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A Universal Reversible Turing Machine that
Directly Simulates Reversible Counter Machines

Kenichi Morita

Abstract

We construct a 1-tape 98-state 10-symbol universal reversible
Turing machine (URTM(98,10)) that directly simulates reversible
counter machines (RCMs). The objective of this construction is
not to minimize the numbers of states and tape symbols, but
to give a URTM a reasonable size whose simulating processes of
RCMs are easily understood. Here, we choose RCMs as the target
machines of simulation, since the class of RCMs is known to be
Turing universal, and their operations are very simple. Further-
more, using the framework of RCMs in the program form (rather
than the quadruple form), construction of a URTM is simplified.
We also created a computer simulator for the URTM(98,10), by
which simulation processes of RCMs are visualized.

Keywords: reversible computing, reversible Turing machine,
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1 Introduction
A universal Turing machine (UTM) is a Turing machine (TM) that can
simulate any TM (or Turing-universal computing system) by giving a
description of the latter one on its tape. A UTM was first proposed by
Turing himself [1]. Since then it has been attracting many researchers.
In particular, UTMs of small sizes have been extensively studied (see a
survey paper [2] on the history of the studies). Let UTM(m,n) denote
an m-state n-symbol UTM. Then the problem is to find a UTM(m,n)
having a small value of m× n.
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In the early stage of the history, a direct simulation method of a
TM was used to compose a UTM. Namely, if a description of a TM
is given on the tape, the UTM simulates the former TM step by step.
For example, Watanabe [3] composed a UTM(8,5) that directly simu-
lates 2-symbol TMs. Later, to reduce the size of a UTM, an indirect
simulation method was introduced. Cocke and Minsky [4] proposed a
2-tag system, a kind of a string rewriting system that can simulate a
TM. Thus, it is a Turing-universal system. Then Minsky [5] designed
a UTM(7,4) that can simulate 2-tag systems. Using 2-tag systems,
Rogozhin [6] gave small UTM(m,n)’s for several pairs of m and n.
They are UTM(24,2), UTM(10,3), UTM(7,4), UTM(5,5), UTM(4,6),
UTM(3,10), and UTM(2,18). Some of these results were later improved
by using a 2-tag system or its variant called a bi-tag system. They are
UTM(3,9) by Kudlek and Rogozhin [7], and UTM(15,2), UTM(9,3),
UTM(6,4), and UTM(5,5) by Neary and Woods [8].

A reversible Turing machine (RTM) is a standard model in re-
versible computing [9], [10]. Bennett [10] first showed that any (ir-
reversible) TM can be converted into a 3-tape RTM that simulates the
former, and produces no garbage information when it halts. Since a
3-tape RTM can be further converted into a 1-tape RTM [9], the class
of 1-tape RTMs is Turing-universal.

A universal reversible Turing machine (URTM) is an RTM that
can simulate any TM. Of course, an URTM can be obtained from
an irreversible UTM by using the conversion method of Bennett [10].
However, if we do so, the numbers of states and symbols of a 1-tape
URTM will become very large. Therefore, we should look for a better
construction method of a URTM.

Let URTM(m,n) denote an m-state n-symbol URTM. A small
URTM was first given by Morita and Yamaguchi [11]. They composed a
URTM(17,5) by simulating a cyclic tag system (CTS). A CTS is a kind
of a tag system proposed by Cook [12], where rewriting rules are applied
cyclically. Cook proved that the class of CTSs is Turing-universal, and
showed universality of the elementary cellular automaton with the rule
number 110. Thus, the URTM(17,5) indirectly simulates TMs. Later,
Morita gave URTM(15,6) in [13], URTM(24,4) and URTM(32,3) in [14],
and URTM(13,7) and URTM(10,8) in [15] using CTSs.
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The reason why CTSs were used in the above studies is that rewrit-
ing rules are applied one by one in the given order. Hence, it is easily
performed by a URTM having one 1-dimensional tape. Even at the end
of the rule sequence, the URTM can continue the cyclic application of
rules by simply going back to the first rule. On the other hand, if a
URTM simulates a 2-tag system, or a computing machine (like a TM)
directly, it must perform some kind of “jump.” Here, a jump means
that a URTM goes from one address (or a state) to another address
(another state) in the description of a simulated system. Assume a
URTM jumps from a source address as to a destination address ad.
Since a simulated system can be arbitrarily large, the distance between
as and ad can also be arbitrarily large. Hence, the destination ad-
dress ad must be kept near the address as to jump correctly. Since the
URTM is reversible, the source address as also must be kept near the
destination address ad. Otherwise, we cannot trace back the movement
of the URTM. In fact, jumping from as to ad must be carried out by
using both the value ad kept near the address as and the value as kept
near ad. Therefore, in the case of simulating 2-tag systems or comput-
ing machines directly, implementation of such a jumping in a URTM
is one of the key points (though the above argument is informal). In
Sect. 3.2, one solution for this reversible jump problem will be given.

Note that if the tape of a URTM is 2-dimensional, then the re-
versible jump problem is easily solved. On a 2-dimensional tape, we
can write a path that connects the addresses as and ad beforehand as a
part of a code (like Fig. 2). Therefore, the URTM can easily perform a
jump operation simply tracing the path by its head on a 2-dimensional
tape. In fact, when constructing universal reversible 2-dimensional
cellular automata (CAs), such a method of preparing signal paths was
taken [16],[17]. As another possibility, Axelsen and Glück [18] proposed
a method of using three 1-dimensional tapes for a URTM to simulate
RTMs directly. However, since no complete move table is given, it is
not clear how state transitions are correctly performed reversibly.

In this paper, we propose a 1-tape URTM(98,10) TU that directly
simulates any reversible counter machine (RCM) M . Here, “directly
simulates” means that every configuration in M ’s computing process
appears on the TU’s tape in an encoded form, i.e., TU simulates M step

427



K. Morita

by step. The objective of this study is not to minimize the size of a
URTM. We give a URTM having a reasonable size where descriptions
of RCMs and their simulation processes are easily understood. Using
TU, we explain how the reversible jump problem is solved.

A counter machine (CM) is a computing model consisting of a fi-
nite control and a finite number of counters in which non-negative
integers are stored [5]. Morita [19] showed that the class of reversible
CMs (RCMs) is Turing-universal. Alhazov, Verlan, and Freund studied
RCMs, and gave several universal RCMs (URCMs) [20]. Here, we use
RCMs as “target machines” that a URTM simulates. The reasons why
we choose RCMs rather than RTMs as target machines are as follows.
First, the class of RCMs is Turing-universal. Second, an RCM is some-
what similar to an RTM, but its operations are simpler than those of
an RTM. Third, using an RCM in the program form (rather than the
quadruple form), construction of a URTM is simplified.

In this study, we created a simulator of the URTM TU that works
on the general purpose CA simulator Golly developed by Trevorrow,
Rokicki, Hutton et al. [21]. Though Golly is mainly used for simulating
CAs, it is also useful for simulating computing systems other than
CAs. This is because it can deal with very large configurations, and
its simulation speed is very high. The simulator of the URTM TU

implemented on Golly is available in [22], by which computing processes
of TU are visualized.

This paper is organized as follows. Section 1 is an introduction.
In Sect. 2, definitions on RTMs and RCMs are given, and their basic
properties are explained. In Sect. 3, the URTM TU is proposed, and
how it works is described. In Sect. 4, a simulator of TU implemented on
Golly is explained. Section 5 gives concluding remarks, where future
research topics are given.

2 Reversible Turing Machines and Reversible
Counter Machines

In the following, we construct a universal reversible Turing machine
(URTM) that can simulate reversible counter machines. Below we give
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their definitions and some known properties on them.

2.1 Reversible Turing Machines (RTMs)
A 1-tape Turing machine (TM) consists of a finite control, a read-write
head, and a tape divided into squares in which symbols are written.
Here we assume the tape is one-way (rightward) infinite.

Definition 1. A 1-tape Turing machine (TM) is defined by

T = (Q,S, q0, F, s0, δ),

where Q is a non-empty finite set of states, S is a non-empty finite
set of tape symbols, q0 is an initial state (q0 ∈ Q), F is a set of final
states (F ⊆ Q), and s0 is a special blank symbol (s0 ∈ S). Here, δ is a
move relation, which is a subset of (Q× S × S × {L,N,R} ×Q). The
symbols L, N, and R are shift directions of the head, which stand for
left-shift, no-shift, and right-shift, respectively. Each element of δ is a
quintuple of the form [p, s, s′, d, q], which is called a rule of T . It means
if T reads the symbol s in the state p, then write s′, shift the head to
the direction d, and go to the state q. We assume each state qf ∈ F is
a halting state, i.e., there is no quintuple of the form [qf , s, s

′, d, q] in δ.

Determinism and reversibility of a TM is defined as below.

Definition 2. Let T = (Q,S, q0, F, s0, δ) be a TM. We call T a deter-
ministic TM, if the following holds for any pair of distinct quintuples
[p1, s1, t1, d1, q1] and [p2, s2, t2, d2, q2] in δ.

(p1 = p2) ⇒ (s1 ̸= s2).

It means that for any pair of distinct rules, if the present states are the
same, the read symbols are different.

In the following, we consider only deterministic TMs, and thus the
term “deterministic” is omitted.

Definition 3. Let T = (Q,S, q0, F, s0, δ) be a TM. We call T a re-
versible TM (RTM), if the following holds for any pair of distinct quin-
tuples [p1, s1, t1, d1, q1] and [p2, s2, t2, d2, q2] in δ.

(q1 = q2) ⇒ (d1 = d2 ∧ t1 ̸= t2).
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It means that for any pair of distinct rules, if the next states are the
same, the shift directions are the same, and the written symbols are
different. The above is called the reversibility condition for TMs.

An instantaneous description (ID) of a TM is an expression to de-
scribe its finite computational configuration such that the non-blank
part of its tape is finite.

Definition 4. Let T = (Q,S, q0, F, s0, δ) be a TM. We assume Q∩S =
∅. An instantaneous description (ID) of T is a string of the form αqβ,
where q ∈ Q and α, β ∈ S∗. Let λ denote the empty string. The ID αqβ
describes the finite computational configuration of T where the content
of the tape is αβ (the remaining infinite part of the tape contains only
blank symbols), and T is reading the leftmost symbol of β (if β ̸= λ)
or s0 (if β = λ) in the state q. An ID αq0β is called an initial ID. An
ID αqβ is called a final ID if q ∈ F .

The transition relation among IDs of T is denoted by |−−
T

. Let αqβ
and α′q′β′ be two IDs. If α′q′β′ is obtained from αqβ by applying a rule
in δ of T , we write αqβ |−−

T
α′q′β′. For example, if [q, s, s′, R, q′] ∈ δ

and α, β ∈ S∗, then αqsβ |−−
T

αs′q′β. See Sect. 5.1.1.3 of [9] for the
precise definition of the transition relation.

Bennett [10] first showed that any (irreversible) TM can be simu-
lated by a garbage-less RTM. Hence, the class of RTMs is computation-
ally universal. See [9] for computational universality of some restricted
classes of RTMs.

2.2 Reversible Counter Machines (RCMs)
A k-counter machine (CM(k)) is defined as a kind of multi-tape Turing
machine as shown in Fig. 1. The tapes are read-only ones, and one-way
infinite. The leftmost square of a tape contains the symbol Z, while
all the other squares contain P . Therefore, if the machine reads the
symbol Z (P , respectively), then it knows the content of the counter is
zero (positive). The increment and decrement operations on a counter
are performed by shifting the corresponding head. In [9], [19], a CM is
defined in the quadruple form, but here we use the program form given
in [16].
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Finite controlProgram

Counter 0

Counter 1

Counter k − 1

·
·
·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Z P P P P P P P · · ·

Figure 1. k-counter machine (CM(k))

There are five kinds of instructions for a CM(k), where b0, b1,m0,
and m1 are addresses of instructions, and i ∈ {0, . . . , k − 1}. Intuitive
meanings of the instructions are as follows.
Ii Increment the i-th counter
Di Decrement the i-th counter
Bi(b0, b1) Branch on the contents of the i-th counter, i.e.,

if the i-th counter is 0, go to b0, else go to b1
Mi(m0,m1) Merge on the contents of the i-th counter, i.e.,

if the i-th counter is 0, merge from m0, else from m1

H Halt
To define a program for a CM(k), we give the sets AL, AL

R,B
L
k , and

ML
k as follows, where L (> 0) is the length of a program.

AL = {0, 1, . . . , L− 1}
AL

R = {1, . . . , L− 1} ∪ {−1, . . . ,−L+ 1}
BL

k = {Bi(b0, b1) | b0, b1 ∈ AL
R ∪ {#}, i ∈ {0, . . . , k − 1}}

ML
k = {Mi(m0,m1) | m0,m1 ∈ AL

R ∪ {#}, i ∈ {0, . . . , k − 1}}

Here, AL is the set of addresses of instructions, where the 0th instruc-
tion has the address 0, and the last has L − 1. AL

R is the set of rel-
ative addresses, by which destination and source addresses of Bi and
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Mi instructions are specified. The set BL
k (ML

k , respectively) contains
all possible Bi(b0, b1) instructions (Mi(m0,m1) instructions), where #
means no address is specified. If bp ∈ AL

R (mp ∈ AL
R, respectively) for

p ∈ {0, 1}, it is called a destination address (source address) of port p
of the instruction. The set SL

k of instructions, which is for a program
of length L of CM(k), is as follows.

SL
k = {Ii, Di | i ∈ {0, . . . , k − 1}} ∪BL

k ∪ML
k ∪ {H}

Note that, in [16], source and destination addresses are specified by
absolute addresses, while they are specified by relative addresses here.
Definition 5. A well-formed program (WFP) P of length L for CM(k)
is a mapping P : AL → SL

k that satisfies the following constraints.
(C1) The last instruction must be H or Bi instruction:

P (L− 1) ∈ {H} ∪BL
k

(C2) The 0th instruction must not be Mi instruction, and the instruc-
tion just before Mi must be H or Bi instruction:

P (0) ̸∈ ML
k ∧ ∀a ∈ AL−{0}(P (a) ∈ ML

k ⇒ P (a−1) ∈ {H}∪BL
k )

(C3) If the instruction of the address a is Bi, and its port p has a
destination address bp( ̸= #), then the instruction at the address
a+ bp must be Mi, and its port p has the source address −bp:

∀a ∈ AL, ∀p ∈ {0, 1}, ∀i ∈ {0, . . . , k − 1},
∀b0, b1 ∈ AL

R ∪ {#}, ∃m0,m1 ∈ AL
R ∪ {#}

((P (a) = Bi(b0, b1) ∧ bp ̸= #)
⇒ (P (a+ bp) = Mi(m0,m1) ∧ mp = −bp))

(C4) If the instruction of the address a is Mi, and its port p has a source
address mp( ̸= #), then the instruction at the address a+mp must
be Bi, and its port p has the destination address −mp:

∀a ∈ AL, ∀p ∈ {0, 1}, ∀i ∈ {0, . . . , k − 1},
∀m0,m1 ∈ AL

R ∪ {#}, ∃b0, b1 ∈ AL
R ∪ {#}

((P (a) = Mi(m0,m1) ∧ mp ̸= #)
⇒ (P (a+mp) = Bi(b0, b1) ∧ bp = −mp))
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The constraint (C1) prevents the case of going to the address L. The
constraint (C2) guarantees that each Mi instruction is activated only by
Bi instructions. The constraints (C3) and (C4) say that the destination
addresses of port p of Bi instructions, and the source addresses of port
p of Mi instructions have one-to-one correspondence for each p ∈ {0, 1}.
Example 1. Let Ptwice be the following sequence of instructions.

B1(1,#) M1(−1, 6) B0(6, 1) M0(#,−1) D0 I1 I1 B1(#,−6) M0(−6,#) H
0 1 2 3 4 5 6 7 8 9

It is easy to see that Ptwice satisfies the constraints (C1) – (C4) in Def-
inition 5. Therefore, it is a well-formed program (WFP) of a CM(2).
We often draw a WFP in a graphical form as in Fig. 2.

0 1 2 3 4 5 6 7 8 9

B1 (• , •) M1(• , •) B0 (• , •) M0(• , •) D0 I1 I1 B1 (• , •) M0(• , •) H

Figure 2. Graphical representation of the WFP Ptwice

We now define a CM M in the program form, which has a WFP.

Definition 6. A CM(k) in the program form is defined by

M = (P, k,AF ),

where P is a WFP of length L, k is the number of counters, and AF

is a set of final addresses that satisfy the following: AF ⊆ {a | a ∈
AL ∧ P (a) = H}, where AL = {0, . . . , L− 1}.

Next, an instantaneous description (ID) of a CM in the program
form and a transition relation among IDs are defined.

Definition 7. Let M = (P, k,AF ) be a CM in the program form.
Let L be the length of P . Thus, the set of addresses of P is AL =
{0, . . . , L−1}. An instantaneous description (ID) of M is an expression
(a, (n0, n1, . . . , nk−1)) ∈ AL × Nk, where N = {0, 1, . . . }. It represents
that the i-th counter keeps ni (i ∈ {0, . . . , k − 1}), and the instruction
P (a) is going to be executed.
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Definition 8. Let M = (P, k,AF ) be a CM in the program form,
and L be the length of P . The transition relation |−−

M
over IDs of M

is defined as follows. For every i ∈ {0, . . . , k − 1}, a, a′ ∈ AL and
n0, . . . , nk−1, n

′
i ∈ N,

(a, (n0, . . . , ni−1, ni, ni+1, . . . , nk−1))
|−−
M

(a′, (n0, . . . , ni−1, n
′
i, ni+1, . . . , nk−1))

holds if and only if one of the following conditions (1) – (5) is satisfied.
1. P (a) = Ii ∧ n′

i = ni + 1 ∧ a′ = a+ 1

2. P (a) = Di ∧ n′
i = ni − 1 ≥ 0 ∧ a′ = a+ 1

3. P (a) = Bi(b0, b1) ∧ n′
i = ni = 0 ∧ a′ = a+ b0

4. P (a) = Bi(b0, b1) ∧ n′
i = ni > 0 ∧ a′ = a+ b1

5. P (a) = Mi(m0,m1) ∧ n′
i = ni ∧ a′ = a+ 1

Reflexive and transitive closure of |−−
M

is denoted by |−−
M
∗ , and n-step

transition by |−−
M
n (n = 0, 1, . . .).

Let M = (P, k,AF ) be a CM. An ID (a, (n1, . . . , nk)) is called an
initial ID of M , if a = 0. An ID C is a halting ID, if there is no
ID C ′ such that C |−−

M
C ′. An ID (a, (n1, . . . , nk)) of M is called a

final ID, if a ∈ AF . Every final ID (a, (n1, . . . , nk)) is a halting ID,
since P (a) = H. Let Ci (i ∈ {0, 1, . . . , n}) be IDs. We say that
C0 |−−

M
C1 |−−

M
· · · |−−

M
Cn (or C0 |−−

M
∗ Cn) is a complete computing

process of M , if C0 is an initial ID, and Cn is a final ID.
In [16], it is proved that any CM(k) in the program form can be

expressed by an equivalent RCM(k) in the quadruple form. By this, we
can see that CMs in the program form are actually reversible CMs. In
fact, from Definitions 5 and 8, it is easy to see that any ID of a CM(k)
in the program form has at most one previous ID.
Proposition 1. Any CM(k) in the program form is reversible.
Example 2. Consider an RCM Mtwice = (Ptwice, 2, {9}), where Ptwice

is the WFP in Example 1. If we start from the initial ID (0, (2, 0)), we
have the following complete computing process of Mtwice.

(0, (2, 0)) |−−
Mtwice

(1, (2, 0)) |−−
Mtwice

(2, (2, 0)) |−−
Mtwice

∗ (9, (0, 4))
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Generally, (0, (x, 0)) |−−
Mtwice

∗ (9, (0, 2x)) holds for all x ≥ 0, i.e., Mtwice

computes the function f(x) = 2x and stores it in the counter 1.

Minsky [5] proved the following result that any (irreversible) TM
can be simulated by an irreversible CM having only two counters.
There, to reduce the number of counters, a technique of using a Gödel
number, which is for encoding several counters into one, is employed.

Proposition 2. For any TM, there is a CM(2) that simulates the TM.

In the case of RCMs, Morita [19] showed the following result.

Proposition 3. For any (irreversible) TM, there is an RCM(2) that
simulates the TM.

Note that the RCM(2) that simulates the TM leaves no garbage
information when it halts except the input information initially given
to the TM. In this sense, the class of RCM(2)’s is Turing universal.

In the following, we consider RCMs having any number of counters.
By this, we can design algorithms for RCMs more flexibly.

3 URTM(98,10) TU that Simulates RCMs
We give a URTM TU that simulates any RCM(k) in the program form:

TU = (Q, {0, 1, ∗,−,@, I,D,B,M,H}, start, {halt(a), halt(r)}, 0, δ)

It has 98 states and 10 symbols, and the move table of δ is given in
Figs. 3 and 4. A file that contains δ is found in [22]. Reversibility of TU

was verified by a computer program. Although the set of final states
{halt(a), halt(b)} is specified as above, these states are not included in
the 98 states, since TU works correctly even if they are removed.

Also note that there are several pairs of states each of which can
be merged into one state. By this, we can reduce the number of states
of TU. For example, the states i(2) and b(1) can be merged without
violating the reversibility condition. However, here, we do not do so,
since i(2) and b(1) belong to different routines, and hence merging them
spoils the readability of the algorithm of TU.
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0 1 ∗ − @ I D B M H
start R @,R, ca(1) ∗,L, ca(4) R R R R H,R, h(1)
h(1) 1,N, halt(r) ∗,N, halt(a)
ca(1) R R R ∗,R, ca(2) R R R R R
ca(2) R @,L, ca(3)
ca(3) L L L 1,R, start L L L L L
ca(4) L 0,R, i(1) 0,R, d(1) B,R, b(1)
cb(1) @,R, cb(2) ∗,L, cb(5)
cb(2) R R R ∗,L, cb(3) R R R R R
cb(3) L @,L, cb(4)
cb(4) L L L 1,R, cb(1) L L L L L
cb(5) L ∗,R, start L I,R, cb(6) D,R, cb(6) M,R, cb(6)
cb(6) R R R I,L, cb(5) D,L, cb(5) B,L, cb(5) M,L, cb(5) H,L, cb(5)
i(1) R R R @,R, i(s1) R R R R R
i(2) 0,L, i(3)
i(3) I,R, cb(1) L L L L L L L L L
i(s1) R 1,R, i(ss)
i(ss) ∗,R, i(2) ∗,R, i(s1) R
d(1) 0,L, d(s0) R R R R R R R R R
d(2) D,R, cb(1) L L L L L L L L
d(s0) 0,L, d(ss)
d(s1) L 1,L, d(ss) @,L, d(2)
d(ss) ∗,L, d(s1) L
b(1) R @,R, b(2)
b(2) R R R 0,R, b(3) R R R R R
b(3) 1,L, b(p1) ∗,L, b(4)
b(4) 0,L, b(5)
b(5) L L L ∗,R, b(6) L L L L L
b(6) 0,R, b(r3) −,L, b(l1)
b(7) 0,R, b(8) 1,L, b(p6) ∗,L, b(9)
b(8) 0,R, b(7) R R R R R R R R R
b(9) 0,L, b(10)
b(10) ∗,L, b(11) L L L L L L L L L
b(11) L ∗,L, b(12) L
b(12) L @,R, b(13) L
b(13) 0,L, b(14) R R R −,R,m(1) R R R R R
b(14) 0,R, b(13) L L L L L L L L L
b(p1) 0,L, b(p2)
b(p2) L L L ∗,R, b(p3) L L L L L
b(p3) R @,R, b(p4) R
b(p4) 0,R, b(p5) R R R R R R R R
b(p5) 1,L, b(4)
b(p6) 0,L, b(p7)
b(p7) ∗,L, b(p8) L L L L L L L L L
b(p8) L 0,R, b(p9) L
b(p9) 0,R, b(p10) R R R R R R R R R
b(p10) 1,L, b(9)
b(r1) R R R −,R, b(r2) R R R R R
b(r2) 0,R, b(r1) 0,L, b(r4) I,R, b(r3) D,R, b(r3) B,R, b(r3) M,R, b(r3) H,R, b(r3)
b(r3) R R R I,L, b(r4) D,L, b(r4) B,L, b(r4) M,L, b(r4) H,L, b(r4)
b(r4) 1,R, b(7) @,L, b(r5)
b(r5) 1,R, b(r2) L L L L L L L L
b(l1) @,L, b(l2) @,R, b(l3)
b(l2) L L L B,L, b(l1)
b(l3) R R R ∗,R, b(l4) R R R R R
b(l4) 0,L, b(l10) 0,L, b(l5)
b(l5) L L L −,R, b(l6) L L L L L
b(l6) I,L, b(l7) D,L, b(l7) B,L, b(l7) M,L, b(l7) H,L, b(l7)
b(l7) L L L I,L, b(l8) D,L, b(l8) B,L, b(l8) M,L, b(l8) H,L, b(l8)
b(l8) @,R, b(l9)
b(l9) −,R, b(l4) R R R R R R R R
b(l10) −,R, b(7)

Figure 3. Move table of URTM(98,10) TU (Part 1). For a quintuple
[p, s, t, d, q] ∈ δ such that (p, s) = (q, t), only d ∈ {L,R} is indicated

436



Universal Reversible Turing Machine

0 1 ∗ − @ I D B M H
m(1) R @,R,m(2) R
m(2) 0,R,m(3) R R R 0,R,m(2) R R R R R
m(3) 1,L,m(p1) ∗,L,m(4)
m(4) 0,L,m(5)
m(5) @,L,m(5) L L L ∗,R,m(6) L L L L L
m(6) 0,R,m(r1) ∗,L,m(7) 0,L,m(l1)
m(7) −,R,m(8)
m(8) ∗,L,m(9)
m(9) L @,R,m(10) L
m(10) @,R,m(11) R R R R R R R R
m(11) 1,L,m(p6) ∗,L,m(12) M,R, cb(1)
m(12) @,L,m(13)
m(13) L L L ∗,L,m(14) L L L L L
m(14) L −,R,m(11) L
m(p1) 0,L,m(p2)
m(p2) @,L,m(p2) L L L ∗,R,m(p3) L L L L L
m(p3) R @,R,m(p4) R
m(p4) 0,R,m(p5) R R R 0,R,m(p4) R R R R R
m(p5) 1,L,m(4)
m(p6) @,L,m(p7)
m(p7) L L L ∗,L,m(p8) L L L L L
m(p8) L @,R,m(p9) L
m(p9) R R R @,R,m(p10) R R R R R
m(p10) 1,L,m(12)
m(r1) R R R −,R,m(r2) R R R R R
m(r2) I,L,m(r3) D,L,m(r3) B,L,m(r3) M,L,m(r3) H,L,m(r3)
m(r3) 0,L,m(r6) L L L I,L,m(r4) D,L,m(r4) B,L,m(r4) M,L,m(r4) H,L,m(r4)
m(r4) @,L,m(r5)
m(r5) 1,R,m(6) L L L L L L L L
m(r6) L L L M,L,m(r7)
m(r7) @,R,m(r8)
m(r8) 1,R,m(8) R R R R
m(l1) L L L −,R,m(l2) L L L L L
m(l2) I,R,m(l3) D,R,m(l3) B,R,m(l3) M,R,m(l3) H,R,m(l3)
m(l3) R R R I,L,m(l4) D,L,m(l4) B,L,m(l4) M,L,m(l4) H,L,m(l4)
m(l4) @,R,m(l5)
m(l5) −,R,m(6) R R R R R R R R

Figure 4. Move table of URTM(98,10) TU (Part 2)

3.1 Representing a Program of an RCM
Instructions of an RCM are encoded by symbol sequences of TU.

First, instructions Ii and Di are encoded as follows.
-I1i* and -D1i*

To encode Bi and Mi instructions, we define φ(x) for x ∈ AL
R∪{#}.

φ(x) =


1x if x ∈ {1, . . . , L− 1}
-−x if x ∈ {−1, . . . ,−L+ 1}
λ if x = #

Here λ is the empty string. Then Bi(b0, b1) and Mi(m0,m1) are en-
coded as follows.

-B1i*φ(b0) *φ(b1) * and -M1i*φ(m0) *φ(m1) *
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Finally, H instruction is encoded as follows.

-H* or -H1*

The URTM TU halts in the state halt(a) (halt(r), respectively) if the
encoding of H instruction is -H* (-H1*). This feature is convenient
when TU simulates an RCM acceptor.

The code (i.e., description) of a WFP P of an RCM is obtained by
concatenating the codes of instructions contained in P .

A k-tuple of numbers (n0, n1, . . . , nk−1) stored in the k counters are
encoded as follows. It is attached at the right end of the program code.

@1n0*1n1* · · · *1nk−1*

Here the symbol @ will be used as a counter marker that indicates the
counter to be accessed. Initially, it is at the position immediately left
of the string 1n0 . When the i-th counter is to be accessed, it is shifted
to the corresponding position, i.e., *1n0*1n1* · · · @1ni* · · · *1nk−1*.

Example 3. Consider the WFP Ptwice in Example 1. Assume the
numbers stored in the two counters are (5, 0). Then the combined code
of them is as follows.

-B1*1**-M1*-*111111*-B*111111*1*-M**-*-D*
-I1*-I1*-B1**------*-M*------**-H*@11111**

3.2 Simulating RCMs in the URTM TU

There are eight kinds of states in TU as it is seen in Figs. 3 and 4.
They are start, ca(·), cb(·), h(·), i(·), d(·), b(·), and m(·), each of which
is called a routine. The states of the forms h(·), i(·), d(·), b(·), and
m(·) are routines for processing H, Ii, Di, Bi, and Mi instructions,
respectively. The routine consisting of a single state start is to start
the processing of an instruction other than Mi.

If the next instruction read by the state start is H, then TU goes to
the state h(1) and halts in the state halt(a) or halt(r). Otherwise, TU

executes the routine ca(·). It is for accessing the i-th counter specified
by Ii, Di, or Bi. Namely, by the routine ca(·), the counter marker @ is
shifted to the position immediately left of the i-th counter.
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If the next instruction is I (or D, respectively), then TU goes to the
routine i(·) (d(·)). By this, the content of the i-th counter is incre-
mented (decremented). This operation is easily performed reversibly.
After that, TU goes to the routine cb(·), which shifts the counter marker
@ back to the 0th counter.

Figure 5 shows an example of the above process. Here TU executes
a WFP I2H. It starts from the state start at t = 0. At t = 4, TU

goes to the routine ca(·). By this, the counter marker @ is shifted to
the position of the 2nd counter (t = 45). In this process, to count the
number i (in this case i = 2) for shifting the counter marker to the
correct position, the symbol @ is temporarily used in the string I11.

Then, by the routine i(·), the content of the 2nd counter is incre-
mented (it starts at t = 45). In this process, the instruction symbol I
is temporarily replaced by 0 for returning to this position later. Incre-
mentation of the i-th counter is performed by the states i(s0), i(s1),
and i(ss), and then enters i(2) for returning to the position of the I
instruction (t = 67). The case of the D instruction is similar.

At t = 91, TU executes the routine cb(·). By this, the counter
marker is shifted back to the 0th counter (t = 133).

At t = 140, TU starts to execute the next instruction. Since it is H,
TU halts in the state halt(a) at t = 143.

t IDs of URTM(98,10) TU

0 start 0-I11*-H*@1*11*111*1111*00

4 0-I@ ca(1)1*-H*@1*11*111*1111*00

45 0-0 i(1)11*-H**1*11@111*1111*00

67 0-011*-H**1*11@1111*1111* i(2)0

91 0-I cb(1)11*-H**1*11@1111*1111*0

133 0-I cb(6)11*-H*@1*11*1111*1111*0

140 0-I11* start -H*@1*11*1111*1111*0

143 0-I11*-H halt(a)*@1*11*1111*1111*0

Figure 5. Execution process of a WFP I2H by TU. The initial values
of four counters are (1, 2, 3, 4), and their final values are (1, 2, 4, 4)
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Execution of Bi and Mi instructions is more complex than the cases
of Ii and Di, since the reversible jump problem noted in Sect. 1 exists.
Here we explain a method of solving it using a simple example.

t IDs of URTM(98,10) TU

0 start 0-B1*111*111*-I*-H1*-M1*---*---*-H*@1*11*0

4 0-B@ ca(1)*111*111*-I*-H1*-M1*---*---*-H*@1*11*0

75 0-B b(1)1*111*111*-I*-H1*-M1*---*---*-H**1@11*0

111 0-B1@111*111*-I*-H1*-M1*---*---*-H**1 b(p1)011*0

149 0-B1*111@ b(p4)111*-I*-H1*-M1*---*---*-H**1011*0

216 0-B1*111*011 b(r5)*@I*-H1*-M1*---*---*-H**1011*0

229 0-B1*111*101*-I b(r5)*@H1*-M1*---*---*-H**1011*0

247 0-B1*111*110*-I*-H1 b(r5)*@M1*---*---*-H**1011*0

400 0@B1*111*111*-I*-H1* b(13)@M1*---*---*-H**1011*0

401 0@B1*111*111*-I*-H1*-m(1)M1*---*---*-H**1011*0

461 0@B1*111*111*-I*-H1*-M1*---m(l 1)*0--*-H**1011*0

502 0-B1*111*111*@m(l 5)I*-H1*-M1*---*0--*-H**1011*0

539 0-B1*111*111*-I*@m(l 5)H1*-M1*---*-0-*-H**1011*0

573 0-B1*111*111*-I*-H1*@m(l 5)M1*---*--0*-H**1011*0

650 0-B1*111*111*-I*-H1*-M cb(1)1*---*---*-H**1@11*0

698 0-B1*111*111*-I*-H1*-M1*---*---* start -H*@1*11*0

701 0-B1*111*111*-I*-H1*-M1*---*---*-H halt(a)*@1*11*0

Figure 6. Execution process of a WFP B1(3, 3) I0HM1(−3,−3)H
simulated by TU. The initial values of two counters are (1, 2)

Figure 6 shows how a WFP B1(3, 3) I0HM1(−3,−3)H is exe-
cuted by TU. It starts from the state start at t = 0. At t = 4, TU goes
to the routine ca(·) as in the case of I or D. By this, the counter marker
@ is shifted to the position of the 1st counter (t = 75).

From the state b(1), TU starts to test if the 1st counter is 0 or
positive. In this case it is positive, and thus TU goes to the state b(p1)
at t = 111, where the counter marker @ is temporarily replaced by 0
(if it is 0, it goes to b(4)). Thus, TU accesses the second argument of
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B1(3, 3), which has the branching address b1 = 3 (t = 149). It means
that TU must jump 3 instructions to the right. To do this operation, @
is used as an address marker. It is performed by shifting the address
marker @ to the right by three instructions as shown at t = 216, 229,
and 247 by the states b(r1) – b(r5). By this, finally, the next instruction
M(−3,−3) is marked by @ at t = 247. Note that, if b1 < 0, the address
marker is shifted left |b1| times by the states b(l1) – b(l10).

At t = 400, TU finishes the B1(3, 3) operation, and at t = 401,
it starts to simulate the M1(−3,−3) operation. Since the marker @
is remaining at the left-side of the B1(3, 3) instruction as a garbage
information (t = 401), the routine m(·) must reversibly erase it by
referring the second argument of M1(−3,−3), which has the merge
address m1 = −3. Using the states m(l1) –m(l5), TU shifts the address
marker @ to the right as seen at t = 461, 502, 539, and 573. The address
marker finally reaches the position of the instruction M1(−3,−3) (at
t = 573). Using the fact that M1(−3,−3) is now under execution,
the address marker @ is easily erased reversibly. By this, the garbage
information on the previous address is erased.

After that, TU executes the routine cb(·) (t = 650), and the counter
marker is shifted back to the 0th counter. Finally, it executes the H
instruction and halts (t = 701).

In this way, any WFP is simulated by TU reversibly.

4 Visualizing URTM TU Using Golly Simulator
Correctness of the algorithm (i.e., δ) of TU is roughly explained in
Sect. 3.2. However, in this paper, we do not give its precise proof, since
it will become very long and tedious to write and read. Instead, we
created a simulator for the URTM(98,10) TU, which runs on Golly [21].
By this, readers can be convinced that TU correctly simulates any RCM.

Golly is a general purpose simulator for cellular automata (CAs).
It can deal with very large patterns of CAs, and its simulation speed
is quite fast. By these features, it is also useful for simulating various
machines other than CAs (see e.g. [17]). We created a system on Golly
that can simulate any RTM having at most ten symbols and any RCM.
We then constructed the URTM(98,10) TU in it. Thus, by giving a code
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of an RCM (Sect. 3.1) on its tape, any RCM can be simulated in it.
Figure 7 shows a screenshot of Golly having the pattern of TU with the
code of Ptwice in Example 3 on its tape.

(a)

(b)

Figure 7. Simulating URTM(98,10) TU on Golly [22]. (a) A part of the
finite control of TU, and (b) its tape that contains Ptwice in Example 3

It is easy to use this simulator that works on Golly. First, download
the Golly system from [21], and install it. Second, put the zipped
data file for TU, which is available at [22], in the “Patterns” folder of
Golly. Third, start the Golly simulator, and access any pattern file
contained in the zip file. Then one can see full computing processes of
the URTM(98,10) TU that simulates various RCM examples, such as
the ones that perform arithmetic operations, primality test, and others.

However, since the size of the pattern in Golly that realizes TU is
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very large, and millions (or even billions) of steps are required for TU

to simulate an RCM, the following method of viewing is recommended.
First, select the simplest example of TU that simulates Mtwice in Ex-
ample 2. Next, look at only the tape of TU, which contains the code of
Mtwice and its counters. Then start the Golly simulator. Even in this
case it takes more than 39 million steps to complete the simulation,
and thus, simulation speed of Golly should be appropriately acceler-
ated. By above, readers can see how the instructions of Mtwice are
processed on the tape of TU. After that, readers may examine some
details of the processing by slowing down the simulation speed. When
viewing a computing process that simulates a larger RCM, it is appro-
priate to look at only the part of the tape that contains counters of the
RCM.

5 Concluding Remarks
In this paper, we created a URTM(98,10) that directly simulates RCMs
having arbitrary number of counters. Finding this kind of URTM that
is much smaller in size is, of course, left for the future study. There
remains a problem of finding a URTM that directly simulates RTMs.
The method given in Sect. 3.2 for solving the reversible jump problem
will be, in principle, applicable also to such a case. However, if we try
to make a URTM that deals with RTMs having an arbitrary number
of tape symbols, then its structure as well as codes of the RTMs will
become complex. On the other hand, if we restrict the simulated RTMs
to the ones having only two symbols, then the construction will become
easier by using RTMs in the program form given in [23].
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