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Abstract

This paper offers a gentle introduction into the realm of mono-
tone span programs and their connection with linear secret shar-
ing schemes and attribute-based encryption while emphasizing
the cryptographic importance of finding efficient MSPs for repre-
senting complex access structures. We provide a proof that there
is no ideal LSSS for Boolean circuits, thus tackling the open prob-
lem of finding LSSSes of non-exponential size for Boolean circuits.
Moreover, we present an application of our proof to graph access
structures and a backtracking approach to finding efficient MSPs
for given access structures.
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1 Introduction

Modern enterprise software relies more and more on cloud services for
in-common file storage and collaborative access to data. These systems
bring up a crucial privacy problem. Usually, the cloud service provider
has access to all the sensitive data.

The paradigm of attribute-based encryption (ABE) comes as a solu-
tion since it assigns attributes to both users and files. The authorization
of a user to perform some action on a specific file is made by evaluat-
ing the attributes involved. Thus, this type of encryption lets us define
complex fine-grained access policies based on the relations between the
values of different attributes (of either the user or the file).
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Goyal et al. [1] proposed the first ABE construction, relying on
bilinear maps and threshold trees as access structures. Many other
schemes have been proposed, with various flavors, such as access revo-
cation [2], [3], decentralized settings [4], and outsourced decryption [5].

A frequently studied problem in ABE is the construction of efficient
systems with expressive access structures. While the first ABE system
[1] has a certain degree of expressivity, using more advanced access
structures, such as Boolean circuits, is problematic in the bilinear map
setting. All state-of-the-art schemes for such access structures yield
exponentially large keys in order to provide secure constructions [6],[7].

Garg et al. [8] constructed the first ABE system for Boolean circuits
relying on multilinear maps. However, for these cryptographic primi-
tives, there are no known secure cryptographic constructions [9], [10].
Garg also conjectured that ABE for Boolean circuits cannot be ob-
tained from bilinear maps (in an efficient manner).

1.1 Our Contribution

We have addressed the open problem of constructing secure and effi-
cient ABE schemes for Boolean circuits. Since the key step in this issue
is the secret sharing scheme used in the key generation procedure in
ABE, we have focused on linear secret sharing schemes (LSSSes) over
Boolean circuits.

a)

Boolean Trees

Threshold Trees

Compartmented Trees

Boolean Circuits

b)

Boolean Trees

Threshold Trees

Compartmented Trees

Boolean Circuits

Figure 1. Expressiveness scale for access structure classes
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Figure 1 (a) puts the four access structure classes defined in Sec-
tion 3.1, and whose connection with MSPs is described in Section 2.2,
on an expressiveness scale. The green segment represents classes for
which there are known ideal LSSSes, whereas the red segment rep-
resents classes that are only known to admit non-ideal LSSSes. The
purple section is the gap to be tightened. That is, we want to find
new access structure classes that either are more expressive than com-
partmented trees and admit ideal LSSSes or that do not admit ideal
LSSSes at all.

We provide the first proof that ideal LSSSes cannot be constructed
to representmonotone Boolean circuits in a general manner. We do this
by using the equivalence between LSSSes and monotone span programs
(MSPs) and proving that no MSP exists for a particular circuit. Thus,
the scale of expressiveness slightly changes to Figure 1 (b).

Moreover, we provide a framework [11] for brute-force searching
MSPs for given access structures.

2 Related Work

2.1 Linear Secret Sharing Schemes

Secret sharing is a field that received a tremendous amount of attention
in the last half a century. Threshold secret sharing is probably the
most studied variation, for which many ideal schemes have already been
achieved. They are based on Lagrange interpolation [12], linear algebra
[13], and the Chinese remainder theorem [14],[15], among others. From
our knowledge, there are no secret sharing schemes for Boolean circuits
other than the ones that can be extracted from the schemes proposed
for ABE constructions [6], [7]. However, these schemes can lead to
exponential key size in the number of parties. That is, they are not
ideal.

2.2 Monotone Span Programs

Linear secret sharing schemes (LSSSes) and monotone span programs
(MSPs) – a model of computation based on linear algebra – were well-
studied by Beimel, especially throughout his PhD thesis [16].
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The correlation between MSPs, LSSSes, and Boolean circuits has
been studied in various combinations and for various access structures.
However, the existing literature on these problems is unorganized and
studies these concepts in isolation from one another. Also, there is a
lack of correlation between circuit theory and MSPs.

For example, take the construction of [17] for NonBipartitem access
structure, which only needs m rows when working in GF(2). The input
of this function is a binary array of length m =

(
n
2

)
, encoding the edges

of a graph G with n vertices, and its output is 1 if and only if G is not
bipartite. The trivial construction of a Boolean circuit representing
NonBipartitem access structures will result in a circuit of exponential
size in the number of parties, and therefore, not of use in our problem.

Another such function [18] is PerfectMatchingn, which tests whether
a graph contains a perfect matching. An MSP can compute this func-
tion using a number of rows that is polynomial in n. These lower
bounds are not relevant in our context, since, again, transposing a
graph access structure into a Boolean circuit is not trivial.

Constructions Various operations over MSPs were developed [19] to
help in designing conversions from particular access structure classes
(e.g., Boolean trees) into MSPs. There are known MSP constructions
starting from Boolean trees of in-degree 2 [20, Appendix G] and from
threshold trees [21].

Lower Bounds Wegener authored a comprehensive study on the
complexity of Boolean functions [22], which comes in handy when it is
to decide what specific access structure class should be used to repre-
sent a particular Boolean function. Moreover, some lower bounds for
the minimum size of MSPs computing peculiar Boolean functions were
proven in the literature [17], [18].

2.3 Attribute-Based Encryption

Attribute-based encryption (ABE) is a public-key encryption paradigm,
which comes in two flavors, namely ciphertext-policy (CP-ABE) and
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key-policy (KP-ABE). The latter was implemented using many differ-
ent types of cryptographic primitives, such as lattices [23] and quadratic
residues [24], the one of interest for us being bilinear pairings.

The cornerstone paper of pairing-based KP-ABE [1] presents an
ideal scheme for threshold trees, as well as an efficient and more general
one, which works for any LSSS-realizable access structure, following the
same main idea. An ideal scheme for compartmented trees [25] exists
too.

One open problem is to construct an efficient ABE system for
Boolean circuits using bilinear maps. The existing schemes on this
topic have exponential expansion in the key size [6], [7]. However, re-
cent works try to improve these results, either by directly optimizing
the circuit structure using heuristics [26], or by constructing more effi-
cient secret sharing schemes for some particular Boolean circuits, such
as compartmented groups [25].

3 Preliminaries

3.1 Access Structures

Secret sharing is a cryptographic technique used to distribute a secret
among a group of parties in such a way that only specific subsets of
parties, called authorized subsets, can reconstruct the secret.

In the context of secret sharing, the set of authorized subsets forms
what is called an access structure.

Definition 1 (Monotone Access Structure). Let P be the set of parties.
A collection A ⊆ 2P is called a monotone access structure if X ∈
A ∧ X ⊆ Y → Y ∈ A.

Hereinafter, we shall refer to monotone access structures simply as
“access structures.”

Definition 2 (Boolean Circuit). A Boolean circuit is a directed acyclic
graph (DAG) such that, for each node v in the graph, either v has in-
degree 0 and is labeled with a party X ∈ P that no other such node is
labeled with, or v has in-degree n > 1 and is labeled with one of the ∧
(AND) and ∨ (OR) Boolean operators.
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Definition 3 (Boolean Tree). A Boolean circuit where each gate has
an out-degree less than or equal to 1 is called a Boolean tree. It can
also be viewed as the abstract syntax tree (AST) of a logical formula
containing only the ∧ and ∨ operators (and no negations).

Definition 4 (Threshold Tree). A threshold tree (referred to as “access
tree” in [1]) only uses threshold gates as operators. A threshold gate is
characterized by the threshold t and is satisfied only when at least t of
its input nodes are also satisfied.

For example, (3/ABCDE) is true only when at least three literals
from {A,B,C,D,E} are true.

Any Boolean tree can be simulated by a threshold tree, since an ∧
gate of in-degree n can be replaced by an n-threshold gate and an ∨
gate of in-degree n can be replaced by a 1-threshold gate.

Definition 5 (Compartmented Tree). A compartmented tree (referred
to as “CAS-tree” in [25]) only uses compartmented gates as operators.
A compartmented gate divides its n input wires into k disjoint com-
partments, such that n = n1 + · · · + nk, where ni is the number of
input wires of compartment i. Each compartment i has a threshold
ti ≤ ni, while the entire gate also has its own threshold t, such that
t1 + · · · + tk ≤ t ≤ n. Indeed, a compartmented gate is satisfied only
when all its k + 1 thresholds are satisfied.

For example, (3; 1, 1/AB,CDE) is true only when at least one lit-
eral from {A,B} is true, at least one literal from {C,D,E} is true, and
at least three literals from {A,B,C,D,E} are true.

Obviously, any threshold tree can be simulated by a compartmented
tree, since a threshold gate can be replaced by a similar compartmented
gate of only one compartment.

3.2 Linear Secret Sharing Schemes

Definition 6 (Linear Secret Sharing Scheme [16]). Let K be a finite
field and Π be a secret sharing scheme with domain of secrets S ⊆ K
realizing an access structure A. We say that Π is a linear secret sharing
scheme over K if:
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1. The piece of each party is a vector over K. That is, for every i,
there exists a constant di such that the piece of Pi is taken from
Kdi. We denote by Πi,j(s, r) the jth coordinate in the piece of
Pi, where s ∈ S is a secret and r ∈ R is the random input given
by the dealer.

2. For every authorized set, the reconstruction function of the secret
from the pieces is linear. That is, for every G ∈ A, there exist
constants {αi,j | Pi ∈ G, 1 ≤ j ≤ di} such that, for every secret
s ∈ S and every choice of random input r ∈ R,

s =
∑
Pi∈G

∑
1≤j≤di

αi,j ·Πi,j(s, r),

where the constants and the arithmetic are over K.

The total size of the pieces in the scheme is defined as d =
∑n

i=1 di.

Intuitively, in an LSSS, each share is given in the form of one or
multiple vectors and the reconstruction of the secret involves only linear
operations over these vectors. The size of each individual vector equals
the size of the secret.

Definition 7 (Ideal LSSS). An LSSS is said to be ideal if each share
consists of exactly one vector.

3.3 Monotone Span Programs

Definition 8 (Monotone Span Program [16]). Let K be a finite field
and P be the set of parties. A monotone span program over K is a
labeled matrix M̂(M,ρ), where M is an m× d matrix over K and ρ is
a labeling of the rows of M by literals from P.

For every input δ ∈ {0, 1}n, let Mδ be the submatrix of M consisting
of the rows whose labels are set to 1 by δ. The monotone span program
M̂ accepts δ if 1⃗ ∈ span(Mδ). A monotone span program computes an
access structure A if it only accepts the inputs δ that encode authorized
sets from A.
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The vector 1⃗ = (1, . . . , 1) is called the objective vector. In the above
definition, 1⃗ can be replaced by any other non-zero vector via a change
of basis. Usually, (1, 0, . . . , 0) is used instead.

Definition 9 (MSP Size). The size of an m×d MSP is defined simply
as its number of rows m.

Theorem 1 ( [27]). It is always possible to restrict the matrix of an
MSP to a set of linearly independent columns without changing the
function computed by the program. Therefore, it is not necessary to
use more columns than rows and hence the above definition of size.

Theorem 2 ( [16]). Let A be an access structure and K be a finite
field. There exists an MSP of size d over K computing A if and only if
there exists an LSSS over K realizing A in which the total size of the
pieces is d.

4 Linear Secret Sharing in Boolean Circuits

In the literature, there exists an efficient MSP construction for Boolean
trees of in-degree 2 [20], but it has not been correlated yet with general
access structures. Therefore, this section presents the entire flow of
converting access structures to MSPs.

The most straightforward approach to constructing an MSP from
a given access structure begins by viewing A as a Boolean formula in
disjunctive normal form (DNF). In fact, this is the most natural way
of describing A – an authorized subset X = {X1, . . . , Xn} becomes a
minterm X1 ∧ · · · ∧Xn. Then, this Boolean formula is rewritten as a
tree of in-degree 2. Finally, this tree is given as input to the standard
MSP conversion procedure [20, Appendix G].

The downside of this approach is that the size of the MSP is equal
to the number of literals in the DNF formula, which sometimes can be
exponential in the number of parties. For instance, it is a well-known
fact that the conjunctive normal form (CNF) formula (X1 ∨Y1)∧ · · · ∧
(Xn ∨ Yn) requires an exponential number of literals in order to be
rewritten in DNF. Therefore, the access structure induced by it will
generate a very inefficient MSP.
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As we have mentioned before, Garg et al. [8] conjectured that it is
impossible to construct ABE schemes from bilinear maps supporting
monotone Boolean circuit access structures. We stress that their claim
must be interpreted as “it is impossible to construct efficient ABE
schemes from bilinear maps supporting monotone Boolean circuits.”
We prove part of this claim, more exactly, we prove that there is no
LSSS for Boolean circuits. We stress that in order to build an ABE
system for Boolean circuits, there must exist a secret sharing mecha-
nism through the access structure, which is used in the key generation
procedure.

4.1 Boolean Circuits Do Not Admit Ideal LSSSes

Theorem 3. There is no ideal linear secret sharing scheme for the
class of access structures represented by monotone Boolean circuits.

Proof. In order to prove that Boolean circuits do not always support
ideal LSSSes, and since, according to Theorem 2, MSPs and LSSSes
are equivalent, we prove that MSPs of size |P| cannot be constructed
for such access structures.

Our proof is based on a counterexample. We take the specific access
structure A = {{A,B}, {B,C}, {C,D}} and prove that it does not
admit any MSP of size |P|. We mention that, obviously, A cannot be
viewed as a Boolean tree, but it can be viewed as a Boolean circuit,
like in Figure 2.

A B C D

∧ ∧ ∧

∨

Figure 2. Access structure {{A,B}, {B,C}, {C,D}} represented as a
Boolean circuit
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Let us assume A admits an MSP with

ρ = {(1, A), (2, B), (3, C), (4, D)}

and let its rows be A⃗, B⃗, C⃗, and D⃗, respectively. Thus, there exist
a, b, c, d, e, f ∈ Zp such that

aA⃗+ bB⃗ = 1⃗,

cB⃗ + dC⃗ = 1⃗,

eC⃗ + fD⃗ = 1⃗.

First, notice that no coefficient can be zero. Take, for instance,
a = 0. Then, from the first equation it would result that bB⃗ = 1⃗. This
implies that {B} ∈ A, which violates the hypothesis.

Multiplying the first equation by c, the second one by b, and then
subtracting them leads to

acA⃗− bdC⃗ = (c− b)⃗1.

As explained above, it is safe to divide this by bd. After some algebraic
manipulation, we get

aceA⃗+ bdfD⃗ = (bd+ ce− be)⃗1.

First Case If bd+ ce− be ̸= 0, then

ace

bd+ ce− be
A⃗+

bdf

bd+ ce− be
D⃗ = 1⃗,

and therefore {A,D} ∈ A, which cannot be true.

Second Case If bd+ ce− be = 0, then

A⃗ = − bdf

ace
D⃗.

Now, in any equation, A⃗ can be replaced by (−bdf/ace)D⃗ and D⃗ can be
replaced by (−ace/bdf)A⃗. Therefore, the first equation (i.e., {A,B} ∈
A) implies that {D,B} ∈ A and the third one (i.e., {C,D} ∈ A) implies
that {C,A} ∈ A. Both findings violate the given access structure.
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4.2 MSPs and Graph Access Structures

As an application of the ideas presented in the previous proof, we look
into graph access structures and we provide a necessary condition for
them to admit ideal LSSSes. This condition was already proved to also
be sufficient [28].

Definition 10 (Graph Access Structure). Let P be the set of parties
and let A be an access structure over P. If A ⊆ {{U, V } | U, V ∈
P, U ̸= V }, then A is a graph access structure.

Lemma 1. Let A,B,C ∈ P. If {A,B} ∈ A, {B,C} ∈ A, {A,C} ̸∈ A,
and {X | {A,X} ∈ A} ≠ {X | {C,X} ∈ A} (i.e., the adjacency lists of
A and C are different), then A does not admit an ideal LSSS.

Proof. Some details were already touched in the previous proof, and
thus are ommited. Since sets {A,B} and {B,C} are authorized, then
there exist a, b, c, d ∈ Z∗

p such that

aA⃗+ bB⃗ = 1⃗,

cB⃗ + dC⃗ = 1⃗.

Through some algebraic manipulation we get

acA⃗− bdC⃗ = (c− b)⃗1.

Case b ̸= c would lead to {A,C} ∈ A, which is false. Thus, b = c and,
consequently, A⃗ = (bd/ac)C⃗. Therefore, any {A,X} ∈ A also implies
that {C,X} ∈ A, and any {C,X} ∈ A also implies that {A,X} ∈
A.

Lemma 1 shows that, if a graph A contains any subgraph {A,B,C}
with said property, then A does not admit an ideal LSSS. The full
implication of this result [28] is that a graph admits an ideal LSSS if
and only if it is multipartite. That being said, graph access structures
are obviously less expressive than compartmented trees, and so this
result may not be that relevant for our goals.
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4.3 Backtracking MSP Construction

In our search for an LSSS for Boolean circuits, we created a tool for gen-
erating MSPs of specified size for certain access structures. We made
this tool publicly available [11]. We continue with a brief description
of our tool.

In order to obtain better MSPs, of arbitrarily small size, we tried
a backtracking approach that generates candidates for matrix M . The
inputs are:

� A – the given access structure;
� m× d – the dimensions of the matrix;
� ρ – the labeling of the rows of the matrix;
� p – the matrix is defined over Zp;
� k – the elements of the matrix take values from {0, 1, . . . , k− 1}.

The matrix is generated row by row and element by element. When
a row i is finished, every submatrix MI induced by a subset of rows
I ⊆ {1, 2, . . . , i}, with i ∈ I, is analyzed in order to abort this branch of
execution if possible. Thus, the following Boolean values are computed:

� full – there is no row j ̸∈ I with ρ(j) ∈ {ρ(i) | i ∈ I};
� auth – {ρ(i) | i ∈ I} is an authorized subset;
� span – 1⃗ ∈ span(MI).

Therefore, we can backtrack when auth∧full∧¬span or ¬auth∧
span.

We mention that testing if 1⃗ ∈ span(MI) is done using the Rouché-
Capelli theorem. That is, MI spans 1⃗ = (1, . . . , 1) if and only if

rank(MI) = rank

([
MI

1⃗

])
.

Moreover, if the set is authorized but it is not a minterm (i.e., it is
a superset of an authorized set), then we may skip the entire step.

According to our tests, the backtracking algorithm can easily prove
that a given access structure, with a small number of literals (i.e., up
to 5), does not admit ideal LSSSes with values less than a very small
k (i.e., up to 5).
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5 Conclusions and Future Work

We have addressed in this paper an open problem regarding secret
sharing over Boolean circuits. We have proved that it is impossible
to construct ideal LSSSes for monotone Boolean circuits in a general
manner. Our proof does not exclude the possibility that polynomial
LSSSes may exist for this class of access structures. Thus, there remains
an open question of whether such construction exists. However, we
think this construction does not exist, and we provide the intuition
behind our reasoning.

We will introduce a special type of gate, which we will fur-
ther refer to as ABBCCD. This gate models the access structure A =
{{A,B}, {B,C}, {C,D}}, meaning that it has four input wires, labeled
A, B, C, and D, and one output wire. This gate returns 1 if and only
if (A∧B)∨ (B ∧C)∨ (C ∧D) is true. Now consider the class of access
structures represented by a tree consisting of ABBCCD-gates as internal
nodes. Our intuition is that this tree requires an MSP of exponential
size in the total number of inputs. However, we do not have a formal
proof for this claim.

Therefore, whether it is possible to achieve MSPs – and, conse-
quently, LSSSes – of non-exponential size for monotone Boolean cir-
cuits remains an open problem.
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