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The modified deep first search algorithm:

functional implementation

Constantin Ciubotaru

Abstract

The article includes the modified deep first search algorithm
(DFS) that allows, at a single traversal of a graph, to check its
connectivity/biconnectivity, highlight the cut vertices, and build
the spanning tree, the biconnected components, and the funda-
mental set of cycles.

The proposed algorithm was implemented and tested in a
functional style using Common LISP language. 1
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1 Introduction

Depth-first search (DFS) is an algorithm for depth traversal in a tree or
graph [1], [2]. Initially, the depth traversal method and spanning trees
were proposed by the French mathematician Charles Pierre Trémaux
(19th century) to solve the labyrinth problem.

The algorithm can be used in the implementation of many problems
based on the processing of tree structures. For example, the Travelling
Salesman problem, the realization of the Ford-Fulkerson algorithm and
the backtracking algorithms, the construction of the spanning tree, the
highlighting of cut vertices, the detection of cycles, the graph verifica-
tion of the connectivity/biconnectivity, the solution of some artificial
intelligence problems, web-crawling, etc.
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The algorithm is also frequently used to check the planarity of
graphs and graphs drawing. [3]–[6]. The time complexity of DFS is
O(|V |+ |E|), where V is the number of vertices and E is the number
of edges of the graph.

In the following, we present a modified version of the DFS algo-
rithm taking into account the ideas presented in [4], which allow us in
a single traversal to test connectivity and biconnectivity of a graph,
highlight cut vertices and biconnected components, and build the fun-
damental set of cycles.

2 Preliminary notions

The undirected graph is denoted by G = (V,E), and the adjacency list
of any vertex v – by adj(v).

A sequence of vertices with the property that any two consecutive
vertices are adjacent is called path: (v1 v2 v3 . . . vn) or ((v1 v2) (v2 v3) . . .
(vn−1 vn)), where: (vi, vi+1) ∈ E for 1 ≤ i < n. The empty path is
denoted by nil or (). A path is called elementary (simple) if all par-
ticipating vertices (edges) are distinct.

A path in which the first vertex coincides with the last is called
cycle. The cycle is elementary if it consists only of distinct vertices,
excluding the first and last. The minimum length of a cycle is 3. Two
cycles are called independent if they differ by at least one edge.

A graph is called connected if, for any two distinct vertices of it,
there is at least one path connecting them. A vertex is called cut vertex
(point of articulation, critical vertex) if the subgraph obtained by
eliminating the vertex and its incident edges is no longer connected. A
tree is a connected graph containing no cycles.

The undirected graph G is called biconnected if it has no cut ver-
tices. A biconnected component is a maximal biconnected subgraph.

The tree T = (V,Et) is called a spanning tree for the graph G =
(V,E) if it contains exactly all the vertices of G and is obtained from
G by omitting some edges from E, Et ⊆ E. Any connected graph can
have multiple spanning trees. Otherwise, the graph will be a tree. The
omitted edges form the set of back edges. Adding one back edge to
the spanning tree will generate a unique cycle. This cycle is called the
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fundamental cycle. The set of all fundamental cycles represents the
fundamental set of cycles.

3 The modified DFS algorithm

Let’s first define the required data structures. The variable stack is
used to collect all bicomponents. The final set of bicomponents is stored
in bicomponents. For collecting the lists of cut vertex and back edges,
the variables cutvertex and backedges are used. The set notconnected
at the end of the algorithm will contain the list of all unreachable
vertices from the root (if the graph is not connected or ∅ otherwise).
Four additional lists of size |V | are introduced: tree, sptree, ord, and
up.

When traversing the graph, any vertex v receives the number that
corresponds to its visit order, using counter visit and list ord. The root
will be visited first, assigning it a visit order equal to 0. It is clear that
any ancestor u of vertex v, (u v) or (u v1 v2 . . . vn v) has a visit number
smaller than v, ord(u)¡ord(v).

For any vertex v, we denote by tree(v)=u the unique direct ances-
tor of the vertex v in the tree. Thus, the final value of the tree will
correspond to the spanning tree. Incidence lists sptree are also built.
An important structure presents the list up. For each vertex v, up(v)
will store the minimal visiting order ord of the ancestor (closest to the
root) that can be accessed from v using at most one back edge.

The proposed algorithm was implemented and tested in a functional
style using the Common LISP language [7], [8]. The description of the
MainDFS function is presented in Figure 1. The description of the
functions used by MainDFS is inserted in Figure 2.

First, all assignments are performed by calling the data- ini-
tiation function. At this stage, for any vertex v, sets ord(v)=-1,
up(v)= -1, tree(v)= -1, sptree(v)= nil.

If v is a direct descendant of u and up(v) ≥ ord(u), then u will
be a cut vertex (Figure 4). For the sets cutvertex, notconnected, and
bicomponents, the initial value is set to ∅, and backededges is set equal
to E.
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function mainDFS(V,E, root)
call data- initiation;
call dfstree(root);
for i=0 to |ord|−1do

iford(i)= -1 then notconnected:=notconnected ∪ {i};
end for
if |notconnected|> 0 then print “The graph is not

connected. The unreachable vertices from the
root = ” notconnected;
return-from DFS-main ;
else print “The graph is connected.”

end if
for i=0 to |tree|−1do j:=tree(i) ;

if j ̸= i then
sptree(j) := (i ∥sptree(j));
backendedges:= backendedges\{(i j),(j i)} ;

end if
end for
if | sptree(root)|= 1 then cutvertex:=cutvertex\{root};
end if
print “Final cut vertex = ” cutvertex;
print “Backend edges = ” backendedges;
if cutvertex = ∅ then
print “The graph is not biconnected.”;
else print “The graph is biconnected.

bicomponents=” bicomponents;
end if then else

end mainDFS

mainDFS

Figure 1. The description of mainDFS function
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function data- initiation
for i=0 to |V |−1do

ord(i):=-1;up(i):=-1; tree(i):=-1; sptree(i):=nil;
end for
ord(root):=0;up(root):=0; tree(root):=root; visit:=0;
cutvertex:=∅; notconnected:=∅; stack:=nil;
backendedges:=E ; bicomponents:=∅;

end data- initiation
——————————————–
function dfs- tree(k)
for all i ∈adj(k)do
if(tree(k) ̸= i)∧(ord(k)> ord(i)) stack := (k i)∥stack; end if
if ord(i) < 0 then /* i is not yet visited */

tree(i):=k;visit := visit+ 1; ord(i):=visit;
up(i):=visit; /* i is visited */
call dfs- tree(i);
up(k):=min(up(i), up(k))
whenup(i) ≥ ord(k)

curtvertex := curtvertex ∪ {k};
bic := nil;
call poppush(k, i, bic);

end when
else

print“i is already visited“;
up(k):=min(up(k), ord(i))

end if then else
end for all

end dfs- tree
——————————————–
function poppush(k, i, bic)
bic := stack(0);
stack:=pop(stack);
if(k i) = bic(0) then push bic in bicomponents else

poppush(k, i, bic)
end if then else

end poppush

Additional functions for mainDFS

Figure 2. Additional functions for mainDFS
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Next is called the recursive function dfs- tree(root). This function
builds the sets ord, up, cutvertex, and sptree. It also manages records
in the stack. At the time of the appearance of a new bicomponent in
the top of the stack, the function poppush is called, which extracts
this component and places it in the set of bicomponents.

For a connected graph, any vertex can be considered a root, thus
obtaining multiple spanning trees for the same graph.

Finally, the function MainDFS checks connectivity/biconnectiv-
ity of the graph, builds the lists of adjacency sptree and the set of back
edges backedges, and checks if the root can be a cut vertex.

V=(0 1 2 3 4 5 6 7 8 9 10 11)

E=((0 5)(0 8)(0 9)(1 4)(1 5)(2 3)(2 5)(2 6)(3 5)(3 7)

(4 5)(5 8)(6 7)(8 9)(9 10)(10 11))

ADJ=((9 8 5)(5 4)(6 5 3)(7 5 2)(5 1)(8 4 3 2 1 0)(7 2)

(6 3)(9 5 0)(10 8 0)(11 9)(10))

Example 1

Figure 3. Example 1

An important property of the root should be mentioned. The root
of the sptree is a cut vertex if and only if sptree(root) > 1. The results
of performing the mainDFS function for Example 1 (Figure 3) are
presented in Figure 4: (a) – initial graph and cut vertex, (b) – spanning
tree, back edges, ord and up values, bicomponents.

The formal proof of the correctness of the algorithm can be found
in [4]. The function fundamental- cycles is called to calculate the
fundamental set of cycles.

4 Building the fundamental set of cycles

The fundamental set of cycles is built based on the idea of the Paton
algorithm [9] taking into account that the spanning tree sptree and the
set of back edges backedges are already constructed.

134



The modified DFS algorithm: functional implementation

0

1

2 3

4 5

6 7

8

9

10

11

(a) Initial graph.
Cut vertex

vertex v

ord(v) up(v)

0
11 0

1
6 4

2
10 4

3
7 4

4
5 4

5
4 0

6
9 4

7
8 4

8
3 0

9
0 0

10
1 0

11
2 1

(b) Spanning graph.
End edges

The graph is connected. The graph is not biconnected.
Back edges:(2 3) (2 5) (1 5) (0 8) (0 9))
Cut vertices: (5 9 10)
Bicomponents: 0 ==> ((9 8) (8 5) (5 0) (0 9) (0 8))
1 ==> ((5 3) (3 7) (7 6) (6 2) (2 5) (2 3))
2 ==> ((5 4) (4 1) (1 5)) 3 ==> ((9 10)) 4 ==> ((10 11))

SP tree, cut vertices, end edges, bicomponents

Figure 4. The rezults of performing the MainDFS function

The pseudocodes of the used functions are included in Figure 5.
Adding one end edge to the spanning tree generates a unique funda-
mental cycle.
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function fundamental- cycles
cycles := ∅;
for u := 0 to | sptree| − 1 do
call cycles-st(u);
return cycles;

end for
end fundamental- cycles
———————————————–
function cycles-st(u)
stedges := sptree(u);
if stedges ̸= ∅ then
for all v ∈stedges do
path := (u v); call add-edge- st(path)

end for all
end if

end cycles-st
———————————————–
functon add-edge- st
u := first(path);v := last(path);
lst := sptree(v); bef :=call backend - edges -from(v);
if u ∈ bef then
cicluri := {path ∥u} ∪ cicluri;
backendedges := backendedges \{(v u)};

end if
if lst ̸= ∅ then
for j := 0 to | lst|− 1 call add-edge- st(path ∥ lst(j))
end for

end if
end add-edge- st
———————————————–
function backend- edges-from(v)
bef := ∅;
for all (v1 v2)∈backendedges do
if v = v1 then bef := bef ∪ {v2} ;
if v = v2 then bef := bef ∪ {v1} ;

end for all
return bef ;

end backend- edges-from

PseudocodeFundamental cycles

Figure 5. The pseudocode of Fundamental- cycles
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V=(0 1 2 3 4 5 6 7 8 9 10 11 12 13 14)

E=((13 14)(1112)(10 13)(10 12)(9 13)(8 12)(7 8)(6 13)

(6 12)(5 14)(5 8)(4 13)(4 9)(4 7)(3 14)(3 5)

(2 13)(2 12)(2 6)(1 11)(1 10)(1 5)(0 14)(0 5)(0 3))

ADJ=((3 5 14)(5 10 11)(6 12 13)(0 5 14)(7 9 13)

(0 1 3 8 14)(2 12 13)(4 8)(5 7 12)(4 13)(1 12 13)

(1 12)(2 6 8 10 11)(2 4 6 9 10 14)(0 3 5 13))

Example 2

Figure 6. Example 2
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13
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(a) Initial graph.

The graph is connected.
Cut vertices: ∅
The graph is biconnected.

The bicomponent:

((0 3)(3 5)(5 0)(5 1)

(1 10)(10 12)(12 2)(2 6)

(6 12)(6 13)(13 2)(13 4)

(4 7)(7 8)(8 5)(8 12)(4 9)

(9 13)(13 10)(13 14)(14 0)

(14 3)(14 5)(12 11)(11 1))

vertex v

ord(v) up(v)

0
0 0

3
1 0

5
2 0

1
3 0

10
4 0

12
5 0

2
6 0

11
14 3

6
7 0

13
8 0

14
13 0

4
9 2

7
10 2

8
11 2

9
12 8

(b) Spanning tree.
Back edges

Example 2. Initial graph, spanning tree

Figure 7. The initial graph and spanning tree for Example 2
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Cycles for vertex u=12, cycles-st(12)
(12)=> adj(12)=(11 2)=>(12 11)=> new candidate
(12)=> adj(12)=(11 2)=>(12 2)=> new candidate
(12 11)=>adj(11)={}=>deadlock
(12 11)=>bef(11) = {}=>deadlock , the back edge (11 1) was

previously examined and removed
(12 2) =>adj(2)={6}=>(12 2 6)=> new candidate
(12 2) =>bef(2)={}=>deadlock
(12 2 6) =>adj(6)={13}=>(12 2 6 13)=> new candidate
(12 2 6) =>bef(6)={12}=>(12 2 6 12)=> new cycle
(12 2 6 13)=>adj(13)={14 4}=>(12 2 6 13 14)=> new candidate
(12 2 6 13)=>adj(13)={14 4}=>(12 2 6 13 4)=> new candidate
(12 2 6 13)=>bef(13)= {9}=> deadlock, the back edges

(13 2) and (13 10) were previously examined and removed.
(12 2 6 13 14)=>adj(14)={}=> deadlock
(12 2 6 13 14)=>bef(14)={}, the back edges (14 0), (14 3)

and (14 5) were previously examined and removed.
(12 2 6 13 4)=>adj(4)=(9 7)=>(12 2 6 13 4 9)=> new candidate
(12 2 6 13 4)=>adj(4)=(9 7)=>((12 2 6 13 4 7)=> new candidate
(12 2 6 13 4)=>bef(4)={}=>deadlock
(12 2 6 13 4 9)=>adj(9)={}=>deadlock
(12 2 6 13 4 9)=>bef(9)={13}=>deadlock (13\= 12)
(12 2 6 13 4 7)=>adj(7)={8}=>(12 2 6 13 4 7 8)=> new candidate
(12 2 6 13 4 7)=>bef(7)={}=>deadlock
(12 2 6 13 4 7 8)=>adj(8)={}=>deadlock
(12 2 6 13 4 7 8)=>bef(8)={12}=>(12 2 6 13 4 7 8 12)=>new cycle

Cycles for vertex u=13, cycles-st(13) ...
Total fundamental cycles for Example 2:

0 ====> (13 4 9 13)
1 ====> (12 2 6 13 4 7 8 12)
2 ====> (12 2 6 12)
3 ====> (10 12 2 6 13 10)
4 ====> (5 1 10 12 2 6 13 4 7 8 5)
5 ====> (5 1 10 12 2 6 13 14 5)
6 ====> (3 5 1 10 12 2 6 13 14 3)
7 ====> (2 6 13 2)
8 ====> (1 10 12 11 1)
9 ====> (0 3 5 1 10 12 2 6 13 14 0)

10 ====> (0 3 5 0))

Cycles for vertex u = 12 and total cycles.

Figure 8. Cycles for vertex u=12 and total cycles

For any back-end edge, a fundamental cycle is built; thus, there will
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be obtained a one-to-one correspondence between fundamental cycles
and back edges. The algorithm uses the variable cycles to store all the
fundamental cycles built. For each vertex u of spanning tree, function
fundamental- cycles constructs the set of path l=(u v1 . . . vi v),
i ≥ 1 (checkup list) with generation prospects of cycles. In the case
when there exist vertices u, for which sptree(u) or/and sptree(v) are
empty, this set can not be built. For Example 2 (Figure 6), these are
the vertices 4, 6, 7, 8, 9, 11, 14, presented in Figure 7.

The following situations are possible:
1) If sptree(v) ̸= ∅, then for any z ∈ sptree(v), a new path is generated
l=(u v1 . . . vi v z), candidate for generating new cycles.
2) If u ∈ bef(v), then a new cycle is obtained (u v1 . . . vi v u), which is
included in the set cycles. In this case, the back edge (u v) is excluded
from beckedges, and the path l is excluded from the checkup list.
3). If sptree(v)=bef(v) = ∅, then l is removed from the checkup list
and another candidate path will be examined.

The process will continue as long as there are new chains in checkup
list. In Figure 8, it is shown the behavior of the algorithm when gen-
erating cycles for vertex 12 of the graph from Example 2.

5 Conclusion

The advantage of the algorithm lies in the possibility of verification
connectivity/biconnectivity of undirected graphs, the construction of a
set of characteristics specific to undirected graphs performing a single
traversal of the graph. The functional implementation of the algorithm
can be convenient when other applications are developed and could be
applied by several users to streamline their activities. Most functions
with an intrinsic structure can be used separately. In the future, this
algorithm could be used to develop new methods for checking planarity
and for drawing graphs.
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