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Abstract

The proliferation of real-time, infinite data streams neces-
sitates efficient online learning approaches. Hoeffding Trees
(HT), which extend traditional decision trees using the Hoeffd-
ing bound, offer robust stream classification but face high com-
putational costs. While the Green Accelerated Hoeffding Tree
(GAHT) addresses energy efficiency concerns, its prediction ac-
curacy can be improved by addressing its inherent limitations in
combining Hoeffding bounds with information gain metrics for
incrementally growing the tree. This study successfully develops
enhanced GAHT variants through optimized Hoeffding bound
stability and node splitting mechanisms. Our empirical evalua-
tion demonstrates that the usage of these new variants improves
predictive performance over the state-of-the-art GAHT, without
compromising its energy efficiency.

Keywords: Big Data, Data Stream, Online Learning, Incre-
mental Classification, Hoeffding Trees, Hoeffding Bound.
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1 Introduction

In many fields of activity, such as healthcare, finance, and social net-
works, deriving patterns and discovering interesting trends from real-
time data, known as a data stream, is gaining widespread attention
and prominence, as it allows decision-makers to extract knowledge in
real time, and enables analysts to detect and handle sudden, real-time
changes occurring in data.
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Unlike batch data processing, several restrictions must be consid-
ered while building a data stream based model, as no multiple passes
over the data are allowed, in addition to its infinite and unbounded
nature making it impossible to store the entire stream, which in turn
allows the data to evolve and change over time, requiring the model to
be constantly updated to prevent it from becoming obsolete [1]. All of
these constraints can not be fulfilled by traditional data mining meth-
ods, as they require the entire data set to be provided to build the
model, whereas updating the model at the arrival of new stream in-
stances using batch learning approaches, requires the model to store
historical data and merge it with the new stream instances so that it
can be retrained, which is significantly expensive in terms of storage
and computing resources [2] [3]. To overcome this, stream mining and
online learning methods have been introduced to efficiently generate
models in a single pass over stream instances, without the necessity
of retraining the existing model on both historical and new stream
instances during updates.

In the present work, we were more passionate about stream classi-
fication using an energy-efficient extension of Hoeffding Trees (HT) [4],
which is an incremental decision tree capable of building the prediction
model by making a single pass over the stream data. The introduc-
tion of the HT was initially observed within the implementation of the
Very Fast Decision Tree (VFDT). Through the use of the Hoeffding
Bound (HB), the VFDT splits the leaf nodes to grow the model incre-
mentally as stream instances continue to arrive. The latter performs
node splits only after meticulously determining the optimal attribute,
upon which the decision is fixed, and the subsequent decision remains
unchanged. The authors of [5] point out that if HT rigorously seeks
to find the optimal splitting condition, this will cause the algorithm
to struggle to perform splits when information is evenly distributed
across attributes. This will either result in split delays, slowing model
growth and impacting model availability, or will cause the model to
grow its leaves based on the use of a tie-breaking threshold, which is
likely to compromise its efficiency. To solve this problem and many
others, a sequence of improvements was made to the HT, yielding the
emergence of the Hoeffding Any Time Tree [5], based on its Extremely
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Fast Decision Tree (EFDT) implementation. To avoid delaying splits,
EFDT transforms a leaf into an internal node as soon as a beneficial
split is identified (not necessarily the optimal split). It then refines
the subsequent structure of the tree by replacing existing splits with
better alternatives when they are identified, enabling faster learning by
initially choosing an attribute and modifying it if necessary.

Throughout the HT improvements, it was observed that improving
the model’s predictive performance came at the cost of heavy com-
putations, involving significant hardware resources and higher energy
consumption. Accordingly, when improving any of the subsequent HT
models, along with improving predictive performance, reducing energy
consumption emerged as yet another priority. As part of this, sev-
eral studies were carried out on the VFDT and EFDT implementa-
tions to ensure their energy efficiency, resulting in the adaptation nmin

VFDT [6], the Strict Very Fast Decision Tree (SVFDT) [7], and the
Green Accelerated Hoeffding Tree (GAHT) [8]. While VFDTnmin and
SVFDT have been shown to successfully reduce energy and memory
usage, respectively, they are both based on the VFDT implementa-
tion, inheriting its aforementioned drawbacks. In contrast, the GAHT
extends EFDT with lower power consumption, where results from [8]
demonstrate that GAHT significantly reduces the power consumption
of EFDT by up to 70%, yet still achieves competitive results for EFDT.

The original implementation of the GAHTmodel uses the Hoeffding
bound along with the information gain to calculate the split merits of a
given attribute. However, this combination has been widely criticized
in the literature for its inefficiency with nominal data. Considering the
unpredictable nature of real-world data streams and the inevitable pres-
ence of nominal attributes in these streams, this inefficiency severely
limits the effectiveness and applicability of the GAHT model.

The purpose of this research is to address the aforementioned lim-
itation within the Green Accelerated Hoeffding Tree (GAHT), with a
particular focus on improving its accuracy rate while maintaining its
energy efficiency when processing real-world data streams. To achieve
this, we will first address the Hoeffding Bound stability challenge. We
will explore Hoeffding bound variants, which have been documented in
the literature to provide superior performance compared to the original
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bound used in GAHT. Subsequently, we will investigate the most effec-
tive tree node splitting mechanisms for tree growth, aiming to find the
optimal combination that enhances GAHT’s predictive accuracy. This
comprehensive approach is designed to contribute to the development
of more efficient and accurate online machine-learning models.

The subsequent sections are organized as follows: Section 2 pro-
vides a literature review on data stream mining, online learning, and
Hoeffding Trees. Section 3 details the Green Accelerated Hoeffding
Tree (GAHT), our baseline model. Section 4 outlines our research
contributions, addressing the limitations of Hoeffding Trees and pre-
senting our proposed solutions. Section 5 describes the experimental
setup, including software and datasets, and analyzes the results. Fi-
nally, Section 6 summarizes our key findings and concludes the study
with a glimpse into future work.

2 Literature Review

In a dynamic data stream environment where non-stationarity is a
norm, the incoming data is more likely to evolve over time and dy-
namically change its underlying distribution unpredictably, a situation
known as ”Concept Drift” [9]. Consequently, processing and gaining
insights from the potentially infinite streams of high-frequency data
requires the use of incremental learning approaches capable of contin-
uously updating the model, thus ensuring efficient real-time learning,
known as online learning.

Being a widely recognized supervised learning task among the data
mining approaches [10], classification has also served the online learn-
ing community to accurately predict the labels of the emerging stream
instances, on the basis of a model built incrementally from the previ-
ous labeled training instances, and updated using the new ones. Data
stream classifiers differ from batch data classifiers by the update prop-
erty, a crucial phase that involves automatic adjustments as new data
becomes available, and can be known as a self-improvement mecha-
nism [11] [12], preventing the model from becoming obsolete over time
due to the concept drift challenge [10].

Consequently, building a stream classifier requires learning, testing,
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and updating tasks. Among various stream classification approaches,
the Hoeffding Trees [4] algorithm stands out as our baseline method,
given its proven effectiveness in addressing the unique challenges of
data stream mining through its advanced decision tree architecture.

2.1 Hoeffding Trees

The Hoeffding Trees (HT) were introduced to address the challenge of
classifying high-velocity non-static data. As stream instances arrive at
a high frequency, Hoeffding Trees have the ability to update the existing
tree using only new instances, without having to store and examine pre-
vious instances [4], which effectively minimizes learning costs in terms
of optimizing the use of storage and computing resources, since data
streams are infinite [13]. Furthermore, this incremental update mech-
anism prevents the existing model from becoming obsolete, as data
properties can change over time due to the concept drift challenge [1].

Growing an incremental decision tree in a stream processing sce-
nario entails performing splits using only a subset of the stream, rather
than the entire stream instances, as for the batch decision trees.

This gives rise to the challenge of identifying the correct attribute
to perform a split while turning a leaf into a node [14], as a better split
attribute may appear within future stream instances. Consequently,
the Hoeffding Bound (see equation 1) was proven to be the appropriate
measure to choose the right split attribute for a given leaf node.

In the Very Fast Decision Tree (VFDT) [4], the state-of-the-art
implementation of Hoeffding Trees, the Hoeffding Bound provides a
statistical guarantee that the mean value of a random variable con-
tained in a range R will not differ from its estimated mean by more
than ε after sampling n independent observations, all within an error
rate of δ:

ε =

√
R2 · ln

(
1
δ

)
2n

. (1)

The major strength of this bound is that it only depends on: (i) the
values range R, (ii) the number of instances n, (iii) the expected con-
fidence within the split (1 − δ). This guarantees with a probability of
(1− δ) that the chosen attribute is the right one to make the split [15].

163



H. I. Bensaoula, S. Nait Bahloul

The VFDT’s tree-building process initiates with a root node (initially a
leaf) and processes stream instances characterized by a set of attributes
{X1, X2,..., Xk }. Upon their arrival, the instances are gathered within
the root node that keeps track of the number of instances using the
variable nt, which gets compared with another parameter fixed by the
user, called nmin, which indicates the minimum required samples to
calculate a split. Once the nt value reaches the nmin value, the algo-
rithm uses a splitting criterion, commonly the information gain ratio,
and calculates its value Gain(Xi) for each attribute Xi. Afterwards,
the algorithm estimates the difference between the two attributes Xa

and Xb having the best gain ratio value as follows:

Gain(Xa)−Gain(Xb) > ε. (2)

Once the equation (2) is satisfied, the root node will grow a child node
based on the attribute Xa, which will be omitted from the next child
node split candidate attributes. Otherwise, the algorithm employs a
user-defined tie threshold parameter, denoted as τ , to bound the ε
value, and choose Xa as a split attribute if equation 3 is achieved:

ε < τ. (3)

This process will be performed recursively to fully grow the tree.
However, due to the potentially infinite nature of the data stream,

the tree will grow in an unlimited and unrestricted manner, more so, if
no parameters such as the tree maximum depth are set. In case that the
memory reaches its limit, the tree system temporarily frees up space by
deactivating child nodes having less impact on the model; however, if
an inactive node is found to have a higher classification accuracy later
on, it will resume its activity [16].

2.2 Hoeffding Trees: State of the Art

The Very Fast Decision Tree (VFDT) initially operated under the as-
sumption of stationary data distributions, which proved insufficient for
handling evolving streams due to concept drift caused by unpredictable
changes in the statistical distribution of the data. To address this lim-
itation, the Concept-adaptive Very Fast Decision Tree (CVFDT) was
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introduced in [17], enhancing the VFDT by constructing alternative
subtrees that replace the main tree when they exhibit lower error rates.

In addition, a special category of HT for dealing with concept drift,
called Hoeffding Adaptive Tree (HAT), has emerged in [18] to per-
form on evolving data streams. HAT is combined with drift detection
methods, many of which are well detailed in [19]. Other notable contri-
butions include the One-class Very Fast Decision Tree (OcVFDT) [20],
designed to handle class imbalance but lacking adaptability to concept
drift. The Enhanced Decision Tree (EDT) [21] integrated Naive Bayes
to reduce time complexity but encountered issues with overfitting. The
Optimized Very Fast Decision Tree (OVFDT) [22] and the Efficient
Concept-adaptive Very Fast Decision Tree (ECVFDT) [23] targeted
class imbalance and various forms of concept drift, respectively. The
Vertical Hoeffding Tree (VHT) [24] and VFDT-Hadoop [25] focused on
reducing computational complexity.

These progressive developments have been eclipsed by the emer-
gence of the Hoeffding Anytime Tree (HATT) category, marking a sig-
nificant leap in the evolution of Hoeffding Trees.

In 2018, the HATT category was introduced to optimize the per-
formance of Hoeffding Trees in the context of evolving data streams.
The EFDT [5], as the practical instantiation of HATT, prioritizes the
selection and deployment of splits based on immediate utility, with the
flexibility to reverse decisions if a higher purity score is achieved by
another attribute. Recent studies [26] have begun to recognize EFDT
as the state-of-the-art approach for incremental decision tree surveys,
effectively displacing the traditional VFDT.

2.3 Hoeffding Trees: Energy Efficiency

While previous advancements have focused on improving the ability to
handle both stationary and evolving data streams, the energy efficiency
of these processes remains a critical issue due to the substantial stor-
age and computational resources required [27]. This section highlights
the efforts aimed at enhancing the hardware and energy efficiency of
online learning decision trees. The VFDT utilizes the nmin parameter
to determine the adequacy of instances for performing splits at leaf
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nodes. A fixed nmin value can lead to inefficiencies, causing unneces-
sary computations and energy consumption. To mitigate this, authors
in [6] proposed the Hoeffding Trees with nmin Adaptation (VFDTnmin)
approach, where each leaf node has its own nmin value, ensuring that
computations are performed only when splits are imminent. This adap-
tation resulted in an 89% reduction in energy consumption, with a min-
imal 3% decrease in accuracy. In a similar vein, the Strict Very Fast
Decision Tree (SVFDT) [7] was introduced to optimize hardware usage
and reduce memory costs. SVFDT maintains leaves as such unless a
split is deemed necessary, achieving comparable predictive performance
to VFDT while significantly reducing processing time and memory us-
age.

The present section aimed at tracing the methodological evolution
of the HT algorithm, revealing a dual trajectory: Subsection 2.2 out-
lined fundamental advances focused on improving the core of the HT
classifier in terms of predictive robustness when addressing the com-
plexity of data streams, whereas the implementations illustrated in
Subsection 2.3 targeted the contemporary improvements that began
targeting the HT’s computational efficiency. However, it should be
noted that the two energy-efficient incremental trees relied on the orig-
inal VFDT. An HT implementation that was subsequently deemed out-
dated following the introduction of the EFDT suggests an improvement
of the latter through a faster and more flexible model construction
strategy, as highlighted in Subsection 2.2. In light of its statistical su-
periority, the authors of [8] chose to rely upon the EFDT algorithm to
implement the Green Accelerated Hoeffding Trees (GAHT), an energy-
efficient online decision tree. With the aim of enhancing the model’s
stability and prediction accuracy when applied to real-world datasets,
the current work extends the GAHT implementation by combining it
with methodological refinements of its node-splitting component.
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3 Green Accelerated Hoeffding Trees

3.1 GAHT Basic idea

Inspired by the VFDT nmin adaptation, the Green Accelerated Hoeffd-
ing Trees (GAHT) algorithm was introduced in [8], as an approach that
can obtain competitive accuracy to the EFDT but at reduced energy
cost.

The idea behind GAHT is to use a per-node splitting process that
varies according to the observed data distribution per leaf node. Based
on a calculated fraction, either EFDT or basic Hoeffding tree growth
process will be applied for a given leaf node, meaning that the EFDT
re-evaluation process will only be applied for some nodes, rather than
for all nodes in the tree, as in the case of a basic EFDT, which will
significantly help reduce the calculations and the consumed energy.

3.2 GAHT Algorithm

This section presents a summary of the GAHT growth process, high-
lighting the most important aspects.

Upon receiving an instance, the algorithm processes the tree
branches until reaching a leaf node, at which point it calculates the
fraction of observed instances at this leaf:

fraction =
nl

nsinceCreation/nleaves
, (4)

where nl denotes the number of instances observed at this particular
leaf, nsinceCreation designates the number of instances observed in the
tree since the creation of this leaf, and nleaves – the overall number of
leaves in the tree. Having determined the value of the fraction using
equation 4, the result gets compared with the deactivateThreshhold
and the growFastThreshhold, where three cases may arise:

1. If fraction < deactivateThreshhold, the node is deactivated,
meaning no further splitting is done.

2. If the leaf node is active and the fraction≤ growFastThreshhold,
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the leaf is transformed into a node by employing the same algo-
rithmic steps that are used in the construction of a basic HT.

3. If the leaf node is active and the fraction> growFastThreshhold,
the leaf is transformed into a node by employing the same algo-
rithmic steps that are used in the construction of an EFDT.

Following the above-outlined cases, the GAHT algorithm dynamically
constructs the tree, generating three different types of nodes during its
execution:

� Standard nodes: these nodes evolve according to the same
growth criteria as standard Hoeffding trees.

� Fast-growing nodes: these nodes follow the EFDT splitting
process by creating less restrictive splits, which results in faster
tree growth on these branches.

� Inactive nodes: when the fraction value within a given node
is less than the deactivateThreshhold, this node will be inactive.

GAHT was tested using synthetic and real-world benchmark datasets,
the metrics being energy efficiency and accuracy; the results showed
that its performance was similar to that of EFDT while using 70%
less energy [8]. Since the GAHT algorithm is a passive online tree
designed for stationary data streams, the authors have not attempted
to judge its effectiveness in evolving stream scenarios, as this is not its
primary objective. Given that conceptual drift is a common challenge
in real-world data streams, this study will also conduct experiments
on GAHT with datasets exhibiting concept drift, thus addressing its
behaviour and stability in drifting situations.

The following section examines the node separation limits imple-
mented by GAHT, as well as the introduced separation component
variants to be used.

4 Contribution

The current state-of-the-art implementation of the Green Adaptive
Hoeffding Tree (GAHT) uses the Hoeffding Bound and a basic split-
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ting mechanism derived from the Hoeffding tree. These mechanisms
are found to exhibit poor performance based on the findings in [28].
Several alternative proposals to enhance these mechanisms have been
made [29] [28] [30], and when applied to other implementations of Ho-
effding trees [31], these alternatives have demonstrated favourable re-
sults. Our research aims to explore these methods within the GAHT
framework. This section outlines the challenges and proposed solutions
to address them.

4.1 Correcting the usage of the Hoeffding Bound

In [29], the authors argue that the Hoeffding Bound is too restrictive,
as it only applies to numeric variables and requires an input that can
be expressed as a sum of independent variables.

Consequently, multiple efforts have been made to improve the Ho-
effding inequality’s usage within the tree growth process, suggesting
various alternatives such as McDiarmid inequality in [29], Doubled Ho-
effding bound, and Accuracy-Gain from [28], in addition to the Half-
Hoeffding Bound [30]. Previous research applying Hoeffding Bound
variants to the EFDT hierarchical tree [31] revealed promising results.
This study builds upon this foundation by exploring the effects of these
same variants on the GAHT algorithm. Specifically, we investigate:

� Half-Hoeffding bound: As shown in [30], the half-Hoeffding
bound allows the Hoeffding Tree to grow more rapidly using four
times fewer data elements to make a split, compared to what
is needed in the case of using the original Hoeffding bound. In
addition, the authors state that using the Half-Hoefding bound
gave higher accuracy rates.

� Doubled Hoeffding bound: This variant of the Hoeffding
bound is designed to enhance the correctness of splitting a leaf
node [28], making it particularly beneficial for Hoeffding trees
that do not revise their splits, thereby aligning well with VFDT.
However, its effectiveness in the EFDT, which performs revisions
for each split, has not yet been evaluated. Given that the GAHT
extends both VFDT and EFDT [8], we investigate in this study
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whether the Doubled Hoeffding bound would be advantageous in
improving the GAHT’s accuracy.

4.2 Node Splitting Criteria

Most of the Hoeffding Trees algorithms tend to use information gain
as splitting criteria in the tree growth process.

However, as noted in [32], the use of information gain cannot be
combined with Hoeffding’s inequality. The authors advocate for the
initial use of Misclassification error (MC) as a measure of impurity,
particularly at the lower levels of tree construction, and for higher
levels, more traditional measures like information gain (IG) or the Gini
index (Gini) are more effective. Consequently, a new criterion has been
proposed in [32], which hybridizes Misclassification error and the Gini
index to leverage their combined advantages. When applied to the
EFDT in [31], this novel algorithm showed improved results.

This study contributes novel GAHT algorithm variants aimed at
improving accuracy while maintaining this latter energy efficiency.
These variants are based on a systematic exploration of Hoeffding
Bound configurations (standard, half, and double), 3 split criteria (in-
formation gain, Gini index, and misclassification error), and a hybrid
impurity measure combining misclassification error with both Gini in-
dex and information gain, exploiting the strengths of each criterion at
different stages of tree growth. The complete set of resulting variants
is shown in Table 1 (see p. 13).

The details of the various experiments and the execution environ-
ment will be presented in the following sections of this paper.

5 Experiments and Results

5.1 Experimental Setup

To carry out the experiments, we used an open-source framework for
real-time stream mining, called Massive Online Analysis (MOA) [33].
The use of MOA is justified by the fact that it provides a wide range
of stream mining algorithms, and it can be easily extended with new
algorithms. The MOA’s framework ease of extensibility enabled us
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Table 1. GAHT Algorithm Variants

Algorithm Variant Splitting Criterion Hoeffding Bound
Variant

GAHT IG Information Gain Standard HB

GAHT Gini Gini index Standard HB

GAHT MC Misclassification error Standard HB

GAHT IG Half Information Gain Half HB

GAHT Gini Gini index Half HB

GAHT MC Half Misclassification error Half HB

GAHT IG Double Information Gain Doubled HB

GAHT Gini Double Gini index Doubled HB

GAHT MC Double Misclassification error Doubled HB

GAHT MC+Gini Hybrid Misclassification error +
Gini index

Standard HB

GAHT MC+Gini Hybrid
Double

Misclassification error +
Gini index

Doubled HB

GAHT MC+Gini Hybrid
Half

Misclassification error +
Gini index

Half HB

GAHT MC+IG Hybrid Misclassification error +
Information Gain

Standard HB

GAHT MC+IG Hybrid
Double

Misclassification error +
Information Gain

Doubled HB

GAHT MC+IG Hybrid
Half

Misclassification error +
Information Gain

Half HB
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to initially add the GAHT implementation provided in [8], and our
improved GAHT implementations.

For each algorithm evaluation, we employ the Test-Then-Train eval-
uation method (also known as EvaluatePrequential) provided in the
Massive Online Analysis (MOA) framework. In this methodology, the
learning process follows the following steps:

1. Initial Phase: The model begins with an empty tree and builds its
initial structure using the first few instances of the data stream.

2. Continuous Learning Process: For each subsequent instance in
the stream:

� First, the current model makes a prediction on the incoming
instance (Test phase).

� The true label is then revealed and used to evaluate the
model’s performance.

� Finally, the same instance is used to update the model (Train
phase)

This approach enables continuous evaluation of the model’s per-
formance on unseen data while simultaneously allowing the model to
adapt to evolving patterns in the data stream. The incremental nature
of this method makes it particularly suitable for streaming scenarios
where both immediate performance assessment and continuous learning
are required [34].

Each experiment was evaluated using 3 key metrics: accuracy, CPU
time, and energy consumption (measured in kilowatt-hours).

Accuracy is defined as the proportion of correctly classified in-
stances out of the total number of instances in the data stream. CPU
time (T) represents the total execution time in seconds. To quantify en-
ergy consumption, an appropriate energy measurement tool is required.
Accordingly, this research will use the Python package Codecarbon [35].

Codecarbon can be used to evaluate the amount of hardware power
(expressed in Kilowatt per hour) required to run a given code sequence.
This tool monitors the power supply to the underlying hardware at
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regular intervals, with the default interval set at 15 seconds. Comple-
mentary details pertaining to this software can be found in [35].

To ensure a fair and robust evaluation, the experiments were carried
out on 6 real-world benchmark datasets frequently used in the literature
to assess the performance of incremental classification algorithms, along
with 3 imbalanced concept drift scenarios, namely abrupt, gradual, and
incremental.

Table 2. Properties of used datasets

Datasets Features Features
Types

Label
Type

Instances Classes

Airlines 7 Nominal
Numeric

Nominal 539,383 2

Electricity 8 Nominal
Numeric

Nominal 45,312 2

HT sensor 11 Nominal
Numeric

Nominal 919 438 3

Poker 10 Numeric Numeric 1,025,010 10

KDD 41 Nominal
Numeric

Nominal 1,000,000 23

Forest
Covertype

54 Numeric Numeric 581,012 7

Insects
Abrupt
Imb

33 Numeric Nominal 355,275 6

Insects
Gradual
Imb

33 Numeric Nominal 143,323 6

Insects In-
cremental
Imb

33 Numeric Nominal 452,044 6

As highlighted in [36], an optical sensor made to measure the flight
properties of insects was used to gather data. Over the course of around
three months, data was collected in a controlled, non-stationary set-
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ting simulating various concept drift types. As for the remaining data,
they were obtained from the UCI Machine Learning Repository [37],
consisting of real datasets with no missing values requiring any pre-
processing step, allowing a direct comparison of the algorithm’s perfor-
mance. Thus, combining these datasets will allow us to get a collection
that encompasses a wide range of feature dimensions, instance counts,
class imbalanced distributions, and concept drift scenarios, providing
a robust testbed for the GAHT algorithm variants.

5.2 Results and Discussion

Tables 3, 4 and 5 report the performance of GAHT when used with
simple and hybrid decision tree splitting criteria, namely: information
gain (IG), Gini index (Gini) and classification error (McError), the
hybrid criteria McError + IG and McError + Gini, together with the
three Hoeffding Bound (HB) variants described (Half, original, and
double HB).

The state-of-the-art GAHT implementing the standard HB com-
bined with the IG serves as a baseline for comparison in this study.
Moreover, when determining the effectiveness of the GAHT imple-
mented variants, the measured energy consumption will be considered
as a non-negligible factor in evaluating the solidity of these variants.
This is necessary because GAHT is firmly rooted in the Green AI
paradigm, which considers energy efficiency to be just as important as
the model’s predictive performance. Accordingly, while some variants
might reach an outstanding accuracy, if they waste more energy than
GAHT IG, they will be considered to be an inefficient GAHT variant
in our research. Table 6 will consolidate and highlight for each dataset
and drift type, the most outstanding GAHT variants when compared to
baseline GAHT using the aforementioned measures. We shall mention
that previous studies recommending the use of these HB or split crite-
rion variants did not adopt this criterion when evaluating any of them.
A preliminary analysis of the results reveals that most of the suggested
GAHT variants perform competitively and frequently outperform the
baseline implementation. Moreover, many of these combinations of-
fer higher accuracy levels while preserving the GAHT’s crucial energy
efficiency.
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5.2.1 Impact of the Node Splitting Criteria Variants

We will start by discussing the effect of both single and hybrid node
splitting criteria.

Impact of Single Split Criterion Variants

The results support the hypotheses of the authors in [29], who claim
that the basic combination of HB with IG can work quite well only when
applied to exclusively numerical stream instances (this is exemplified
on the forest fully numerical dataset). Additionally, the results of the
GAHT HB+Gini index confirm the authors’ statement in [38] that,
unlike IG, Gini can be applied to both numerical and nominal data
sets, thereby outperforming the HB+IG variants of GAHT.

In [39], both information gain(IG) and gini index (GI) provided ap-
proximate accuracy values in batch decision trees when applied to static
data, irrespective of the binary/multiclass balance/imbalance scenar-
ios. However, the current results demonstrated that such distributions
do produce varying accuracy levels when the split criterion is applied
within the HB for incremental online decision tree construction. Never-
theless, results in Table 3 indicate that when these two division criteria
were combined with HB and applied (separately) to extremely unbal-
anced multiclass numerical data sets, namely poker, the Gini index
displayed more stable divisions, which highlight the shortcomings of
the HB+IG combination in managing class imbalance, even for nu-
merical streams. Indeed, according to [32] and [39], the Gini index
frequently generates a division that produces purer, better organized
data subsets, a feature that would help mitigate class imbalance.

Results for the Electricity, HT-Sensor, and kdd datasets support the
authors’ hypothesis in [29] that when HB is applied with IG or Gini
for tree construction on stream scenarios that encounter instances with
highly nominal features (whether they be binary or multiclass severely
imbalanced datasets), performances might fall off. Additionally, among
single split criteria, preliminary trials demonstrated the superiority of
the GAHT HB+McError with streams having an increased presence
of nominal features, thus resolving the problem HB encounters with
IG and Gini when classifying such streams. This is because, rather
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than raising the criteria value as in the Gini, the McError is utilized
as the basis for a split-measure function with the goal of improving the
accuracy gain during the splitting process, as the authors note in [32].

Impact of Hybrid Split Criterion Variants

The hybrid GAHT MC+GINI node splitting criteria outperforms the
exclusive use of McError or Gini. This confirms the hypothesis for-
mulated in the article [32], which states that, combined with a second
criterion, misclassification guarantees more optimal splits and prevents
the drawback of McError described in [32], which consists in random
splits if no attribute that maximizes accuracy levels is chosen. Con-
sequently, the use of the Gini index avoids these random splits, which
would then reduce the performance of the online decision tree.

5.2.2 Impact of Hoeffding Bound variants

According to the authors of [32] and [30], the use of the Hoeffding
bound (HB) can still be considered a heuristic method that produces
satisfactory practical results. An assumption verified by the results in
the above Table 3. In the current subsection, we focus on the analysis
of GAHT implementing the above node separation criteria with a set
of HB variants, which have been shown in the literature to outperform
HB. The performance of these variants is illustrated in Tables 4 and 5.

Impact of Half Hoeffding Bound

As mentioned earlier in the upper sections, real-world stream classifica-
tion scenarios face the unique challenges of concept drift, which requires
frequent model updates. The authors’ statements in [30], pointing out
that the usage of half HB tends to grow nodes rapidly, lead us to be-
lieve that this will help models to adapt quickly to this so-called concept
drift. Consequently, the performance of the GAHT Half HB variants
will be mainly evaluated by their results on non-stationary (evolving)
data.
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Table 3. Performances of GAHT Split Criterion Variants

Dataset GAHT
IG

GAHT
Gini

GAHT
Mc

GAHT
Mc+IG

GAHT
Mc+GI

Airlines 61.14%
13.47s
0.000196

63.68%
16.53s
0.000241

59.68%
12.58s
0.000183

61.24%
15.50s
0.000226

59.98%
34.56s
0.000505

Forest 88.36%
39.85s
0.000581

87.34%
36.78s
0.000536

87.68%
37.65s
0.000548

88.16%
40.71s
0.000593

87.92%
37.86s
0.000552

kdd 99.54%
51.64s
0.000753

99.60%
52.51s
0.000766

99.83%
47.53s
0.000693

99.69%
51.54s
0.000751

99.72%
55.52s
0.000809

poker 54.30%
19.60s
0.000286

58.28%
14.45s
0.000211

55.92%
15.65s
0.000228

54.57%
23.49s
0.000342

59.19%
18.46s
0.000269

HT sensor 99.64%
16.50s
0.000241

99.82%
15.50s
0.000226

99.90%
15.69s
0.000229

99.54%
15.71s
0.000229

99.83%
15.48s
0.000226

Electricity 86.10%
03.64s
0.000052

86.90%
02.39s
0.000035

87.30%
02.41s
0.000035

84.80%
02.43s
0.000035

86.80%
03.40s
0.000049

Insect
Abrupt
Imbal.

74.85%
23.49s
0.000342

75.00%
22.55s
0.000329

73.52%
21.50s
0.000313

74.75%
22.63s
0.000330

75.52%
21.50s
0.000313

Insect
Gradual
Imbal.

69.55%
15.74s
0.000229

70.55%
13.59s
0.000211

71.60%
12.67s
0.000184

69.15%
13.79s
0.000201

70.60%
12.77s
0.000186

Insect In-
cremental
Imbal.

76.64%
34.97s
0.000509

76.06%
30.54s
0.000445

76.04%
26.59s
0.000387

76.44%
32.66s
0.000476

76.40%
31.62s
0.000461
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Table 4. Performances of GAHT Half Hoeffding Bound Variants

Dataset GAHT
IG Half

GAHT
Gini
Half

GAHT
Mc Half

GAHT
Mc+IG
Half

GAHT
Mc+GI
Half

Airlines 60.14%
13.46s
0.000196

61.18%
23.59s
0.000344

60.12%
17.60s
0.000256

62.74%
15.55s
0.000226

60.34%
27.51s
0.000401

Forest 88.32%
41.80s
0.000609

89.12%
37.80s
0.000551

87.90%
35.71s
0.000520

89.20%
38.94s
0.000567

89.06%
37.84s
0.000551

kdd 98.48%
47.50s
0.000692

99.68%
54.50s
0.000794

99.78%
50.62s
0.000738

99.82%
47.59s
0.000693

99.72%
55.52s
0.000809

poker 53.35%
18.85s
0.000272

51.29%
13.46s
0.000196

54.51%
17.48s
0.000255

55.33%
22.64s
0.000330

57.57%
15.70s
0.000229

HT sensor 99.73%
16.52s
0.000243

99.78%
16.64s
0.000242

99.94%
16.60s
0.000242

99.55%
15.48s
0.000225

99.85%
15.51s
0.000226

Electricity 86.10%
02.45s
0.000036

88.00%
03.47s
0.000053

85.70%
02.61s
0.000038

84.80%
02.59s
0.000038

86.80%
02.44s
0.000035

Insect
Abrupt
Imbal.

74.65%
24.62s
0.000359

73.17%
19.62s
0.000286

73.30%
17.47s
0.000255

75.15%
21.60s
0.000315

75.50%
20.64s
0.000301

Insect
Gradual
Imbal.

69.45%
13.49s
0.000197

71.00%
12.67s
0.000185

69.35%
12.56s
0.000183

69.15%
13.49s
0.000197

69.55%
13.51s
0.000197

Insect In-
cremental
Imbal.

76.90%
34.79s
0.000507

76.54%
30.87s
0.000450

76.72%
29.60s
0.000431

76.70%
33.68s
0.000491

76.78%
28.60s
0.000417
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Table 5. Performances of GAHT Double Hoeffding Bound Variants

Dataset GAHT
IG Dou-
ble

GAHT
Gini
Double

GAHT
Mc
Double

GAHT
Mc+IG
Double

GAHT
Mc+GI
Double

Airlines 62.74%
13.47s
0.000196

63.22%
13.46s
0.000196

58.75%
12.24s
0.000179

62.74%
15.46s
0.000225

60.34%
27.48s
0.000401

Forest 89.50%
38.92s
0.000567

88.70%
37.82s
0.000551

88.14%
34.85s
0.000508

89.20%
38.91s
0.000567

89.06%
37.91s
0.000552

kdd 99.74%
49.51s
0.000723

99.89%
54.54s
0.000795

99.89%
51.61s
0.000752

99.82%
51.54s
0.000751

99.72%
56.50s
0.000823

poker 55.63%
18.53s
0.000270

55.49%
14.44s
0.000210

55.50%
15.70s
0.000229

55.33%
22.49s
0.000328

57.57%
15.46s
0.000225

HT sensor 99.65%
14.66s
0.000214

99.81%
15.47s
0.000225

99.90%
15.51s
0.000226

99.55%
15.70s
0.000229

99.85%
15.49s
0.000226

Electricity 85.80%
02.40s
0.000035

83.60%
02.41s
0.000035

87.90%
02.39s
0.000035

84.80%
02.66s
0.000039

86.80%
03.39s
0.000049

Insect
Abrupt
Imbal.

74.35%
21.50s
0.000313

74.67%
21.47s
0.000313

73.10%
20.92s
0.000305

75.15%
24.50s
0.000357

75.50%
19.49s
0.000284

Insect
Gradual
Imbal.

69.45%
13.71s
0.000200

67.90%
11.53s
0.000168

67.90%
10.66s
0.000155

69.15%
13.74s
0.000200

69.55%
11.65s
0.000170

Insect In-
cremental
Imbal.

76.52%
30.62s
0.000446

73.84%
25.65s
0.000374

56.24%
18.57s
0.000271

76.70%
33.65s
0.000490

76.78%
30.64s
0.000446
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The results show that such a bound will not significantly enhance
model performances when processing drifting data. More specifically,
when examining the behavior of each GAHT variant when applying the
original HB method versus using the Half HB method, a considerable
drop in accuracy was observed for both abrupt and progressive drift
scenarios. Meanwhile, some GAHT variants, namely GAHT Gini Half,
IG Half, and McError Half, demonstrated an improvement over using
HB for stationary data namely electricity, forest, and HT sensor, as
well as incremental concept drift, which is thought to be a virtual drift
in [40] (not as severe as the so-called real drifts). This leads us to call
for systematic model growth and updates to handle real-world concept
drift scenarios, thereby suggesting that stable splits are better suited
to handling non-stationary data than fast, random splits.

Another key observation regarding the GAHT Half HB variants
is the increase in CPU time, which is accompanied by an increase in
energy consumption. This is explained by the fact that non-stable
splits will cause the GAHT to revise splits more frequently due to the
use of the EFDT paradigm within this latter; obviously, such revisions
will include repeatedly calculating the split measures for all of the sets
and seeking the optimum split attribute.

Impact of Double Hoeffding Bound

Doubling the Hoeffding bound confirms the need to perform splits with
confidence when growing and updating an incremental decision tree,
which is also confirmed by the results of the single and hybrid use
of the GI split criteria with McError on stationary and evolving data
streams. Not only would this HB variant ensure stable online trees, but
it would also avoid GAHT executing several split revisions, as most of
the executed splits will be more stable.

Table 6 summarizes the GAHT variants that outperform the basic
GAHT IG HB implementation while maintaining the latter’s energy
efficiency by selecting the best of all the aforementioned GAHT variants
(displayed in Tables 3, 4, and 5).
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Table 6. Performant and Energy-Efficient GAHT Variants

Dataset Performant
Algorithm

Algorithm
Performance

GAHT IG
Performance

Airlines GAHT Gini
Double

63.22%
13.46s
0.000196kwh

61.14%
13.47s
0.000196kwh

Forest GAHT IG
Double

89.50%
38.92s
0.000567kwh

88.36%
39.85s
0.000581kwh

kdd GAHT Mc
Double

99.89%
51.61s
0.000752kwh

99.54%
51.64s
0.000753kwh

HT sensor GAHT Mc
Double

99.90%
15.51s
0.000226kwh

99.64%
16.50s
0.000241kwh

Electricity GAHT Mc
Double

87.90%
02.39s
0.000035kwh

86.10%
03.46s
0.000052kwh

poker GAHT
MC+Gini
Hybrid

59.19%
18.46s
0.000269kwh

54.30%
19.60s
0.000286kwh

Insect
Abrupt
Imbalanced

GAHT Gini 75.00%
22.55s
0.000329kwh

74.85%
23.49s
0.000342kwh

Insect
Gradual
Imbalanced

GAHT Mc 71.60%
12.67s
0.000184kwh

69.55%
15.74s
0.000229kwh

Insect Incre-
mental Im-
balanced

GAHT IG
Half

76.90%
34.79s
0.000507kwh

76.64%
34.97s
0.000509kwh
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6 Conclusion
The present work focused on improving an energy-efficient incremental
decision tree, namely the Green Accelerated Hoeffding Trees (GAHT),
to effectively classify real-world data streams.

Standard GAHT achieves good performance only when used to pro-
cess balanced, fully numerical data streams, a condition that is not
always met in real-time applications. Consequently, our study intro-
duces over 6 variants of GAHT, targeting its limitation induced by
combining Hoeffding Bounds with the information gain (IG) criterion
for incremental tree growth. These variants were obtained using differ-
ent combinations of Hoeffding bounds and node splitting criteria, thus
overcoming the initial limitations of the algorithm.

This study identifies multiple key insights, starting with the Gini
Index’s broad applicability and efficiency over the IG across various
dataset types. Moreover, it was observed that GAHT misclassifica-
tion error (McError) showcases better performances when used within
nominal stream instances. It was also noted that the usage of a hybrid
criterion combining McError with the GI demonstrates superior per-
formance on multi-class datasets of varying dimensions. An additional
insight was identified, revealing that GAHT, when combined with the
standard HB, the latter establishes a reliable performance for any split
criteria other than IG. This is in contrast to the double bound, which
greatly enhances IG performances and is especially useful for guaran-
teeing GAHT stability and energy efficiency in the face of evolving data
streams. Lastly, it was observed that half-bound emerges as a strong
choice for speed-critical applications with stationary data streams; how-
ever, usage of this latter decreases GAHT energy efficiency if too many
split revisions are encountered.

Considering the inherent unpredictability of data streams, we ex-
pect future work to focus on handling the dimensionality of the stream
instances, as this will affect the predictive and energy efficiency of the
GAHT variants. Furthermore, we believe that the use of active drift
detection techniques will ensure a more reliable and efficient applica-
tion of the model when dealing with drift situations in real streams,
such as recurrent drift, for which the behavior of the GAHT algorithm
has not been investigated.
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