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Meadows in the Heptgrid and Possible
Generalizations

Maurice Margenstern

Abstract

In this paper, we summarize the results about flowers in the
heptagrid, the tessellation (7,3) of the hyperbolic plane, results
presented for MCU’2024 at Nice, France. In particular, we define
meadows, more precisely n-meadows for any integer n at least 3.
We recall that for each integer n at least three, there is an n-
meadow on the heptagrid. We suggest that those results can be
generalized to tilings (p, 3) of the hyperbolic plane, where p > 7.
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1 Introduction

The paper investigates particular tilings inside the tessellation (7, 3) of
the hyperbolic plane. Section [2| recalls the basics of hyperbolic geom-
etry needed to understand the paper. In the same section, we define
the heptagrid, the tessellation (7,3) of the hyperbolic plane as already
mentioned. In Section |3] we define the flowers and the meadows an-
nounced in the abstract. In Section[5] we sketchily prove the results and
consider the possible generalization of those constructions and of those
related results to the tilings (p,3) of the hyperbolic plane. Section @]
temporarily concludes that piece of research.

2 The Tessellations (p,3), p > 7

Sub-section defines the model of the hyperbolic plane we use in the
paper, Poincaré’s disc. Sub-section defines the tessellations (p, 3).
Sub-section defines the navigation tools which allow us to describe
the structures presented in Section [3| and to present the ideas of the
proofs of the Theorem given in Section
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2.1 Poincaré’s Disc, a Model of Hyperbolic Geometry

Closing a long history of the impossible search to prove the fifth axiom
of Euclid’s Elements, namely, as stated by Playfair in the 17" century,
in the Euclidean plane, the existence of a single straight line passing
through a given point A and parallel to a given straight line ¢ which
does not pass through A, hyperbolic geometry appeared by the end of
the first third of 19" century,

Independently of each other, Lobachevsky and Bolyai discovered
what was later called hyperbolic geometry in which through a point A
out of a straight line ¢ there are two parallels to ¢ passing through A
and infinitely many straight lines passing through A which do not cut
£. Poincaré defined a model of that geometry in the disc and in the
half-plane. In this paper, we shall use Poincaré’s disc to illustrate the
notions we shall introduce and study. What we just said about the
hyperbolic plane is illustrated by Figure An easy presentation of
that geometry can be found in [1].

Figure 1. Poincaré’s disc. Straight lines are the traces in the unit
disc U of the circles which are orthogonal to OU, the unit circle. The
straight line s passes through the point A out of the straight line { and
cuts that line. The straight lines p and q also pass through A and are
both parallel to . The straight line m is an example of a line passing
through A and which does not cut £.
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2.2 The Tessellation (p,3), p > 7

In a geometric plane, a tessellation is a tiling which is obtained from
a regular convex polygon P by the reflection of P in its sides and,
recursively of the images in their sides.

In the Euclidean plane, up to homogeneous dilatations, three tes-
sellations are possible: those based upon the equilateral triangle, the
square, and the regular hexagon.

The hyperbolic plane contains infinitely many tessellations thanks
to a theorem of Poincaré which states that there is a tessellation of
the hyperbolic plane based on any triangle whose angles are %, %,
and % provided that the natural integers p and ¢ satisfy the inequality

1 1
—+-< 3 which is the necessary condition for those angles to be angles

of a triangle in the hyperbolic plane. As a corollary of the theorem,

we get that there is a tessellation based on a regular convex polygon
2

P with p sides and with the angle T as interior angle at each vertex

of P, provided that p and 3 satisfy the above inequality which entails

that p > 7. Such a tessellation is denoted by (p, 3).

The tessellation (7,3) is called the heptagrid. A representation
of the heptagrid in Poincaré’s disc is given by the left-hand picture of

Figure [2]

Figure 2. To the left, the heptagrid. To the right, the tessellation (9, 3).
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2.3 Navigation in (p,3), p > 7

We now present tools to navigate in a tessellation (p,3), where p > 7.
To this aim, we introduce a way to split the tiling which is illustrated by
Figure[3] The key point is that mid-points of sides of the tiles pairwise
sharing a common vertex lie on the same straight line we call a mid-
point line. Two such rays starting from the same mid-point define an
acute angle «, and we call sector the set of tiles whose centre belongs
to a.. A sector itself can be split into a tile, p—5 images of a sector, and
a third set of tiles we call a strip; see the right-hand side of Figure
which illustrates the case of the heptagrid.

Figure 3. Splittings in the heptagrid. To the left: seven sectors around
a tile. To the right: in a sector, two sub-sectors and a strip. In a strip:
one sub-sector and a sub-strip.

The strip itself, as illustrated by the figure, can also be split into a
tile, p—6 images of a sector, and an image of a strip. The tile which
is the closest to the vertex where the rays defining the sector meet is
called the head of the sector. Similarly, we define the head of a strip.
From those splittings which can recursively be repeated, we define rules
showing the connection between heads of sectors and strips:

W — BWP=> B — BWP=6, (1)
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where W is attached to a head of a sector and B is attached to the
head of a strip. From those considerations, it can be proved that the
tiles of a sector are in bijection with the nodes of (1). The proof of the
bijection can be illustrated by Figure [4] for the case of the heptagrid.

O

Figure 4. Proof of the bijection between the tiles of a sector and the
nodes of the tree in the case of the heptagrid. The surjection is plain.
The injection comes from the fact that from one level of the tree to the
next one, the distance of the tiles from the vertex O is growing.

From the rules (1), it is easy to prove, see , that on the level n
of the tree defined by those rules, there are mo,41 nodes exactly where
myq is the ¢"™" term of the sequence whose first two initial terms my
and mj are both 1 and the general term can be written as follows:
Mgt2 = (p — 4)mgy1 — mg with ¢ being non negative. The sequence
is called a pseudo-metallic sequence and the tree above defined is
called a pseudo-metallic tree. It is called Fibonacci tree in the case
when p = 7 as far as the pseudo-metallic sequence is a subsequence of
the Fibonacci sequence when p = 7. The nodes of a pseudo-metallic
tree can be numbered starting from 1 attached to the root of the tree
and then going from one level to the next one and, on each level, from
the leftmost node to the rightmost one. We obtain coordinates in the
heptagrid by attaching to a tile the number of the node to which it
corresponds in the pseudo-metallic tree. We can write those numbers
in the numbering systems obtained from the pseudo-metallic sequence.
Such writings are called codes of a tile. To get the main property of
the codes, we rewrite the rules (1) as:
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Wy — BWP=4W,W,, W, — BWP=SW,W,W,, B — BWP=>W,W,. (1b)

Note that in (1), two kinds of W-nodes are introduced. The reason
is the following one: if v is a code of a B- or a Wy-tile, v0 is the code
of its last son. If v is a code a W,-tile, v0 is the code of its penultimate
son. These properties are proved in the quoted works, see Figure
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Figure 5. The pseudo-metallic tree down to level 3. In that figure,
p=9 and d=p—3.

3 Flowers and Meadows in the Heptagrid

Let us now turn to the definition of the notions considered in this paper.

By definition, a flower of the heptagrid is a set of tiles T;, i € [0..7]
such that the T;’s with ¢ > 0 are the neighbours of Ty. We say that
tiles U and V of the heptagrid are neighbours of one another if both
tiles share a common side. The tile Tj is called the centre of the flower
and its neighbours are also called its petals.

A path from tile A to tile B is defined as a finite sequence of tiles
{Ti}igjo..n) such that Tp = A, T}, = B and T;41 is a neighbour of T; for
0 < i < n. We say that n is the length of the path. The distance from
tile A to tile B, denoted by dist(A, B), is defined as the shortest length
among those of the paths from A to B. A shortest path from A to
B, is a path whose length is dist(A4, B). We easily get that the distance
defined in that way satisfies the triangular inequality so that it is a
distance in the topological meaning. A circle around A of radius n is
the set of tiles whose distance to A is precisely n. A ball around A of
radius n is the set of tiles whose distance to A is at most n. Accordingly,
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a flower is a ball around its centre of radius 1.

By definition, a meadow is a tiling of the heptagrid in which there
are infinitely many flowers. Two flowers Fyy and F} are called neigh-
bours if and only if there is no centre of a third flower on the shortest
path from the centre of Fy to that of Fi. An n-meadow is a meadow
in which all neighbouring flowers have the same distance n between
their centres. From now on, we define a meadow to be an n-meadow
for some integer n with n > 3.

4 Results

The goal of the present Section is to prove the following result:

THEOREM 1. For any integer n with n > 3, there is an n-meadow in
the heptagrid.

Note that 3 is the minimal distance between two flowers. It was
proved in that for any n, n-balls tile the heptagrid. From that
result, we get that the theorem is true for odd values of n. Figure [0
illustrates the case when n = 3, i.e., when flowers are contiguous and
do not overlap, covering the whole heptagrid.

Figure 6. To the left, flowers in a 3-meadow in which each flower is
surrounded by 14 ones. To the right, an image of a 4-meadow. Fach
flower is surrounded by 21 flowers.
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From the definition, it follows that:

LEMMA 1. Let 7 be a shortest path from a tile A to a tile B. If C' and
D are two tiles of m, the sub path of ™ from C to D is a shortest path
from C to D.

The proof of Theorem [T makes use of the following result also proved
in [2]:

LEMMA 2. In the Fibonacci tree, a shortest path from its root to a
node vs given by following the part of the branch which starts from the
root and which passes through v, such a branch being unique in the tree.

LEMMA 3. Assume that in a sector identified with the Fibonacci tree
attached to it, the sides of each tile are numbered in such a way that
side 1 is shared by the father and, for the root, side 3 is shared by its
B-son. Then the B-, W-sons of a B-node v share the 4, 5 sides of v,
respectively; the B- and W-sons of a W-node p share the 8 and 4, 5
sides of p, respectively.

The proof goes as follows: we already know that when n is odd, the
theorem is a corollary of the proposition proved in [2] that for any n,
it is possible to tile the heptagrid with balls of radius n only. Indeed,
the distance of the centers of two adjacent balls of radius & is 2k+1. It
follows from the definition of the distance.

LEMMA 4. Let o be the shortest path from A to B. From the definition
of the shortest path of length £ from a tile U to another tile V, we
get that for any number k with k € [0..4], there is a tile W such that
dist(U,W) = k and there is also a tile X such that dist(X,V) = k.

The proof of the lemmas and [4] can be found in the proceedings
of MCU’2024; when they will appear, look at:

https://link.springer.com/conference/mcu.

From those lemmas, Theorem [I] can easily be proved, see the men-
tioned proceedings.

The proof also provides us with an algorithm to construct an n-
meadow for a given even n, n > 4. A 4-meadow is illustrated by
Figure Algorithm [I| gathers the centres of flowers which lie on a
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circle C' around a tile P of radius n as a sequence G of tiles so that
two consecutive terms are at distance n from each other, the last term
and the first one are also at distance n from each other. Algorithm [2]
constructs an n-meadow as a sequence JF of the centers of the flowers
defining that meadow. We define Ty a tile chosen at random in the
heptagrid, and we decide that Ty is the center of a flower. We set
P := 1T}, and we define C as the circle around P of radius n.

ALGORITHM 1. collect

G = {Ui}icpn.x;
with U; € C, dist(U;,Ui41) = n, i € [1..k—1]; dist(Uy,Ug) = n;

ALGORITHM 2. meadow
begin loop F := {Ty}; P :=Ty; G := collect; F = FJ{G\F};
number F; if P = F; then P := F;1; define C;
end loop;

Sealee..
Figure 7. Image of a 4-meadow in the heptagrid. Note the 21 flowers

around the orange one.

It can be noticed that Algorithm [2] makes use of Algorithm [} That
latter algorithm uses the variables P and €', modifying them for the
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next execution of the loop. Note that the loop is infinite which makes
it certain that P eventually runs other all F so that the meadow will
eventually fill up the heptagrid.

5 Generalization

During the discussion after my talk at MCU’2024, I was asked whether
the result about meadows in the heptagrid could be generalised to other
tilings of the hyperbolic plane. As it seemed to me that it was possible,

I said yes. Here, I mention that it can be proved in the tessellations

2
(p,3). As far as the vertex angle in a regular convex heptagon is —W,

most of the arguments held in the heptagrid can be extended to the
tessellations (p,3). Figure |8 illustrates flowers and a 3-meadow in the
tessellation, where p = 9.

To see how arguments can be extended, we remain with the case
when n is even, i.e., when n = 2p+1, with p > 2. In the case of the
heptagrid, the idea of the proof was to consider a Fibonacci tree F
rooted at the centre C' of one flower. We fix a tile Ty on the border
of a circle around C' of radius n. From Ty, we climb along the branch
leading form C' to Ty up to the level p—1 of F, reaching a tile v. From
v, we take a branch of F reaching the border at 77 which is the centre
of a flower whose distance to C' is n and whose distance to Tj is also n.
The branch taken from v is the rightmost branch of the subtree of F
rooted at v. It is easy to show that the path obtained by joining the
path from Tj to Tv to that from v to 1} is a shortest path. In that
way, starting from 77 and repeating the construction, we arrive to the
v+1 on the level p—1 of F.

The same proof holds for the tessellation (p, 3). Here the sides of a
tile are numbered from 1 up to p. Lemma [3| must be changed by 3 up
to p—2 for a W-node and by 4 up to p—2 for a B-one. The following
property can be proved easily:

LEMMA 5. Let Tiicjo.x—1] be a path w of length k from Ty to Ty—y. Let
F be the pseudo-metallic tree rooted at Ty such that the subpath from Ty
to Ty is the side 1 of Ty. Assume that, for all i € [1..k — 1], T; is seen
from T;_q from its j-side with j € [a..k — 2|, where a = 4 unless T;—;
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is a W-node, in which case a = 3 1is possible. Then, 7 is the shortest
path.

Figure 8. To the left, a flower in the tessellation (p,3), where p = 9.
To the right, a 3-meadow in that tessellation. Note that there are 36
flowers around each flower.

Accordingly, we may state the following assertion:

THEOREM 2. In each tessellation (p,3) with p > 7 and for any n with
n > 4, there is an n-meadow.

6 Further Remarks

A lot of questions arise. In [2], a stronger result is proved about balls
in the heptagrid:

THEOREM 3. Let Z be a non empty set of positive integers. Then there
is a tiling T of the heptagrid consisting of balls B, with n € T such
that, for any n € I, infinitely many balls of T have a radius n with
neZl.

The idea of the proof is that in a ball B of radius n around A, there
are many tiles T' at the distance n from A such that there is a side in
each tile supported by a line ¢ so that B is contained in the half-plane
defined by ¢ which also contains T. Many of those tiles contain two
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contiguous such sides so that we can conclude that a ball of radius n is
contained in the angle defined by a vertex V of a tile T and two rays
issued from V' containing the sides of T' meeting at V. It can be proved

o7
that in a tiling by balls, there is an angle — at each extremal vertex

of the contact between two balls, that angle being mainly outside both
balls, so that there is room for any ball in that angle which is the angle
between the rays defining a sector. Note that the remark provides us
with an algorithm to tile the heptagrid with such balls.

Consider a tiling of the heptagrid by balls whose radiuses belong to
a set Z of integers not smaller than 3 and such that, for any n € Z, the
tiling contains infinitely many balls of radius n. Denote such a tiling by
T (Z). The distances between the centres of those balls are of the form
n+m+1, where n,m € Z. Let C(7,Z) denote the set of the centres of
the balls in 7(Z). We call wild meadow directed by 7(Z) a set of
flowers such that the set of their centres is C(7T,Z).

Clearly, from Theorem [3| we can conclude:

COROLLARY 1. For any tiling by balls T (Z), where L is a set of integers
not smaller than 3, there is a wild meadow in the heptagrid directed by

T(Z).

Again in [2], it is shown that three colours are enough to colour
the flowers of a 3-meadow such that two neighbouring flowers do not
share the same colour. That result does not extend to n-meadows for
any n > 3 as far as it does not hold for a 4-meadow in the heptagrid.
Indeed, in a 4-meadow of the heptagrid, around a flower F', there are 21
closest flowers so that, with three colours, at least two flowers around
F' that would be at distance 4 from each other would share the same
colour.

Another corollary of the existence of the 4-meadow is that consid-
ering the balls of radius 2 around the centre of each flower, those balls
share a common tile if considering three flowers pairwise at distance 4.

We remark that the coloration problem is more complex in the
tessellations (p, 3).

And so, there is at least some work ahead.
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