
Computer Science Journal of Moldova, vol.33, no.2(98), 2025

A poor man's realization of

Demoucron-Malgrange-Pertuiset algorithm

Constantin Ciubotaru

Abstract

An implementation of the Demoucron-Malgrange-Pertuiset
(DMP) algorithm is proposed, based on specifying the notion
of a segment (fragment, bridge) and developing an algorithm for
calculating and updating the segments after each iteration using
a depth-�rst search strategy (DFS). The algorithm also works
for nonplanar undirected graphs by �nally constructing a pla-
nar subgraph and displaying the list of segments that cannot be
embedded, so as they generate edge intersections when drawing.

Keywords: biconnected graph, DMP algorithm, segment,
face, segments/graphs embedding, segments/faces update.

1 Introduction

Drawing hierarchical structures (graphs, trees, schemes) is one of the
most attractive ways to present information. Thanks to the geometric
structures used in drawing, the range of applications of this subject is
very wide: mathematics, computer science, social networks, databases,
bioinformatics, linguistics, arti�cial intelligence, etc.

One and the same graph can be drawn in several ways. Some
may be simpler, more comprehensible, having an attractive aesthetic
appearance, others � more di�cult to perceive, with an unsatisfying
structure. All drawings from Figure 1.1 represent the same graph. Fig.
1.1(a) represents a variant drawn manually, the other variants being
drawn semi-automatically: Fig. 1.1(b) represents a variant with ran-
dom placement of vertices that we will call �spaghetti�, Fig. 1.1(c) � a
planar variant obtained automatically by the method of circular orbits,

©2025 by Computer Science Journal of Moldova

doi:10.56415/csjm.v33.11

219

https://doi.org/10.56415/csjm.v33.11

Constantin Ciubotaru

and the Fig. 1.1(d) � a variant based on the faces structure obtained
by application of the DMP algorithm.

0

1

2

3

4

5

6 7

8

9

10

11

12

13

14

(a)

0

1

2

3

4

5

6

7

8

9

10

1112

13

14

(b)

13

4

7

8

12

2

9

6

14

5

3

1

11

10

0

(c)

0

2

3

4

5

6

7

8

9

10

12

13
14

0

1

2

3

4

5

6

7

8

9

10

12

13
14

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f6

f1

f5

f2

f3

f4

f7

f8

f9f10

f11

(d)

Figure 1.1. Four �gures

Research in this area has led to the development of some practical
methods of graphic representation that, in parallel, also tests graph
planarity. Having multiple representations of the same graph, it is
quite easy to choose the most suitable option, especially when having
a lot of available appreciation criteria, usually of an aesthetic nature.
For example, the graph must:

- be integrated into a determined, limited space,
- contain as few edge intersections as possible,
- avoid sharp bends,
- respect the proportions regarding the length of the edges and values

220

A poor man's realization of DMP algorithm

of the angles of incidence,
- favor the elements of symmetry, of concentration of vertices,
- use appropriate shapes for vertices,
- respect the orientation of the information �ow (top to bottom or left

to right), and others.

It is quite di�cult to transmit these criteria to the computer. Here
comes not only the problem of formalizing the criteria, but also the fact
that some of them may be contradictory. In these cases, the compromise
situations inevitably arise. Most planarity checking algorithms [1] are
based on the application of two methods. The �rst method refers to
the Kuratowski theorem (or the Wagner theorem).

Theorem 1.1. (Kuratowski, [2])

A �nite graph is planar if and only if it does not contain a sub-
graph that is homeomorphic to K5 (Fig. 1.2(a)) or K3,3 (Fig.
1.2(b)).

Theorem 1.2. (Wagner, [3])

A �nite graph is planar if and only if its minors include neither
K5 nor K3,3.

1

2 3

4 5

(a)

1 2 3

4 5 6

(b)

�

A

�

B

(c)

Figure 1.2. Kuratowski graphs and Jordan curve

The second method is based on the fundamental property of the
closed Jordan curve, which states that no point inside the curve can be
connected to any other point outside it without intersecting the curve
(Fig. 1.2(c)).

The aim of this paper is not so much to test planarity, but to apply
one of the methods of planarity testing to the automatic drawing of
planar graphs, a second problem being no less complicated than testing

221

Constantin Ciubotaru

planarity. Selecting that method will contribute to the achievement of
the above-mentioned desires.

Thus, the Demoucron-Malgrange-Pertuiset algorithm (DMP) [4]�
[8], based on the Jordan curve property, was selected, essentially modi-
�ed, and implemented. This algorithm, in parallel to the planarity test,
also constructs a partition of the graph (a set of faces) which is used
for automatic graph drawing. In the work [9], this algorithm was called
�the γ algorithm�.

In the paper, �gures obtained automatically by the circular orbit
method based on the �nal results of the DMP algorithm are inserted.
The implementation of the DMP algorithm requires specifying the no-
tions (structures) used in the description of the algorithm, such as seg-
ment (fragment, bridge, component), face, α-chain, but also the choice
of methods for constructing these structures. Most descriptions of this
algorithm bypass the practical aspects related to the construction of
these structures and the actual drawing. It is considered to expose
the drawing scheme, assign coordinates to vertices, establish the shape
of edges, calculate the values of incidence angles, and others. More-
over, some publications insert proofs for the correctness of the DMP
algorithm that contain errors [10].

2 Preliminary notions

Traditionally, we will denote an undirected graph by G = (V,E), where
V is the set of vertices, E � the set of edges, and adj(v) � a list of
vertices that are adjacent to v.

A sequence of vertices, in which every two consecutive vertices are
adjacent, is called path: (v1 v2 v3 . . . vn) or ((v1 v2) (v2 v3) . . .
(vn−1 vn)) with the property (vi, vi+1) ∈ E for 1 ≤ i < n. The length
of a path is the number of edges on a path. We will denote the empty
path by nil or (). The path is called elementary (simple) if all included
vertices (edges) are distinct.

A path, in which the �rst vertex coincides with the last, is called
cycle. The cycle is elementary if it consists only of distinct vertices,
excluding the �rst and last. The minimum length of a cycle is 3 (for
undirected graphs).

222

A poor man's realization of DMP algorithm

The graph G is called connected if there is a path between every pair
of vertices. A vertex is called a point of articulation (critical vertex) if
the subgraph, obtained by removing this vertex and its incident edges,
is no longer connected.

The undirected graph G is called a biconnected graph if it has no
articulation points. A biconnected component of a graph is a maximal
biconnected subgraph with this property. Any connected graph can be
decomposed into a set of bicomponents (also called blocks) that can be
joined into a tree through the critical vertices.

A graph is planar if it can be drawn (embedded) in the plane, so
that each vertex is represented by a distinct point, and each edge (u v)

� by a Jordan curve, without self-intersections with the extremities u
and v. All these curves do not mutually intersect except for the vertices
incident to these curves. By Gi = (Vi, Ei) we denote any subgraph of
the graph G = (V,E). A planar graph divides the plane into regions
(bounded by edges), called faces. We denote the set of faces by F .

3 Demoucron-Malgrange-Pertuiset algorithm

Any subgraph Gi of a planar graph G can be obtained from the
drawn image of the graph G by removing some number of edges and
vertices. Thus, any subgraph of a planar graph is also planar. If Gi is a
subgraph of the graph G, then the vertices of the subgraph Gi are called
contact vertices. The reverse action is also possible: building a new
planar subgraph by adding to G some number of edges and vertices
from G \ Gi. This is the idea of the DMP algorithm. When describing
the algorithm, the notions of fragment and α�path play an important
role. The de�nition of the fragment notion used in the papers [4],[5],[9]
is inserted below.

De�nition 3.1. (Fragment)

If Gi is a subgraph of the graph G, then the fragment of G
with respect to Gi is:
• an edge that does not belong to Gi but has the extremities in
Gi or• a connected component of G \ Gi along with all edges and
vertices connecting it to Gi.

223

Constantin Ciubotaru

De�nition 3.2. α-path

The α-path is de�ned as any simple path l which belongs to a
fragment of G with respect to Gi and has contact vertices as
extremities.

Below is inserted the pseudocode of DMP algorithm [4]�[7],[9](Algo-
rithm 3.1).

Algorithm 3.1. Pseudocode of DMP algorithm
Computer Science Journal of Moldova, vol.33, no.2(98), 2025

1. Let G = (V,E) be a biconnected undirected graph.
2. An arbitrary simple cycle of the graph G is selected and embedded

(drawn) obtaining a planar graph (subgraph of the graph G) denoted
by Gc=(Vc, Ec).

3. if Gc=G then return �The graph is planar�.
4. The set of all fragments S of G with respect to Gc is built.
5. if S=∅ then return �The graph is planar�.
6. For all fragments s of S build the set of all admissible faces for s,

F (s).
7. if ∃ s with F (s)=∅ then return �The graph is nonplanar�.
8. if ∃ s with |F (s)|=1, F (s)={f}, then let l be an arbitrary α-path of

the fragment s else let s be an arbitrary fragment for which |F (s)|>1,
f an arbitrary face from F (s), and l � an arbitrary α�path of the frag-
ment s.

9. l is embedded in f and F is modi�ed. Gc := Gc ∪ l.

10. goto 4.

1

Observations and proposals regarding

implementation of the algorithm

1. From the description of the DMP algorithm, the importance of
checking the graph for connectedness and biconnectivity is observed.
If the graph is connected, then the critical points can be highlighted,
and the set of bicomponents can be constructed, which can be joined
in a tree through the critical points. The biconnected graph will con-
tain only one bicomponent, the graph itself. It is also known that
a graph is planar if and only if all its bicomponents are planar [11].
Thus, without imposing serious restrictions, we will consider the
problem of checking planarity and graph drawing only for bicon-
nected graphs.

2. For the implementation of the algorithm, additional explanations

224

A poor man's realization of DMP algorithm

of notions �fragment (segment)�, �H-fragment�, and �bridge� are
needed.

3. It is necessary to mention (or add) the methods that select the initial
cycle and build the sets S , F , F (s).

4. Most publications ignore the importance of practical aspects that
accomplish the stages of the algorithm, especially the aspects con-
cerning graph drawing: the drawing scheme, assignment of coordi-
nates for vertices, choice of edge shapes, incidence angle values, and
others.

5. It is easy to see that at any iteration of the algorithm, only one α�
path is drawn, the fragments being used only to prove the correctness
of the algorithm. As an α�path is at the same time a fragment
(segment), we can operate on the implementation of the algorithm
only with α�path.

As follows, we present an implementation of the DMP algorithm
specifying the notions used and applying the simplest, most comprehen-
sible methods in order to achieve the decisive phases, possibly decreas-
ing the e�ciency, bypassing the methods considered more e�ective, but
sometimes di�cult to understand and implement.

4 Segments building

Let us �rst specify the notion of segment which will be used frequently
along the way.

De�nition 4.1. Segment

The notion segment of G = (V,E) with respect to the sub-
graph Gc = (Vc, Ec) is de�ned as:
� the edge e = (u, v), e /∈ Ec, u, v ∈ Vc (segment�edge), or
� the simple path (e1e2 . . . en) = ((u1v1) . . . , (un−1vn−1)(unvn)),
e1, e2, . . . , en /∈ Ec, u1, vn ∈ Vc, (u1, vn are contact vertices),
{v1, u2, v2, . . . , un−1, vn−1, un}∩Vc = ∅ (segment�path).

The following notations will be used:
� NonContactEdges � the set of edges in E not involved in Ec,

NonContactEdges = E \ Ec;

225

Constantin Ciubotaru

� SegEdges �the set of segments�edges from NonContactEdges,
SegEdges ={(u v)|(u v) ∈ NonContactEdges, (v ∈ Vc) ∧ (u ∈ Vc)};

� SegPaths � the set of segments�path;
� S � the set of all possible segments, S=SegEdges ∪SegPaths;
� InitSegPath � the set of edges (u v) from NonContactEdges with

u ∈ Vc or v ∈ Vc (start/end of segment), used in building the set
SegPaths, InitSegPath={(u v)|(u v) ∈ NonContactEdges,

(v ∈ Vc) ∨ (u ∈ Vc) }.

It should be noted that throughout the exposure and during per-
forming the operations, it will be taken into account that (u v) =
(v u), the edge (u v), if necessary, can also be interpreted as a
chain ((u v)), also �palindrome� chains will be considered equal:
((v0 v1)(v1 v2)(v2 v3)(v3 v4)) = ((v4 v3)(v3 v2)(v2 v1)(v1 v0)).

The segments building algorithm Segment building includes the
following stages:

i. Building sets: NonContactEdges, SegEdges, InitSegPath;
ii. Calling the add�edge function that builds the set of segments path,

SegPaths;
iii. Building the set of all segments, S .

The pseudocode of the algorithm is inserted below, Algorithm 4.1.
Choosing the cycle of maximum length contributes to shrinking the
number of iterations, which also depends on the number of edges in-
cluded in Ec. After the last iteration Ec = E, thus, it is important to
include at each iteration as many edges as possible in the updated Ec.

The recursive function add�edge represents a DFS achievement [12]
over the set NonContactEdges, and builds segments�chains by choosing
matching edges. The function uses the global variable Vc and is called
with two parameters: Path andRemainder. The function pseudocode
is inserted in Algorithm 4.2.

When describing the function, the notation Remainder(Path) will
be used that means the rest of the edges from NonContactEdges after
removing all edges of the path Path, Remainder (nil) = NonContact-

Edges;

226

A poor man's realization of DMP algorithm

Algorithm 4.1. Segment building

Computer Science Journal of Moldova, vol.32, no.1(94), 2024

Segments building algorithm

0. SegEdges:=∅; SegPaths:=∅; InitSegPaths:=∅;

NonContactEdges:=E \ Ec;

1. for all e=(u v) ∈NonContactEdges do

if u ∈Vc then if v ∈Vc then SegEdges:=SegEdges∪{(u v)};
else InitSegPath:=InitSegPath∪ (v u);

else if v∈Vc then InitSegPath := InitSegPath∪ (u v);

2. end for all e

3. NonContactEdges := NonContactEdges\SegEdges;
4. for all e=(u v) ∈ InitSegPath do

call add�edge((u v) , NonContactEdges \{(u v), (v u)});

5. end for all e

/* the set of segments�paths SegPaths is build */

6. S :=SegEdges∪SegPaths;

7. end

1

Algorithm 4.2. Function �add�edge�
Computer Science Journal of Moldova, vol.32, no.1(94), 2024

add�edge(Path,Remainder)
/* Path = ((v v1)(v1 v2) . . . (vn−1 vn)) */

1. for all r = (w z) ∈Remainder do

2. rv := (z w); p1 := r ∥ path; p2 := rv ∥ path;
3. if ((v=z) ∧ (p1 � is a simple path) then

if w∈Vc then SegPath:=SegPath ∪{p1};
else call add�edge (r∥Path,Remainder\{r});

else

if ((v=w) ∧ (p2 � is a simple path) then

if z∈Vc then SegPath:=SegPath ∪{p2};
else call add�edge (rv∥Path,Remainder\{rv});

4. end for all r;
5. return SegPath;
6. end

1

227

Constantin Ciubotaru

Theorem 4.1. (Segment buiding)

Algorithm 4.1 correctly builds the set of all segments of
the graph G = (V,E) with respect to the subgraph Gc =
(Vc, Ec).

Proof.
1) At step 5, traversing all edges from NonContactEdges, all segments�
edges (the set of SegEdges) and the set of all end-edges of segments�path
(InitSegPath) are built.
2) Segment�paths are built by calling the add�edge function. By con-
struction, all �nal paths will be segment�paths. By performing a DFS
traversal over the set NonContactEdges, the function will exhaustively
examine all edges in NonContactEdges by matching them to chain ex-
tensions. Each edge from NonContactEdges will be included in at least
one segment�path. Otherwise, the graph G would not be biconnected.

Example 4.1. Graph G=(V,E) from Fig. 1.1

Computer Science Journal of Moldova, vol.32, no.1(94), 2024

V = {(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14},

E = {(13 14),(11 12),(10 13),(10 12),(9 13),(8 12),(7 8),(6 13),(6 12),

(5 14),(5 8),(4 13),(4 9),(4 7),(3 14),(3 5),(2 13),(2 12),(2 6),

(1 11),(1 10),(1 5),(0 14),(0 5),(0 3)}

A fundamental cycle of maximum length is chosen, which will constitute

the contact nodes, for example:

Vc = (5 1 10 12 2 6 13 4 7 8 5),

Ec = {(5 1),(1 10),(10 12),(12 2),(2 6),(6 13),(13 4),(4 7),(7 8) (8 5)}.

NonContactEdges = {(0 3),(0 5),(0 14),(1 11),(2 13),(3 5),(3 14),(4 9),

(5 14),(6 12),(8 12),(9 13),(10 13),(11 12),(13 14)})

Segments�edges:

SegEdges = {(10 13),(8 12),(6 12),(2 13)}

Non-contact edges after removing segments�edges::

NonContactEdges={(13 14),(11 12),(9 13),(5 14),(4 9),(3 14),(3 5),

(1 11),(0 14),(0 5),(0 3)}

InitSegPath = {(14 13),(11 12),(9 13),(14 5),(9 4),(3 5),(11 1),(0 5)}

The segments-paths builded:

SegPath = {((13 14)(14 5)),((13 9)(9 4)),((13 14)(14 0)(0 3)(3 5)),

((13 14)(14 3)(3 5)),((12 11)(11 1)),((13 14)(14 3)(3 0)(0 5)),

((13 14)(14 0)(0 5))}

Segments�paths represented by nodes:

SegPath = {(13 14 5),(13 9 4),(13 14 0 3 5),(13 14 3 5),(12 11 1),

(13 14 3 0 5),(13 14 0 5)}

1

228

A poor man's realization of DMP algorithm

Path
Active
Edges

NewPath Property

((14 13))
(0 14)
(5 14)
(3 14)

((0 14)(14 13))
((5 14)(14 13))
((3 14)(14 13))

active path
α–path
active path

((14 5))
(0 14)
(13 14))
(3 14)

((0 14)(14 5))
((13 14)(14 5))
((3 14)(14 5))

active path
palindrome
active path

((9 13)) (4 9) ((4 9)(9 13)) α–path

((9 4)) (9 13) ((13 9)(9 4)) palindrome

((3 5))
(0 3)
(3 14)

((0 3)(3 5))
((14 3)(3 5))

active path
active path

((11 12)) (1 11) ((1 11)(11 12)) α–path

((11 1)) (12 11) ((12 11)(11 1)) palindrome

((0 5))
(0 3)
(0 14)

((3 0)(0 5))
((14 0)(0 5))

active path
active path

((0 14)(14 13))
(0 3)
(0 5)

((3 0)(0 14)(14 13))
((5 0)(0 14)(14 13))

active path
α–path

((3 14)(14 13))
(0 3)
(3 5)

((0 3)(3 14)(14 13))
((5 3)(3 14)(14 13))

active path
α–path

((0 14)(14 5)) (0 3) ((3 0)(0 14)(14 5)) deadlock

((3 14)(14 5)) (0 3) ((0 3)(3 14)(14 5)) deadlock

((0 3)(3 5)) ((0 14)) ((14 0)(0 3)(3 5)) active path

((14 3)(3 5))
(0 14)
(13 14)

((0 14)(14 3)(3 5)
((13 14)(14 3)(3 5))

deadlock
palindrome

((3 0)(0 5)) (3 14) ((14 3)(3 0)(0 5)) active path

((14 0)(0 5))
(3 14)
(13 14)

((3 14)(14 0)(0 5))
((13 14)(14 0)(0 5))

deadlock
palindrome

((3 0)(0 14)(14 13)) (3 5) ((5 3)(3 0)(0 14)(14 13)) α–path

((0 3)(3 14)(14 13)) ((0 5) ((5 0)(0 3)(3 14)(14 13)) α–path

((14 0)(0 3)(3 5)) (13 14) (13 14)(14 0)(0 3)(3 5)) palindrome

((14 3)(3 0)(0 5)) (13 14) (13 14)(14 3)(3 0)(0 5)) palindrome

1

S = SegEdges∪SegmentsPaths = {(10 13), (8 12), (6 12), (2 13), (5 14 13), (4 9 13),

(1 11 12), (5 0 14 13), (5 3 14 13), (5 3 0 14 13), (5 0 3 14 13)}

Figure 4.1. Final add�edge results for Example 4.1

229

Constantin Ciubotaru

Path represents a simple path ((v0 v1)(v1 v2) . . . (vn−1 vn)) with the
properties:
(1) {(v0 v1), (v1 v2), . . . , (vn−1 vn)} ⊆NonContactEdges,
(2) vn ∈ Vc,
(3) {(v0 v1), (v1 v2), . . . , (vn−1 vn)}∪ Remainder=NonContactEdges.
Initial n = 1, Path=((v0 v1)), Remainder =
NonContactEdges\{(v0 v1)}.

The execution of the algorithm for the graph drawn in Fig. 1.1 is
presented in Fig. 4.1. Final results of the add�edge calls are shown
in Fig. 4.1. The edges that can cause the extension of the Path have
been noted by Active edges.

5 Segments embedding

Segments embedding (the pseudocode of the �Segments embedding�
algorithm is inserted in Algorithm 5.1) is an iterative process, which
at each iteration embeds (draws) one segment. At the same time, the
planarity of the graph is checked and the sets F , S , Vc, and Ec are
modi�ed. Since each iteration builds a new face, a counter iter will be
used to keep track of the faces and iterations. Thus, each new face will
be included in the set F with the order number iter. The process lasts
as long as the set S is not empty. Finally, if the graph is planar, it will
be drawn completely; otherwise, a planar subgraph will be drawn, and
the set of non�embeddable segments (which generate edge intersections)
will be printed.

Initially, the process starts with the subgraph Gc = (Vc, Ec), two
faces � internal face f1 = Vc, external face f0 = Vc, iter=1, and the set
of segments S , built by Algorithm 4.1. It should be mentioned that f0
will denote the external face throughout the execution of the algorithm.
The algorithm Segments embedding calls the algorithm Segments
updating and updates the set of segments S .

For all segments s ∈ S , we denote by:
F (s) � the set of valid faces for s,

230

A poor man's realization of DMP algorithm

Algorithm 5.1. Segments embedding

Computer Science Journal of Moldova, vol.32, no.1(94), 2024

0. Input values: Gc=(Vc, Ec), F={f0, f1}, f0=Vc, f1=Vc, S=SEG.
1. do while S ̸= ∅
2. for all s ∈ S do F (s) := {f | f ∈ F , f is valid for s};end for all;
3. S1:={s | |F (s)| = 1}; S2:={s | |F (s)| ≥ 2}; Np:={s | |F (s)|=0};
4. if (S1=∅) ∧ (S1 = ∅) ∧ Np ̸= ∅ then

return (`The graph is not planar.� , F , Np);
5. if (S1=∅) then s = {s| |s| = max

S2

|s|} else s = {s
∣∣ |s| = max

F1

|s|};
/* The longest admissible segment is chosen */

S :=S \ {s};
6. if (S1 ̸= ∅) then F (s) = {fi} else s ∈ S2, |F (s)|≥ 2, fi ∈ F (s);
7. nf :=nf+1;
8. if fi = f0 then (fout, fin):=split�face�out(f0, s); f0:=fout;

fnf :=fin; F := F ∪{fnf};else
(fin1, fin2):= call split�face�in(fi, s); fi:=fin1;
fnf :=fin2; F :=F ∪{fnf};

9. seg�update(s, S);
10. end do while
11. return �The graph is planar.�, F)

1

S1 � the set of all segments that have only one valid face,
S2 � the set of all segments that have 2 or more valid faces,
Np � the set of all segments, for which there are no valid faces (segments
that violate planarity).

The actual embedding is done by functions split�face�in(fi, s)
and split�face�out(f0, s), presented in Fig. 5.1.

If s=(v0v1 . . . vn−1vn) then, in the case of the function split�face�
in(fi, s), the segment s will be drawn inside the face fi, joining the
contact vertex v0 with the contact vertex vn, {v0, vn}∈ fi, by a Jor-
dan curve without self-intersections passing through all other vertices
v1 . . . vn−1 placed inside the face fi. As a result, the face fi will be
divided into two faces � �n1, �n2, fi:=�n1, fiter:=�n2, (Fig. 5.1(a)),
F :=F ∪ {fiter}.

In the case of the function split�face�out(f0, s), we proceed anal-
ogously, the Jordan curve being drawn outside the face f0. Two faces
will be obtained, one internal and one external, and two variants are

231

Constantin Ciubotaru

possible (Fig. 5.1(b),(c)). The algorithm optionally chooses one of the
variants. For example, the internal face with a shorter length.

1

2

3

4

5

6

10
7

8
9

fin1

fin2

fout

(a)

1

2

3

4

5

6

10
7

8

9

fin

fout

(b)

1

2

3

4

5

6

107

8

9

fin

fout

(c)

Figure 5.1. Face split schema

6 Segments update

Segments embedding generates new faces and new contact vertices.
Thus, the need to modify the set of segments inevitably arises. Due
to the fact that only two new faces appear at each iteration, only the
segments that have certain tangents to these faces will undergo modi�-
cation. More precisely, the segments inside which new contact vertices
appeared must be modi�ed.

Algorithm 6.1. Segments update

Computer Science Journal of Moldova, vol.32, no.1(94), 2024

seg�update(s, S)
1. Input values: S , s=(v0 v1 . . . vn−1 vn), newcn={v1, v2, . . . , vn−1}.
2. if newcn=∅ then return (S)
3. Vc:=Vc ∪newcn, Ec:=Ec ∪ {(v0 v1),(v1, v2),. . . , (vn−1, vn)}.
4. for all s ∈ S do
5. for all vc ∈newcn do

if s=(v0 v1 . . . vi vc vi+1 . . . vn−1 vn) then
S :=(S \ {s})∪ {(v0 v1 . . . vi vc),(vc vi+1 . . . vn−1 vn)}

6. end for all vc;
7. end for all s;
8. simplify S : remove duplicates, segments�edges included in Ec,

palindromes.
9. return(S)

1

Obviously, the set of valid faces for these segments will also be
changed. The idea behind the change is simple. Any segment con-
taining at least one new contact vertex will be split into two new seg-
ments. For example, if the segment s=(v0 v1 . . . vi vc vi+1 . . . vn−1 vn),
where v0 and vn are old contact vertices and vc � new contact ver-
tex, then s will split into two new segments: s1 =(v0 v1 . . . vi vc) and

232

A poor man's realization of DMP algorithm

s2=(vc vi+1 . . . vn−1 vn). This algorithm will be called after each em-
bedding, which generates new contact vertices. We denote by newcn

the set of new contact vertices. If newcn=∅, then new segments will
not be generated. The pseudocode of the algorithm is presented in Al-
gorithm 6.1.

Below, the results of applying the algorithms �Segments embed-
ding� and �Segment update� for Example 4.1 are inserted in Fugure
6.1. The �nal result for this example is inserted in Fig. 7.1.

7 Modi�ed DMP algorithm

The modi�ed DMP algorithm (MDMP) is obtained by assembling
all the algorithms presented above, including the biconnectivity veri-
�cation. Below, the pseudocode of the algorithm (Algorithm 7.1) is
inserted.

Algorithm 7.1. Modi�ed DMP algorithm
Computer Science Journal of Moldova, vol.32, no.1(94), 2024

1. Let G = (V,E) be an arbitrary undirected graph. The algorithm ex-
posed in [13] is applied for checking biconnectivity and building the fun-
damental set of cycles.

2. If the graph is biconnected, a fundamental cycle of maximum length is
chosen, subgraph of the graph G is denoted by Gc=(Vc, Ec). Otherwise
return �The graph is not biconnected�.

3. if Gc=G then return �The graph is planar�.
4. Initial assignments:

F :={f0, f1}; f0:=Vc; f1:=Vc; S :=∅; Np:=∅; iter :=1;
5. The �Segments building� algorithm is called, which builds

the set of all segments S .
6. do while S ̸= ∅
7. iter:=iter+1;
8. for all s ∈ S do F (s):={f | f ∈ F , f is valid for s}; end for all .
9. The �Segments embedding� algorithm is called, which checks the

non-planarity of the graph, embeds a segment, modi�es the set of
faces F , and updates the set of segments S by calling the algo-
rithm Segments update.

10. end do while

11. return (�The graph is planar�, F).

1

233

Constantin CiubotaruComputer Science Journal of Moldova, vol.32, no.1(94), 2024

� initially, until the �Segment embedding� algorithm is applied, we have:
Vc={5,1,10,12,2,6,13,4,7,8,5},
Ec={(5 1),(1 10),(10 12),(12 2),(2 6),(6 13),(13 4),(4 7),(7 8),(8 5)},
F={f0, f1}= {(5 1 10 12 2 6 13 4 7 8 5), (5 1 10 12 2 6 13 4 7 8 5)},
S={(13 14 3 0 5) (13 14 0 3 5), (13 14 0 5),(13 14 3 5),(12 11 1), (13 9 4), (13 14 5),

(2 13),(6 12),(8 12),(10 13)}.
� segments embedding

At the �rst embedding, split-face-in(s, f1) will be executed, where
s=(13 14 3 0 5), f1=(5 1 10 12 2 6 13 4 7 8 5), iter=2. Two new faces are obtained:
�n1=(5 0 3 14 13 4 7 8 5), �n2=(13 6 2 12 10 1 5 0 3 14 13). Face �n1 will replace
f1, and the �n2 face will be added to F as f2.
Thus, we get F={f0, f1, f2}= {(5 1 10 12 2 6 13 4 7 8 5),(5 0 3 14 13 4 7 8 5),
(13 6 2 12 10 1 5 0 3 14 13)}, newcn={14 3 0}, changes for Vc and Ec:
Vc={5,1,10,12,2,6,13,4,7,8,5,14,3,0},
Ec={(5 1),(1 10),(10 12),(12 2),(2 6),(6 13),(13 4),(4 7),(7 8), (8 5),(13 14),

(14 3),(3 0),(0 5)}.
� segments update

S={(13 14 0 3 5),(13 14 0 5),(13 14 3 5),(12 11 1), (13 9 4), (13 14 5),(2 13),
(6 12),(8 12)(10 13)},

s=(13 14 3 0 5), newcn={14,3,0}.
� segments splitting

For vc=14:
(13 14 0 3 5) will be splitted into: (13 14) and (14 0 3 5),
(13 14 0 5) will be splitted into: (13 14) and (14 0 5),
(13 14 3 5) will be splitted into: (13 14) and (14 3 5),
(13 14 5) will be splitted into: (13 14) and (14 5).

We get the updated set of segments
S={((13 14),(14 0 3 5),(14 0 5),(14 3 5),(12 11 1),(13 9 4),(14 5),(2 13),(6 12),

(8 12),(10 13)} (duplicate segments have been removed).
For vc=3:

(14 0 3 5) will be splitted into: (14 0 3) and (3 5),
(14 3 5) will be splitted into: (14 3) and (3 5).

We get the updated set of segments
S={(13 14),(14 0 3),(3 5),(14 0 5),(14 3),(12 11 1),(13 9 4),(14 5),(2 13),(6 12),

(8 12),(10 13)} (duplicate segments have been removed).
For vc=0:

(14 0 3) will be splitted into: (14 0) and (0 3),
(14 0 5) will be splitted into: (14 0) and (0 5).

We get the updated set of segments
S={(13 14),(14 0),(0 3),(3 5),(0 5),(14 3),(12 11 1),(13 9 4), (14 5),(2 13),(6 12),

(8 12),(10 13)} (duplicate segments have been removed).
Finally, after elimination of palindromes and edges that have been included in

the updated set Ec (for this example (13 14),(14 3),(0 3),(0 5)), we get the �nal set
of updated segments
S= {(10 13),(8 12),(6 12),(2 13),(14 5),(13 9 4),(12 11 1),(3 5),(14 0)}

Note that segments�edges won't be able to generate new segments, because
will be ignored calls to the �Segments update� algorithm.

1

Figure 6.1. Segments embedding and updatting for Example 4.1

234

A poor man's realization of DMP algorithm

1

2

4

5

6

7

810

12

13

f0

f1

Iteration 1.
Vc =(5 1 10 12 2 6 13 4 7 8 5)=f0=f1,
S={(13 14 3 0 5),(13 14 0 3 5),(13 14 0 5),(13 14 3 5),

(12 11 1),(13 9 4),(13 14 5),(2 13),(6 12),(8 12),(10 13))},
F={f0, f1}

(a)

0

1

2

3

4

5

6

7

810

12

13
14

f0

f2

f1

Iteration 2.
split-face-in(s, f1), s = (13 14 3 0 5),
f1=(5 1 10 12 2 6 13 4 7 8 5), S={(13 14 3 0 5),
(13 14 0 3 5),(13 14 0 5),(13 14 3 5),(12 11 1),

(13 9 4),(13 14 5),(2 13), (6 12),(8 12),(10 13))},
F={f0, f1, f2}

(b)

0

1

2

3

4

5

6

7

810

12

13
14

f0

f2

f1

f3

Iteration 3.
split-face-out(s, f0), s = (8 12),
f0=(8 5 1 10 12 2 6 13 4 7), S={(8 12),(12 11 1),

(13 9 4),(14 0),(3 5),(14 5),(2 13),(6 12),(10 13))},
F={f0, f1, f2, f3}

(c)

0

1

2

3

4

5

6

7

810

12

13
14

f0

f4

f1

f3

f2

Iteration 4.
split-face-in(s, f1), s = (10 13),
f1=(5 1 10 12 2 6 13 14 3 0 5), S={(10 13)(12 11 1)

(13 9 4)(14 0)(3 5)(14 5)(2 13)(6 12)}, F={f0, f1, f2, f3, f4}

(d)

0

1

2

3

4

5

6

7

810

11

12

13
14

f0

f4

f1

f5

f2

f3

Iteration 5.
split-face-in(s, f3), s = (12 11 1),
f3=(8 12 10 1 5 8) S={(12 11 1),(13 9 4),(14 0),(3 5),

(14 5),(2 13),(6 12)}, F={f0, f1, f2, f3, f4, f5}

(e)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f4

f1

f5

f2

f3

f6

Iteration 6.
split-face-in(s, f3), s = (13 9 4),
f2=(13 14 3 0 5 8 7 4 13), S={(13 9 4),(14 0),(3 5),(14 5),

(2 13),(6 12)}, F={f0, f1, f2, f3, f4, f5, f6}

(f)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

Iteration 7.
split-face-in(s, f3), s = (14 0),
f4=(13 14 3 0 5 1 10 13),
S={(14 0),(3 5),(14 5),(2 13),(6 12)},
F={f0, f1, f2, f3, f4, f5, f6, f7}

(g)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

f8

Iteration 8.
split-face-in(s, f1), s = (3 5),

f1=(13 9 4 7 8 5 0 3 14 13), S={(3 5),(14 5),(2 13),(6 12)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8}

(h)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

f8

f9

Iteration 9.
split-face-in(s, f7), s = (14 5),

f7=(0 5 1 10 13 14 0), S={(14 5),(2 13),(6 12)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9}

(i)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

f8

f9f10

Iteration 10.
split-face-in(s, f2), s = (2 13),

f2=(10 13 6 2 12 10), S={(2 13),(6 12)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}

(j)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

f8

f9f10

f11

Iteration 11.
split-face-out(s, f0), s = (6 12),

f0=(12 2 6 13 4 7 8 12), S={(6 12)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11}

(k)

0

1

2

3

4

5

6

7

8

9

10

11

12

13
14

f0

f6

f1

f5

f2

f3

f4

f7

f8

f9f10

f11

The graph is planar.

S={}, F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11}

(l)

Figure 7.1. Final result for Example 4.1

235

Constantin Ciubotaru

8 Examples. The case of non-planar graph

Example 8.1. ([9], p.177)

We will apply the elaborated algorithm for the example from [9]
(Fig. 8.1(a)).

1

8 9

2 3

56

4

10

0

7

(a)

((4 10))
((3 4)(4 10)) α–path

((5 4)(4 10)) α–path

((4 5))
((10 4)(4 5)) palindrome

((3 4)(4 5)) α–path

((4 3))
((5 4)(4 3)) palindrome

((10 4)(4 3)) palindrome

(b)

Figure 8.1. Segments embedding for Example 8.1

Initially, we select the fundamental cycle of maximal length Vc=(0
8 9 3 5 10 2 1 7 6 0), Fig. 8.1(a), and the initial faces f0=f1=Vc,
F={f0, f1}. As a result of applying the algorithm Segments building,
we will get SegmentEdges={(0 1)(0 7)(1 5)(1 8)(1 9) (2 3)(2 9)(5 6)}
and InitSegPath={(4 3)(4 5)(4 10)}. After applying the function Add�
edge, we obtain SegmentPath={(3 4 5)(5 4 10)(3 4 10)}. The calling
scheme of Add�edge is presented in Fig. 8.1b.

The drawing steps are shown in Fig. 8.2. It should be noted that
the presence of a large number of segments�edges actually speeds up
the drawing process, because these segments do not generate new con-
tact vertices, thus ignoring calls to the expensive algorithm �Segments
update� . The red edges will show the initial cycle, the green ones �
the segment currently drawn, and the black ones � all other edges. It
should be noted that all coordinates of the vertices were de�ned man-
ually. An automatically drawn variant applying the method of circular
orbits is presented in Fig. 8.2(l).

Example 8.2. ([9], p.182)

236

A poor man's realization of DMP algorithm

0
8

9

3

5
10

2

1 7

6

f0

f1

Iteration 1. Vc=(0 8 9 3 5 10 2 1 7 6 0),
F={f0, f1}, S= {(3 4 10),(5 4 10),(3 4 5),
(5 6),(2 9),(2 3),(1 9),(1 8),(1 5),(0 7),(0 1)}.

(a)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

Iteration 2. split-face-in(s, f1),
s=(3 4 10), f(1)=(0 8 9 3 5 10 2 1 7 6 0),
S={(4 5),(5 6),(1 5),(2 9),(2 3),(1 9),
(1 8),(0 7),(0 1)}, F={f0, f1, f2}

(b)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

Iteration 3. split-face-in(s, f2),
s = (4 5), f2=(10 5 3 4 10),
S={(5 6),(1 5),(2 9),(2 3),
(1 9),(1 8),(0 7),(0 1)}, F={f0, f1, f2, f3}

(c)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

Iteration 4. split-face-out(s, f0),
s = (5 6), f(0)=(0 8 9 3 5 10 2 1 7 6 0),
S= {(1 5),(2 9),(2 3),(1 9),(1 8),(0 7),(0
1)}, F={f0, f1, f2, f3, f4}

(d)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

Iteration 5. split-face-in(s, f4),
s = (1 5), f4=(5 6 7 1 2 10 5),
S= {(2 9),(2 3),(1 9),(1 8),(0 7),(0 1)},
F={f0, f1, f2, f3, f4, f5}

(e)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

Iteration 6. split-face-in(s, f1), s = (2 9),
f(1)=(3 4 10 2 1 7 6 0 8 9 3),
S= {(2 3),(1 9),(1 8),(0 7),(0 1)},
F={f0, f1, f2, f3, f4, f5, f6}

(f)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

f7

Iteration 7. split-face-in(s, f1),
s = (2 3), f1=(2 9 3 4 10 2),
S= {(1 9),(1 8),(0 7),(0 1)},
F={f0, f1, f2, f3, f4, f5, f6, f7}

(g)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

f7

f8

Iteration 8. split-face-in(s, f6),
s = (1 9), f6=(9 8 0 6 7 1 2 9),
S= {(1 8),(0 7),(0 1)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8}

(h)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

Iteration 9. split-face-in(s, f8),
s = (1 8), f8=(1 7 6 0 8 9 1)),
S= {(0 7),(0 1)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9}

(i)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

Iteration 10. split-face-in(s, f9),
s = (0 7), f9=(8 0 6 7 1 8),
S={(0 1)},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10}

(j)

0
8

9

3

5
10

2

1 7

6

4

f0

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10
f11

Iteration 11. split-face-in(s, f9),
s = (0 1), f9=(0 7 1 8 0) ,
S={},
F={f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11}

(k)

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

5

10

4

3

2

1

6

7

9

0

8

Automatically drawn by applying the

method of circular orbits

(l)

Figure 8.2. Segments embedding,
the example from [9], p.177

237

Constantin Ciubotaru

The second example inserts the solution for the graph presented in [9],
p. 182. For this example, choosing the maximum length cycle led to the
construction of the set of segments S , which contains only segments�
edges. This fact essentially simpli�es drawing the graph, because the
need for recalculation of the set S disappears, which ignores calls of
the algorithm Segments update (building new segments/fragments).

The solution of the example is laid out step by step in Fig. 8.3.

0 1 2

345

Initial graph, G = (V E),
V=(0 1 2 3 4 5), E={(0 1)(0 3)(0 4)

(1 2)(1 3)(1 4)(1 5)(2 3) (2 5)(3 4)(3 5)}
(a)

0 1

2

3

4

5

f0
f1

Iteration 1. Vc=(0 1 2 5 3 4 0),
F={f0, f1}, S={(0 3)(1 3)(1 4)(1 5)(2 3)}

(b)

0 1

2

3

4

5

f0
f1

f2

Iteration 2. split-face-in(s, f1),
s=(2 3), f(1)=(0 1 2 5 3 4 0),
S={(0 3)(1 3)(1 4)(1 5)}, F={f0, f1, f2}

(c)

0 1

2

3

4

5

f0
f1

f2

f3

Iteration 3. split-face-out(s, f0),
s=(1 5), f(0)=(0 1 2 5 3 4 0), S=
{(0 3)(1 3)(1 4)}, F={f0, f1, f2, f3}

(d)

0 1

2

3

4

5

f0

f1

f2

f3

f4

Iteration 4. split-face-in(s, f1), s=(1
4), f(1)=(2 3 4 0 1 2), S= {(0 3)(1 3)},
F={f0, f1, f2, f3, f4}

(e)

0 1

2

3

4

5

f5

f1

f2

f3

f4

f0

Iteration 5. split-face-out(s, f0),
s=(0 3), f(0)=(1 5 3 4 0 1),
S= {(1 3)}, F={f0, f1, f2, f3, f4, f5}

(f)

0 1

2

3

4

5

f5
f1

f2

f3

f4

f0

f6

Iteration 6. split-face-in(s, f1),
s=(1 3), f(1)=(1 4 3 2 1), S=∅,
F={f0, f1, f2, f3, f4, f5, f6}

(g)

0

3

5

1

4

2

Automatically drawn by applying the

method of circular orbits

(h)

Figure 8.3. Segments embedding, the example from [9], p.182
Example 8.3. Petersen graph

The next example concerns the Petersen graph 8.4a, which is not planar,

238

A poor man's realization of DMP algorithm

as is known. The developed algorithm generates a planar subgraph,
included in Fig. 8.4f, and will return the list of segments that could
not be embedded: (3 8) and (4 9). In Fig. 8.4(g), we insert a variant of
the Peterson graph with two intersection points, which has the minimal
number of intersections for this graph, noted in the theory of graphs by
cr(G).

0

1 4

2 3

5

6

7 8

9

Petersen graph

(a)

60

4

2

3

9

7

85

f0

f1

Iteration 1.
Vc=(0 4 3 2 7 9 6 8 5
0)=f0=f1, S={(0 1 6),
(2 1 6),(0 1 2),(5 7),
(4 9),(3 8)}, F={f0, f1}

(b)

60

4

2

3

9

7

85

1

f0

f1

f2

Iteration 2.
split-face-in(s, f1), s = (0 1 6),
f1=(0 5 8 6 9 7 2 3 4 0),
S={(2 1 6),(0 1 2),(5 7),(4 9),(3
8)}, F={f0, f1, f2}

(c)

60

4

2

3

9

7

85

1

f0

f1

f2

f3

Iteration 3.
split-face-in(s, f1), s = (1 2),
f1=((6 9)(9 7)(7 2)(2 3)(3 4)(4 0)

(0 1)(1 6)), S={(5 7),(4 9),(3 8)},
F={f0, f1, f2, f3}

(d)

60

4

2

3

9

7

85

1

f0

f1

f2

f3

f4

Iteration 4.
split-face-out(s, f1), s = (5 7),

f0=((0 5)(5 8)(8 6)(6 9)(9 7)(7 2)(2

3)(3 4)(4 0)), S={(4 9),(3 8)},
F={f0, f1, f2, f3, f4}

(e)

60

4

2

3

9

7

85

1

f0

f1

f2

f3

f4

Iteration 5.

S={}, Np={(4 9),(3 8)}, the graph is

nonplanar. The segments {(4 9),(3 8)}
may not be embedded.

(f)

60

4

2

3

9

7

85

1

f0

f1

f2

f3

f4

Petersen graph drawn with two

crossing point.

(g)

Figure 8.4. Segments embedding for Petersen graph

Example 8.4. Tutte graph

We will apply the algorithm to check the planarity of the Tutte graph
[13], [14] presented in Fig. 8.5a, which contains 46 vertices and 69

239

Constantin Ciubotaru

edges. The algorithm will build the fundamental set of cycles (24 cycles)
and select a cycle of maximal length equal to 27. As a result of the
veri�cation, 25 faces will be obtained. The variant drawn by the method
of circular orbits is presented in Fig. 8.5(b).

01 02 03 04

05 06

07 08 09 10

11 12 13

14 15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

(a)

0 50 100 150 200 250 300 350

0

50

100

150

200

250

300

350

11

8

9

12

14

13

10

6

7

0

1

4

5

2

3

2927

24

20

18

45

26

23

22

19

28

25

17

21

16

15

30

43

44
42

39

35

33

40
41

31

36

38

37
34

32

(b)

Figure 8.5. Tutte graph

240

A poor man's realization of DMP algorithm

9 Conclusions

The paper presents a complete and detailed realization of the DMP al-
gorithm with all necessary explanations, the exposition in detail (pseu-
docodes, programs) of the algorithms, and many examples for testing.
Namely, this moment was in�uenced by the title of the article "poor
man's realization". The algorithm can be used for testing planarity
of graphs, generation of planar graphs, and elaboration of automatic
graph drawing methods. It is easy to develop an algorithm, which for
the set of constructed faces F and any segment from Np, will allow
us to �nd the minimum number of intersections needed to draw this
segment. This algorithm, of course, does not solve the crossing num-
ber problem, which is known to be NP -complete [15], but can be used
to build a plausible drawing version; for example, the version of the
Petersen graph, presented in Fig. 8.4(g).

Acknowledgments. The project SIBIA 011301 has supported part of
the research for this paper.

References

[1] Handbook of Graph Drawing and Visualization, R. Tamassia, Ed.
Chapman & Hall, 2013, 862 p. DOI: https://doi.org/10.1201/
b15385.

[2] K. Kuratowski, �On the problem of skew curves in topology,� Fund.
Math., vol. 15, no. 1, pp. 271�283, 1930. (in French)

[3] K. Wagner, �On a property of plane complexes,� Math. Ann., vol.
114, pp. 570�590, 1937, DOI: 10.1007/BF01594196. (in German)

[4] G. Demoucron, Y. Malgrange, R. Pertuiset, �Planar Graphs:
Recognition and Construction of Topological Planar Representa-
tions,� Revue Fran�caise de Rech. Oper., vol. 8, pp. 33�47, 1964. (in
French)

[5] A. Kohnert, �Algorithm of Demoucron, Malgrange, Pertuiset,�
2004, [Online]. Available: http://www.mathe2.uni-bayreuth.

de/EWS/demoucron.pdf.

[6] A. Gibbons, Algorithmic Graph Theory, Cambridge: Cambridge
University Press, 1985, 259p.

241

https://doi.org/10.1201/b15385
https://doi.org/10.1201/b15385
http://www.mathe2.uni-bayreuth.de/EWS/demoucron.pdf
http://www.mathe2.uni-bayreuth.de/EWS/demoucron.pdf

Constantin Ciubotaru

[7] J.A. Bondy and U. S. R. Murty, Graph Theory with Applications,
New York, USA: Elsevier Science Publishing Co., Inc., 1976, 270 p.

[8] D. B. West, Introduction to Graph Theory, Subsequent ed., Pearson
College Div, 2000, 588 p.

[9] V. A. Yemelichev, O. I. Melnikov, V. I. Sarvanov, R. I. Tyshke-
vich, Lectures on graph theory, Nauka, 1990, 382 p. (in Russian).
(English translation: O. Melnikov, R. Tyshkevich, V. Yemelichev,
V. Sarvanov, Lectures on graph theory, Mannheim-Leipzig-Wein-
Zurich: Wissenschaftsverlag, 1994, 361 p.)

[10] W. J. Myrvold and W. Kocay, �Errors in graph embedding algo-
rithms,� J. Comput. Syst. Sci., vol. 77, no. 2, 2011, pp. 430�438.

[11] C. Berge, Graph theory and its applications, Paris: DUNOD, 1958,
275 p. (in French)

[12] C. Ciubotaru, �The modi�ed deep �rst search algorithm: func-
tional implementation�, Computer Science Journal of Moldova, vol.
33, no.1(97), pp. 129�140, 2025.

[13] �Tutte graph,� Wikipedia. [Online]. Available: https://en.

wikipedia.org/wiki/Tutte_graph

[14] �Tutte's graph,� Wolfram MathWorld. [Online]. Available: https:
//mathworld.wolfram.com/TuttesGraph.html

[15] M. R. Garey and D. S. Johnson, Computers and intractability.

A Guide to the Theory of NP-Completeness, (Series of Books in
the Mathematical Sciences), 1st ed., San Francisco, Calif.: W. H.
Freeman and Co.(ed.), 1979, 340 p.

Constantin Ciubotaru Received March 06, 2025

Revised June 04, 2025

Accepted June 17, 2025

ORCID: https://orcid.org/0009-0005-8896-0966

Moldova State University,

Vladimir Andrunachievici Institute of Mathematics and Computer Science

E�mails: constantin.ciubotaru@math.usm.md, chebotar@gmail.com

242

https://en.wikipedia.org/wiki/Tutte_graph
https://en.wikipedia.org/wiki/Tutte_graph
https://mathworld.wolfram.com/TuttesGraph.html
https://mathworld.wolfram.com/TuttesGraph.html

	Introduction
	Preliminary notions
	Demoucron-Malgrange-Pertuiset algorithm
	Segments building
	Segments embedding
	Segments update
	Modified DMP algorithm
	Examples. The case of non-planar graph
	Conclusions

