included in a formula, regardless of its actual coeffi-
cient. This binary representation allowed for uniform quantification of
feature presence, and column-wise aggregation supported a structured
analysis of feature importance across domains.

Analysis by domain

The corpus is organized into two principal thematic categories:
Computing & Web Technologies and Literary & Philosophical Move-
ments. The former includes texts on Quantum Computing, Cloud
Computing, the Dark Web, and the Semantic Web, while the latter
is represented primarily by works associated with the Dark Romanti-
cism movement. Phase I results, shown in Fig. 1 and Fig. 2, illustrate
the relative contributions of six key text complexity features across
these thematic domains.

Figure 1. Phase I. Computing & Web Technologies

Figure 1 shows that within the Computing & Web Technologies
domain, Lexical Diversity (19%) and Syntactic Complexity (18%) are
the most influential features, reflecting the importance of vocabulary
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Figure 2. Phase I. Literary & Philosophical Movements

richness and structural complexity in technical texts. Lexical Density
and Coherence contribute equally (17%), emphasizing content concen-
tration and logical progression. In contrast, Named Entities (15%) and
Readability (14%) play relatively smaller roles, indicating their reduced
relevance in this context.

By comparison, Figure 2 reveals a distinct distribution for Literary
& Philosophical Movements. Here, Syntactic Complexity leads (22%),
highlighting the prominence of elaborate sentence structures. Coher-
ence follows (18%), underscoring the role of narrative flow, while Lex-
ical Density (16%) remains moderately significant. Lexical Diversity
and Readability contribute equally (15%), and Named Entities have
the lowest impact (14%), consistent with the genre’s limited use of
specialized terminology.

Phase II further investigates text complexity features across the
same two thematic categories: Computing & Web Technologies and Lit-
erary & Philosophical Movements. The results are presented in Fig. 3
and Fig. 4, respectively.

In the Computing & Web Technologies domain (Fig. 3), Lexical
Density and Syntactic Complexity emerge as the most influential fea-
tures, each contributing 20% – a shift from Phase I, where Lexical
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Figure 3. Phase II. Computing & Web Technologies

Figure 4. Phase II. Literary & Philosophical Movements
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Diversity was dominant. Lexical Diversity remains important at 19%,
followed by Coherence (16%). Named Entities and Readability main-
tain lower influence at 13% and 12%, consistent with Phase I patterns.

In the Literary & Philosophical Movements domain (Fig. 4), Syn-
tactic Complexity continues to lead (20%), reaffirming the importance
of complex sentence structures. Named Entities rise sharply to 19%,
indicating that under indirect prompting, AI models assign greater
weight to semantic and contextual cues. Lexical Density remains stable
(18%), while Lexical Diversity and Readability contribute moderately
(15% and 14%). Coherence decreases to 14%, reflecting a subtle shift
in how text flow is evaluated.

Cross-phase comparisons highlight key trends. In Computing &
Web Technologies, the emphasis moves from Lexical Diversity toward
Lexical Density and Syntactic Complexity, suggesting a deeper content-
level focus under indirect prompting. In Literary & Philosophical
Movements, the growing role of Named Entities points to an expanded
semantic interpretation influenced by genre-specific content and Phase
II strategies.

Overall, most features exhibit stable contributions across phases,
with the most notable variations observed in Lexical Diversity and
Named Entities. These shifts underscore the cognitive demands as-
sociated with meaning construction and structural organization. The
observed fluctuations within the Literary & Philosophical category may
stem from corpus imbalance, suggesting the need for further cross-
domain validation using broader textual datasets.

Analysis by feature

This section evaluates text complexity features independently of
the thematic domain. For example, lexical complexity is assessed uni-
formly across Dark Romanticism, Quantum Computing, and Dark Web
texts. The goal is to reduce domain-specific bias and highlight feature
behavior across the full corpus. Fig. 5 presents aggregated results from
both experimental phases.

The analysis reveals a stable hierarchy of feature influence. Syntac-
tic Complexity dominates, followed by Lexical Diversity and Lexical
Density, which together account for 56% of overall impact. Coherence
and Named Entities contribute moderately, while Readability plays a
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Figure 5. Feature Analysis per Feature: Overview

minor role. These findings confirm that structural and lexical dimen-
sions are key drivers of text complexity across all domains.

Analysis by formula

During Phase I, we analyzed the ten formulas with the highest
Spearman rank correlation coefficients (SRCC) for each thematic do-
main. Table 4 illustrates the top three formulas per domain, using the
notation: LD = Lexical Diversity, D = Lexical Density, SC = Syntactic
Complexity, Coh = Coherence, NE = Named Entities, R = Readability.

The highest correlations were observed in the Semantic Web do-
main (e.g., Formulas 152, 17, 47 at 0.812, 0.708, 0.690), outperforming
the cross-domain mean ( 0.56). Dark Romanticism and Dark Web
formulas performed moderately (0.49–0.67), while Cloud Computing
yielded the weakest results (down to 0.406). These findings suggest
that some formulas overlook domain-specific nuances or underweight
key features, motivating the proposal of a generalized feature template
for complexity modeling.

A review of all 50 top-performing formulas reveals a recurring struc-
ture: a weighted linear combination of six features, occasionally ad-
justed by mild non-linear operations. Three main patterns emerge:

1. Feature Grouping: - Lexical Block : LD and D emphasizes
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Table 4. Top 3 formulas representation.
F.No. Representation SRCC Dom

34 (LD +D)× SC − Coh

NE2
63.45 Cloud

comp

27
(
LD ×D + SC

)
× ln

(
1 +NE

)
42.25 Cloud

comp

54 NE × Coh− (LD +D) 40.60 Cloud
comp

7
LD × SC + D × Coh + NE ×R

3
67.36 Dark

rom

15 0.15LD + 0.15D + 0.15SC + 0.25Coh +
0.10NE + 0.20R

61.65 Dark
rom

48 0.4SC + 0.4Coh − 0.2NE 55.33 Dark
rom

104 0.3LD + 0.2D + 0.3SC + 0.2Coh 57.74 Dark
web

40 (SC × Coh) − NE2 +
R3

LD ×D
53.23 Dark

web

69
√√√√LD2 +D2 + SC2 + Coh2

+NE2 +R2

49.02 Dark
web

8 0.1LD + 0.15D + 0.2SC + 0.25Coh +
0.15NE + 0.15R

57.89 Quant
comp

74 LD ×D × SC × Coh× (1 + 0.1NE)× (1 + 0.1R) 54.13 Quant
comp

28
(LD ×D) + (SC ×D)

R
52.48 Quant

comp

152 0.2 ln(1+LD) + 0.2 ln(1+D) + 0.2 ln(1+SC) +
0.15 ln(1+Coh) + 0.15 ln(1+NE) + 0.1 ln(1+R)

81.20 Sem
web

17 0.2LD + 0.2D + 0.2SC + 0.2Coh + 0.2R 70.82 Sem
web

47 0.4 (LD +D) + 0.3SC + 0.1Coh − 0.1NE +
0.1R

69.02 Sem
web
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vocabulary richness. - Structural Block : SC and Coh reflects syntactic
and logical flow. - Informational vs. Readability : NE and R typically
carry smaller or compensatory weights.

2. Coefficient Patterns: - Equal Weights: (e.g. 1
6 per feature)

dominate. - Skewed Weights: often prioritize lexical and structural
features ( 0.2–0.3), with NE and R lower ( 0.10–0.15).

3. Mathematical Operations: - Addition (+) is most common.
- Multiplication (×) is used within feature blocks (e.g., LD × D). -
Normalization/log ( 30%) compresses feature scales. - Roots/norms
( 20%) promote synergy but are less frequent.

An archetypal formula summarizing these patterns is:

Farch = wLD + wD + wSC + wCoh + wNER + wR

Feature Interactions. Among the 50 complexity formulas, two
interaction patterns emerge. Group 1 uses simple operations (+, ×,
−), combining lexical (LD, D) and structural (SC, Coh) features – often
to express synergy or trade-offs with readability (R) and entity coverage
(NE). Group 2 applies non-linear transformations: logarithms temper
scale, exponentials emphasize outliers, and norm-based operations bal-
ance all six features. These patterns reflect varied hypotheses on how
linguistic and structural elements co-influence text complexity.

Our analysis identified robust formulaic patterns across domains.
Key outcomes include: (1) the centrality of lexical–structural interac-
tions, (2) the strategic use of additive, multiplicative, and non-linear
transformations, and (3) domain-specific variations in feature empha-
sis. These insights inform Phase II, where formula families will be em-
pirically tested on cross-domain corpora, refining complexity metrics
through the lens of reader-effort theory.

Phase II Results
Experimental Design. In Phase II, we adopted an indirect

prompting strategy: instead of explicitly presenting the six predefined
features (LD, D, SC, Coh, NE, R), we embedded twelve broader com-
plexity dimensions into the instructions (e.g., vocabulary sophistica-
tion, semantic density, inferential load, rhetorical structure, etc.). This
approach aimed to evaluate whether our formulas align with how LLMs
perceive and assess complexity when reasoning autonomously across
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domain-specific texts. The experiment offers valuable insight into the
broader phenomenon of text complexity.

Performance Overview. The 50 formulas tested in Phase II
achieved a lower average Spearman rank correlation coefficient (SRCC)
of 0.42, compared to Phase I’s ∼ 0.55–0.60.

Domain-level performance: 1) Dark Romanticism: 54.1 (avg) /
67.36 (max); 2) Semantic Web: 43.1 (avg ) / 57.89 (max); 3) Quantum
Computing: 41.6 (avg) / 54.58 (max); 4) Dark Web: 40.5 (avg) / 54.73
(max); 5) Cloud Computing: 32.8 (avg) / 63.45 (max).

No fundamentally new mathematical archetype emerged; formu-
las remained grounded in additive-synergy structures, though modified
through varied normalization schemes.

Formulas in Phase II underperformed compared to the domain-
tuned models of Phase I, with an SRCC drop of 0.13–0.18. The do-
main ranking pattern held steady (highest: Dark Romanticism, lowest:
Cloud Computing), but Semantic Web and Cloud Computing saw the
sharpest declines (≈30–35 points).

These results point to a gap between the qualitative complexity
dimensions the LLMs can detect, such as inferential depth and rhetor-
ical structure, and the quantitative features currently embedded in our
models. The six original features appear to capture only part of the
complexity landscape.

Nevertheless, the experiment successfully identified new feature
candidates for inclusion. Despite reduced performance, the consistent
≈ 40–50% correlation affirms the core relevance of our six foundational
features, while also signaling the need to evolve the general formula to
integrate emerging complexity indicators.

5 Conclusion

This study presented a feature-level analysis of text complexity us-
ing large language models. In Phase I, explicit prompting of six core
features – lexical diversity, lexical density, syntactic complexity, co-
herence, named entities, and readability – produced robust Spearman
correlations (0.55–0.60), with domain-tuned, additive-synergistic for-
mulas outperforming generalized ones. Phase II adopted an indirect
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prompting approach, embedding twelve higher-order complexity traits
(e.g., inferential load, rhetorical structure, narrative complexity) to ex-
plore whether LLMs could surface indicators beyond the original six.

While Phase II formulas yielded a lower average SRCC (0.42), the
drop offered valuable insight: the initial six features account for approx-
imately 40% of perceived complexity. Indirect prompting successfully
prompted LLMs to detect latent complexity dimensions, highlighting
the need for an expanded feature set (see Fig. 6).

Figure 6. Text complexity features

Overall, our findings suggest three main takeaways: (1) The six
foundational features remain essential, capturing the bulk of measur-
able complexity interactions. (2) Text complexity is partially domain-
dependent; only lexical diversity and named entities showed statisti-
cally significant domain variance. (3) Indirect prompting can expose
richer complexity cues, though these must be translated into quantifi-
able metrics to recover predictive accuracy.

For future work, we propose a hybrid modeling framework
that (a) quantifies newly surfaced dimensions using corpus-based met-
rics (e.g., type-token ratios, discourse markers, cohesion indices), and
(b) integrates them with the six core features through log-normalized
weights and synergy-based aggregation. We also envision using LLMs
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not only for feature discovery but for real-time complexity scoring,
combining deterministic NLP tools with LLM-inferred signals in an
ensemble architecture.
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