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Restrictions on Multicounter and

Partially-Blind Multicounter Languages
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Abstract

We introduce a new way of defining languages accepted by
multicounter machines. Given a multicounter machine M and
m ≥ 0, the m-crossing language accepted by M is the set of all
words where there is an accepting computation of M on w such
that, for each counter j, each value c that can appear in the
counter is crossed at most m times. We study this concept with
multicounter machines and also with the partially-blind restric-
tion where a counter cannot detect whether it contains zero or
not. We show that both multicounter and partially-blind mul-
ticounter languages with one cross define exactly the reversal-
bounded multicounter languages, while two crosses can accept
strictly more including non-semilinear languages. We find that
surprisingly, the family of m-crossing languages accepted by mul-
ticounter machines, for some m, and the family of m-crossing
languages accepted by partially-blind multicounter machines, for
some m, coincide. Decidability properties regarding m-crossing
languages are also analyzed.1

1 Introduction

There have been many different types of automata that are built with
counters as data store. The most well known is one-way nondetermin-
istic k-counter machines, which have k non-negative integers as data
stores, and based on whether a counter is zero or non-zero, it can either
add one, subtract one, or keep the value the same. It is well known that
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even 2-counter machines have the same power as Turing machines [1].
However, with restrictions, it can limit the power and make some deci-
sion problems decidable. For example, a machine is r-reversal-bounded
(respectively, reversal-bounded) if, in each accepting computation, for
each counter, the number of changes between sections of the counter
increasing and decreasing is at most r (some number). Let NCM be
the class of one-way reversal-bounded multicounter machines. These
machines have some decision problems that are decidable, for example,
the emptiness problem (“Given M , is L(M) = ∅?”).

Another model is the class of one-way nondeterministic partially-
blind multicounter machines (denoted by PBLIND), introduced by
Greibach [2]. With this model, unlike traditional multicounter ma-
chines, the transition cannot detect whether each counter is zero or
positive at each step. Hence, if a counter contains a positive num-
ber and there is a transition to subtract one from it, the computa-
tion can continue executing this transition. However, if the counter
contains zero and there is a transition to subtract one, the computa-
tion simply cannot continue (or, it “crashes”) with this transition. A
computation is accepting if it reads the input in a final state with all
counters being zero. It is known that the emptiness problem is de-
cidable for PBLIND. This was determined since Greibach [2] showed
that the following are equivalent: deciding emptiness for partially-blind
multicounter machines, deciding the emptiness problem for Petri nets,
and deciding reachability of vector addition systems. Later, reacha-
bility for Petri nets was shown to be decidable [3], [4] and, therefore,
non-emptiness for PBLIND is decidable as well. It is also known that
PBLIND is strictly more powerful than NCM [2].

Recently, a generalization of partially-blind multicounter machines
was defined and studied [5]. This model makes testing whether a
counter is zero or positive optional within each transition. Such a
machine is t-testable (respectively, finite-testable) if, in every accepting
computation, each counter has at most t (respectively, some finite num-
ber of) sections that decrease that counter where its status is tested.
Then it is clear that 0-testable machines are the same as PBLIND, and
furthermore it was proved that one-way nondeterministic finite-testable
multicounter machines are in fact equivalent to PBLIND [2]. However,
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for deterministic machines, there is a difference in capacity, and one-
way deterministic partially-blind multicounter languages (denoted by
DPBLIND) are strictly contained in the family of one-way deterministic
finite-testable multicounter languages. Also interestingly, the contain-
ment problem (“Given two machines M1,M2, is L(M1) ⊆ L(M2)?”)
is decidable for one-way deterministic finite-testable multicounter ma-
chines. This problem is therefore also decidable for DPBLIND. These
are the most general known models with a decidable containment prob-
lem as even the very simple class of nondeterministic machines with a
single counter that cannot decrease after increasing, has an undecidable
containment problem.

In this paper, we study a new model that is a variation of both
multicounter and partially-blind multicounter languages. Given a k-
counter machine, the m-crossing language accepted by M is the set of
words with accepting computations where, for each counter, it switches
from counter value c to c + 1 at most m times. This is not simply a
restriction of counter machines or partially-blind machines however,
because they are defined such that a computation cannot continue (it
crashes, akin to if a partially-blind counter attempts to go below zero)
if it crosses between two consecutive counter values more thanm times.
Thus, the machines themselves are notm-crossing, and a machine itself
has no direct way to remember when a counter value is crossed. We
simply look at the subset of accepting computations that cross each
value at most m times and use this to define a language. This is unlike
the finite-crossing definition on Turing machines that has previously
been studied (where the boundary between each two worktape cells is
crossed at most a bounded number of times) [6] — with this definition,
the machine itself can keep track of the crosses using the worktape. We
make comparisons of these machines with NCM. We also surprisingly
prove that finite-crossing multicounter languages are equal to finite-
crossing partially-blind multicounter languages; therefore, the ability of
multicounter machines to test within each transition whether a counter
contains zero or is positive is not needed for finite-crossing languages.
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2 Preliminaries

We denote by Z (respectively N,N0) the set of all integers (respectively
positive integers, non-negative integers). Given n ∈ N0, let

sign(n) =

{
0 if n = 0,

1 otherwise.

Given a set X and n ∈ N, let Xn be the set of all n-tuples of X.
We assume a working knowledge of introductory automata and for-

mal language theory [1]. This includes models such as finite automata
and Turing machines. We denote by REG the family of regular lan-
guages (those accepted by finite automata).

Let Σ be a finite alphabet. By Σ∗, we denote the set of all words over
Σ. Any L ⊆ Σ∗ is called a language over Σ. The empty word is denoted
by λ. Given a word w ∈ Σ∗ and a ∈ Σ, let |w|a be the number of a’s
in w, and for a fixed ordering of letters, Σ = {a1, . . . , an}, the Parikh
image of w is ψ(w) = (|w|a1 , . . . , |w|an), extended to languages L ⊆ Σ∗,
ψ(L) in the natural way. We will not define a language being semilinear
here, but describe an equivalent criteria. A language L is semilinear if
and only if there is a regular language R with ψ(L) = ψ(R) [7].

Previously in the literature, multicounter machines and partially-
blind multicounter machines have been studied [2] as defined next.

A one-way nondeterministic k-counter machine is a tuple M =
(Q,Σ, δ, q0, F ) with a finite set of states Q, initial state q0, the final
state set F ⊆ Q, an input alphabet Σ, and a transition function δ from
Q× (Σ ∪ {λ})× {0, 1}k into subsets of Q× {0,+1,−1}k.

An instantaneous description (ID) ofM is a member of Q×Σ∗×Nk
0.

Instantaneous descriptions change via the relation ⊢M (or just ⊢ if M
is understood) with (q, aw, y1, . . . , yk) ⊢ (q′, w, y1 + v1, . . . , yk + vk), if
(q′, v1, . . . , vk) ∈ δ(q, a, u1, . . . , uk) and sign(yj) = uj , (and yj + vj ≥ 0)
for 1 ≤ j ≤ k. Then ⊢∗ is the reflexive, transitive closure of ⊢. A
computation on w ∈ Σ∗ is a sequence of IDs,

(q0, w0, y0,1, . . . y0,k) ⊢ · · · ⊢ (qn, wn, yn,1, . . . , yn,k), (1)

where w0 = w, and a computation is an accepting computation of w if
w0 = w, y0,j = yn,j = 0, 1 ≤ j ≤ k,wn = λ, qn ∈ F .
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Such a k-counter machine M is r-reversal-bounded, if, in every
accepting computation, each counter j, 1 ≤ j ≤ k, alternates at
most r times between executing maximal sequences of non-decreasing
transitions (adding 0 or 1) and executing maximal sequences of non-
increasing transitions (adding 0 or −1). It is reversal-bounded if it is r-
reversal-bounded for some r. Reversal-bounded multicounter machines
have been extensively studied before, e.g., [8].

Such a k-counter machine is called partially blind if, for each q ∈
Q, a ∈ Σ ∪ {λ}, δ(q, a, u1, . . . , uk) = δ(q, a, v1, . . . , vk), for all ui, vi ∈
{0, 1}. For this reason, with partially-blind machines, we usually write
the transition function as being from Q × (Σ ∪ {λ}) into subsets of
Q×{0,+1,−1}k. With partially-blind machines, the machines cannot
detect whether a counter is zero and can “crash” (i.e., the computation
cannot continue), if any counter goes below zero.

The language accepted by k-counter machine M is,

L(M) = {w ∈ Σ∗ | there is an accepting computation of M on w}.

The family of languages accepted by one-way nondeterministic k-
counter machines (respectively, k-counter partially-blind machines, k-
counter reversal-bounded machines) is denoted by COUNTER(k) (re-
spectively, PBLIND(k),NCM(k)). The family of languages accepted by
k-counter (respectively, k-counter partially-blind, k-counter reversal-
bounded) machines, for some k, is denoted by COUNTER (respectively,
PBLIND,NCM).

It is also known that one-way (in fact, deterministic) two-counter
machines accept all recursively enumerable languages, but there are
some recursively enumerable languages that are not in PBLIND [2] and,
therefore,

PBLIND ⊊ COUNTER(2) = COUNTER.

Lastly, note NCM ⊊ PBLIND [2]; indeed, NCM only contains semilinear
languages [8] but PBLIND does not.

3 Finite-Crossing Multicounter Languages

We start by defining the new notion that is of primary interest in
this paper. Let M be a one-way nondeterministic k-counter machine
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M = (Q,Σ, δ, q0, F ). Given an accepting computation on w,

(p0, w0, y0,1, . . . y0,k) ⊢ · · · ⊢ (pn, wn, yn,1, . . . , yn,k), (2)

where w0 = w, y0,j = yn,j = 0, 1 ≤ j ≤ k,wn = λ, qn ∈ F , we say
counter j upward crosses (respectively, downward crosses) c ∈ N0 m
times, if

|{i | yi,j = c, and yi+1,j = c+ 1}| = m

(respectively,

|{i | yi,j = c+ 1, and yi+1,j = c}| = m).

We use the word cross to mean upward cross. So, it only counts as a
cross of c if the counter switches from c to c + 1 in the previous step.
In this definition, M may or may not be partially-blind. Given m ≥ 0,
if an accepting computation has for each counter j, 1 ≤ j ≤ k, at most
m crosses of each counter value, then the accepting computation is said
to be m-crossing. For each m ≥ 0, the m-crossing language accepted
by M is

Lm(M) = {w ∈ Σ∗ | ∃ an m-crossing accepting computation of w}.

It is clear that every accepting computation of M has some m
whereby each counter value is crossed at most m times. Therefore,⋃∞

m=0 Lm(M) = L(M). Also note, if we had instead counted a cross
of c as going from either c to c + 1 or c + 1 to c, then because every
counter must end at 0 in every accepting computation, each upward
cross gets uniquely matched with a downward cross and, therefore, an
odd number of crosses would be impossible and the number of crosses
would always be exactly two times more than our definition. Hence,
we use the simpler definition of crossing from c to c + 1 to count as
a cross of c. Using a similar argument, the number of upward crosses
of c in any accepting computation is always equal to the number of
downward crosses of c. Thus, we can choose to either use upward-
crosses or downward-crosses for crosses without any issue. (We will
sometimes say that we are referring to crosses by downward crosses.)

As previously discussed with partially-blind machines, a computa-
tion “crashes” if a counter goes below zero. Withm-crossing languages,
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the behaviour is similar as a computation “crashes” if they cross any
counter value more than m times. Therefore, this notion is not a re-
striction of partially-blind machines, but rather a restriction of the
accepting computations.

The family of m-crossing languages accepted by one-way nonde-
terministic k-counter (respectively, partially-blind) machines is de-
noted by COUNTERm(k) (respectively, PBLINDm(k)), the family of
languages accepted by m-crossing multicounter (respectively, partially-
blind multicounter) machines is denoted by COUNTERm (respectively,
PBLINDm), and the family of languages accepted by m-crossing multi-
counter (respectively, partially-blind multicounter) machines for any
m, called finite-crossing, is denoted by COUNTERFIN (respectively,
PBLINDFIN).

Next, we analyze some basic properties of these language families.
First, we study some basic inclusion properties. The following proof
of PBLINDm ⊆ PBLINDm+1 and COUNTERm ⊆ COUNTERm+1 looks
like it should be simple but is deceptively difficult because it is not
machines that are m-crossing, but languages. If we take a PBLIND
machine M , we know Lm(M) ⊆ Lm+1(M). From M , we need to build
M ′ such that Lm(M) = Lm+1(M

′). But machines cannot keep track
of which cells are crossed. If we build M ′ to only cross say 0 of each
counter one more time from M , and then simulate M , then Lm+1(M

′)
might still accept more words than Lm(M) as it would allow for one
more cross of each number greater than 0. We need to build M ′ so
that it has one more cross on every counter value crossed by M . This
is possible by first guessing the largest number that can appear in each
counter in a given computation, crossing all of the numbers up to that
maximum value once, and then verifying that the guess is correct.

Proposition 1. The following statements are true:

� for every m ≥ 0, PBLINDm ⊆ PBLINDm+1 and COUNTERm ⊆
COUNTERm+1.

� PBLIND0 = COUNTER0 = REG,

Proof. We will show the proof for PBLIND as it can be made simpler
with counter machines. Let M be a PBLIND(k) machine. We build
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M ′ with counters called C1, . . . , Ck, D1, . . . , Dk, E1, . . . , Ek. At the be-
ginning, M ′ nondeterministically guesses (u1, . . . , uk), the maximum
values that will appear in the k counters in the simulation of M , by
adding 1 uj times to each of Dj and Ej in parallel. Next, M ′ simulates
M using the C1, . . . , Ck counters. In parallel, M ′ performs the same
simulation “backwards” on both the Dj and Ej in the sense that, each
decrease of Cj by 1 causes an increase of Dj and Ej by 1, and each
increase of Cj causes a decrease of Dj and Ej by 1. For each counter j,
at a nondeterministically guessed spot of the computation, M ′ guesses
that Ej contains zero, and stops using it, thereby requiring that it ends
with zero in any accepting computation and it was therefore zero when
stopped. At the end of the simulation, M ′ subtracts some nondeter-
ministically guessed amount from the Dj counters. Hence, M ′ accepts
if it reads the input and ends in a final state of M with all counters
being zero.

Let w ∈ Lm(M), and consider anm-crossing accepting computation
α of M on w. Then, for each counter j, M ′ guesses the maximum
value uj that can appear in counter j in α, and adds uj to both Dj

and Ej . Then M ′ simulates α using C1, . . . , Ck, with the simulation
“backwards” in Dj and Ej as indicated above. This is accepting in M ′

because the Dj counters do not crash by going below 0 (which would
only happen if the guessed maximum was in fact too small), and the
Ej counters can stop where the maximum value in Cj is achievable
and, therefore, Ej contains zero. Further, this described accepting
computation is (m + 1)-crossing because each Dj crosses every value
that Cj can cross once initially, plus as the Cj and Dj counters are
both simulating M (with Dj backwards), Dj crosses uj − c− 1 exactly
once for every cross of c by Cj . Thus, after the initial guess, each value
is m-crossing as are all the other counters. In all, M ′ can accept w
with a (m+ 1)-crossing computation.

Let w ∈ Lm+1(M
′), and let α be an (m + 1)-crossing accepting

computation. Then, looking at the simulation ofM on the Cj counters,
this must be accepting in M . Clearly, the simulation of M is also
(m + 1)-crossing in M but we need to make sure it is m-crossing.
Looking at the Dj counters, it crosses a value uj − c− 1 one more time
than Cj crosses c. Because this happens at most m+1 times, it implies
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that c is crossed at most m times by Cj .
Lastly, PBLIND0 = REG as the counters cannot be used at all, thus

essentially acting as a finite automaton.

To note, property 1 above causes an increase in the number of
counters. It is open for each k and m, whether PBLINDm(k) ⊆
PBLINDm+1(k) (and, similarly, with COUNTER).

Next, we see that 1-crossing languages and NCM are equal.

Proposition 2. PBLIND1 = COUNTER1 = NCM.

Proof. First, to show NCM ⊆ PBLIND1 and NCM ⊆ COUNTER1, it is
known that every NCM language can be accepted by a machine where
every counter is 1-reversal-bounded [8]. Hence, every accepting com-
putation of such a machine is 1-crossing. The only other change that
needs to be made is for partially-blind counters, which can only detect
a zero in each counter at the end of the computation, whereas NCM
machines can detect at any point when they hit zero. Thus, when a
partially-blind machine simulates the NCM machine, it needs to nonde-
terministically guess when each counter hits zero in each counter, then
simulate only transitions on that counter being zero. Then it verifies
at the end of the computation that this guess was correct.

For the converse, let M be a k-counter machine. Then create an
NCM M ′ such that, M ′ keeps track, for every counter i, of whether
counter i has already increased, and then decreased. If it has, then it
no longer allows counter i to increase again. This accepts the same
language, because any computation where counter i increases, then
decreases, then increases again must not be 1-crossing.

Proposition 3. There is a non-semilinear language in PBLIND2(2)
and COUNTER2(2).

Proof. It is obviously enough to show this for partially-blind machines.
Consider the language

L = {dn1ban2b · · · anlb | l > 1, ni > ni+1 ≥ 1 for 1 ≤ i < l}.

First, we will show that this is not semilinear. First, let L′ =
{dnban−1b · · · a1b | n > 1}. This language L′ is not semilinear, as
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erasing the b’s and mapping d to a with a homomorphism creates a
non-regular unary language {an(n+1)/2 | n ≥ 0}; and a unary language
is semilinear if and only if it is regular [7]. Thus, L′ is not semilinear.

Suppose, by contradiction, that L is not semilinear. Then, there
must exist a regular language R with the same Parikh image as L [7].
Hence, there must also exist an NCM language with the same Parikh
image as L. Let M̂ be such a NCM machine. Let M̂ ′ be obtained from
M̂ by also verifying that the number of d’s is equal to the number of
b’s. This can be done by adding two extra counters to M̂ , counting the
number of b’s in one counter, and the number of d’s in another counter,
and then at the end of the input, verifying that they are the same. But
any language with the same Parikh image as L that enforces that the
number of d’s is equal to the number of b’s must have the same Parikh
image as L′. But also L(M̂ ′) ∈ NCM, and is therefore semilinear since
all NCM languages are semilinear [8]. Hence, L′ must be semilinear
as well since it has the same Parikh image as L(M ′), a contradiction.
Hence, L is not semilinear.

We will build a machine M ∈ PBLIND(2) such that the 2-crossing
language accepted by M is equal to L. So, if any value of any of the
two counters is crossed going up, crossed going down, then up, then
down, then up again, then M crashes. Say the input is of the form:

dn1ban2b · · · anlb.

The two counters will verify that each section of a’s has fewer copies
than the previous section of either d’s or a’s. We call the first counter
C1 and the second counter C2.

The machine first reads dn1 and places n1 in C1. Next, the machine
will verify that the first section of a’s has fewer a’s than the number of
d’s. To start this, as it reads an2 , it decreases C1 by n2 + 1, while in
parallel, increasing C2 by n2. Clearly, n2 ≥ n1 if and only if the machine
crashes by going below zero. Hence, in an accepting computation, the
number of a’s in the first section of a’s must be fewer than the number
of d’s.

At this point, C1 contains n1 − (n2 + 1) = n1 − n2 − 1, the largest
value that has ever been contained in C1 is n1, C2 contains n2, and the
biggest value of C2 where a decrease (or zero) occurred is zero (as C2
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has not yet decreased).

Next, for each i from 3 to l, the machine alternates back and forth
between the following two phases where it does the first phase if i is
odd and the second phase when i is even until i = l:

1. Say C1 starts this phase with value c and the highest C1 has ever
reached is c′ (with c < c′), and C2 starts with value e′ and the
biggest value of C2 where a decrease (or zero) occurred is e. It
is easy to see inductively that e + ni−1 = e′. It increases C1

to some arbitrary nondeterministically guessed amount c′′, then
decreases it by 1, then increases it by 1 again. If the new counter
value c′′ has been used by this counter before (i.e., if c′′ ≤ c′), the
machine crashes since c′′ − 1 would have been previously crossed
beforehand, crossed again on the increase, and crossed a third
time when subtracting once and then back again. Therefore, this
new counter value must be unused by C1 if the machine reaches
this stage and eventually accepts. At this point, in parallel, M
reads ani and increases C1 by ni, and also in C2 (which currently
contains e′) it decreases by ni until it hits e′′, say. Then e′′ is
verified to be more than e by finally decreasing by one more than
increasing back by 1 (it would therefore crash if e′′ was not more
than e). This implies that any computation reaching this stage
must have ni < ni−1. Note that at the end of this phase, C1

has some value that is ni larger than the largest value where a
decrease occurred.

2. This is the same as phase 1 with the roles of C1 and C2 reversed.

Therefore, each section of a’s must have strictly fewer a’s than the
previous section. At the end of the input, M decreases all counters
by some nondeterministically guessed amount, and switches to a final
state, thereby only accepting if they are all zero.

Corollary 1. PBLIND1 ⊊ PBLIND2 and COUNTER1 ⊊ COUNTER2.

This follows since all NCM languages are semilinear [8], by Propo-
sition 2 and since PBLIND2 accepts non-semilinear languages.
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Next we will compare COUNTERFIN to PBLINDFIN. Surprisingly,
we see that they are equivalent and that if we restrict accepting compu-
tations to be finite-crossing, then detecting whether counters are zero
or not does not help the capacity (unlike without this restriction since
PBLIND ⊊ COUNTER). To note in the proof below, both the number
of crossings and the number of counters increases, and it is not evi-
dent how the proof would work without this allowance (although the
number of crossings only increases by 1 in the proof).

We start with an informal description of the proof to help the reader
as the proof is quite lengthy. Intuitively, given a k-counter machine
M , a partially-blind machineM ′ can simulateM , but it needs to know
when each counter is zero or not in order to apply the correct transition.
As it simulates M , M ′ can guess when M downward crosses to 0 and
verify that it is correct with additional counters. For all situations after
a downward cross where it does not guess that the counter is 0, it also
needs to verify that it is not empty. This can be achieved by decreasing
by one and then increasing by one again, which would cause a crash if
it were zero. However, this causes an increase in the number of crosses
— we do this in such a way (by using a set of new counters) that it
causes an increase of exactly one cross of every counter value from 0 to
the maximum value crossed in each counter minus 1. But we need to
add a single cross also to the highest number crossed in M so that we
always have one more cross than M . This can be accomplished using
a similar technique to the proof of Proposition 1 to add a single cross
to the maximum value crossed.

Proposition 4. COUNTERFIN = PBLINDFIN.

Proof. It is clear from the definition that every PBLINDFIN machine is
indeed a COUNTERFIN machine, and so PBLINDFIN ⊆ COUNTERFIN.

For the opposite direction, let M be a COUNTER(k) machine. We
assume without loss of generality that each transition of M changes
at most one counter. Throughout this proof, we will equivalently use
downward crosses as crosses, so crossing c means switching from c+1 to
c. As a k-counter machine (not partially blind), M can have different
transitions to be applied depending on whether each counter is 0 or not,
and we need to build M ′ so that it can somehow know the appropriate
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transition to apply even though it cannot directly detect whether a
counter is zero or not.

To help explain the proof, we will start by describing a simpler
special case. The special case is where, for every m-crossing accepting
computation of M , for every counter j, it must cross zero on counter
j exactly m times (instead of at most m times from the m-crossing
definition). We build M ′ ∈ PBLIND with (m + 1)k counters. There
are m + 1 counters associated with each counter of M . Let Cj,i, 1 ≤
j ≤ k, 0 ≤ i ≤ m be counter labels. Then M ′ simulates M and at
the start, simulates the moves of counter j identically on all counters
Cj,i, 0 ≤ i ≤ m. But as it proceeds, for each counter j, and one at a
time, from i := 1 to m (it does not do this for i = 0), it guesses the ith
position directly after a decrease where counter j crosses 0. At each
of these points, M ′ stops using Cj,i (but keeps using all other counters
that have not yet stopped), thereby verifying at the end of the accepting
computation that all counters that were stopped were indeed zero when
stopped. Notice that for each j, Cj,0 is never stopped and so the entire
computation is simulated on those counters. AsM ′ verifies that it does
this m times for each counter and because each counter crosses zero
exactly m times in any m-crossing accepting computation, this means
M ′ knows exactly when each counter is zero, and in these cases, it can
simulate a transition of M on counter j being 0 (this includes at the
beginning of the computation before an increase, and after a guessed
cross to 0 up until an increase); and it simulates a transition of M on
the counter being positive otherwise. Thus, Lm(M) = Lm(M ′) for this
special case.

Next, we will remove this special case. It is quite a bit more difficult
if accepting computations can downward cross to zero on a counter
fewer than m times because the partially-blind machine cannot guess
the appropriate number of times it switches to zero and then easily
verify that it was correct (e.g., if it guessed that it crossed 0 less than
m times, what if it hit zero other times but the machine M ′ was not
able to detect it and execute different transitions when it was actually
zero?)

We build M ′ ∈ PBLIND(k(2m+ 3)), but by using (m+ 1)-crossing
computations. We use counters labelled by Cj,i, 1 ≤ j ≤ k, 0 ≤ i ≤ m,
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Dj,i, 1 ≤ j ≤ k, 1 ≤ i ≤ m, and Ej , Fj , 1 ≤ j ≤ k where all counters
with subscript j in the first component are associated with counter j
of M .

First, we need to employ a technique similar to the proof of Propo-
sition 1 where we need to guess the maximum value that appears in
each counter and verify that it is correct. To do this, M ′ guesses a
vector u⃗ = (u1, . . . , uk), by, for each j, 1 ≤ j ≤ k, adding 1 a nondeter-
ministically guessed amount of times until it has uj in both Ej and Fj .
For the rest of the computation, M ′ will simulate M and it will verify
that uj was the maximum value hit by counter j using Ej and Fj in
the simulated computation, as described below.

Next,M ′ guesses some vector v⃗ = (v1, . . . , vk), 1 ≤ vj ≤ m (of which
there are a finite number of possible vectors), which it remembers in
the state. The value vj will be the guessed number of downward crosses
to 0 of the simulation on counter j of M . Similar to the special case
proof above, it will start by simulating counter j of M on all counters
Cj,i, 0 ≤ i ≤ m, but also now identically on all countersDj,i, 1 ≤ i ≤ m.

As part of the simulation, M ′ will nondeterministically guess vj
positions, for each i from 1 to vj where counter j crosses 0, and at
these spots, it will stop using Cj,i, but keep using all the counters that
have not yet stopped. At all positions where it guesses counter j is zero
(and at the beginning before simulating an increase on counter j) and
until counter j again increases, it simulates only transitions ofM where
counter j is 0 (this is called to 0 case). At the end of the computation,
M ′ will verify that all stopped counters were indeed 0 when they were
stopped. Also the counters Cj,0 which simulate M until the end must
also end with all zeros. When simulating M , in all cases other than
the 0 case, M ′ will simulate all transitions on counter j of M being
non-zero. However, we need a way to verify that counter j was indeed
non-zero at all of these positions where it simulated a transition on
counter j being positive. To do this, after each downward cross on
counter j to counter value c in Cj,0 where M ′ does not guess counter
j is now 0, it immediately executes another two new transitions on
one of the counters Dj,i (where i is nondeterministically chosen), that
decreases by 1 to c− 1 causing a cross of c− 1, and then immediately
increases Dj,i back to c again (these two transitions only change Dj,i).
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Then M ′ simulates the next transition of M on counter j not being 0
on all counters that have not yet stopped. Thus, the cross of c by M
causesM ′ to cross c (as inM), then c−1 but only in one of the counters
Dj,i, 1 ≤ i ≤ m. It is clear that by decreasing by 1 then increasing by
1 again, that any accepting computation could not contain 0 at that
point in counter j, as M ′ would crash if it decreased by 1 from being
0 in the counter. In addition, M ′ does not let the simulation continue
if it tries to increase after the vjth cross of zero.

Finally, as it is simulatingM it will simulate the same computation
also on both Ej and Fj as it does on Cj,0, but it does so where every
increase by 1 instead decreases by 1, and every decrease by 1 will instead
increase by 1 (as with Proposition 1); and at some nondeterministically
guessed point for each j, 1 ≤ j ≤ k, where it guesses Cj,0 contains
the maximum uj , it will stop using Fj but continue using Ej . This
stopping verifies that it must end with 0, thereby verifying that the
guessed value uj can indeed be hit in counter j. Furthermore, it must
be able to hit at most this amount otherwise Ej would decrease below
0. Hence, the guessed uj was indeed the maximum. At this same point
of the computation where it guesses it is at the maximum, Cj,0 will
subtract 1, then add 1, thereby crossing the maximum value crossed,
uj − 1 one extra time (the purpose of this will be explained below). At
this point, it continues simulating M as described above. Finally, at
the end of the simulation, M ′ decreases each Ej a nondeterministically
guessed amount until zero. It remains to check that the words that
can be accepted by m-crossing computations of M are precisely those
that can be accepted by (m+1)-crossing computations of M ′ (proving
Lm(M) = Lm+1(M

′)). We will show this in the remainder of this proof.

Let w ∈ Lm(M). Consider an m-crossing accepting computation
α. Let j be a counter of M . Any value c that is crossed is crossed
at most m times; let cj be the number of times value c is crossed in
counter j, let vj be the number of times 0 is crossed in counter j, and
let u⃗ = (u1, . . . , uk) be such that uj is the maximum value reached
in counter j. This computation can be simulated by M ′ as follows.
First, M ′ guesses u⃗ by putting it on the Ej and Fj counters and then
it guesses v⃗ as described, which it saves in the finite control. Then it
simulates α with counter j changing all of the Cj,i, Dj,i counters, and
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with Ej and Fj changing “backwards” by adding 1 when the simulation
subtracts 1, and subtracting 1 when the simulation adds. To simulate
a transition not directly after a downward cross, it does so based on
the counter status of the previous transition on that counter. After a
downward cross to counter j, it guesses if its contents c is 0 or not.
If it guesses c > 0, if it is the ith time c is downward crossed in M ′,
M ′ decreases Dj,i (certainly it could also happen in different orders as
i is chosen nondeterministically, but one order that works is sufficient
to produce an accepting computation in M ′), then increasing it again.
Thus, each time c is crossed in M causes a different counter Dj,i to
cross c− 1 in M ′. In this situation, after simulating a downward cross
of c in counter j, each counter Dj,i crosses c−1 at most one extra time
in the accepting computation. Since we are looking at (m+1)-crossing
computations, this simulation produces at most one more crossing than
m for all c between 0 and uj−2 (uj is the largest value hit, which means
uj − 1 is the largest value crossed, but it only decreases a Dj,i counter
after a decrease to test the counter status) and can accept. Looking at
the Ej , Fj counters, when counter j reaches uj , Fj is 0 and stops, then
C0,j downward crosses uj − 1 (the largest crossed) one time more than
the simulation of M . Thus, each number c crossed is crossed at most
m + 1 times. The Ej counters cross uj − c − 1 exactly once for every
cross of c in α (which is at most m), plus they create one more cross
than α as they are being decreased to 0 at the end. So this accepting
computation is (m+ 1)-crossing. Hence w ∈ Lm+1(M

′).

Let w ∈ Lm+1(M
′). Let α be an m+1-crossing accepting computa-

tion of M ′ on w. This starts by guessing the vector u⃗ = (u1, . . . , uk) of
maximum values and storing them in the Ej and Fj counters, and since
α accepts and is simulated with opposite operations from the simula-
tion on the counters ofM , this implies that these are indeed maximum
values as being less than the maximum would cause some Fj counter to
not reach 0 to accept, and being more than the maximum would cause
the computation to crash. Then it guesses v⃗ = (v1, . . . , vk), where vj
is the number of times counter j downward crosses to 0, and correctly
is able to make sure that it is zero at the beginning before an increase,
after a guessed cross (by checking that Cj,i is 0 after the ith guessed
cross of zero) and again before an increase, and it correctly simulates a

404



Restrictions on Multicounter Languages

transition on counter j being positive by decreasing (and re-increasing)
one of the counters Dj,i (which has identical contents to Cj,0), which
therefore must be non-zero since α is accepting.

It suffices to show that the computation of M that α simulates is
m-crossing. Let j be a counter, and c be a value that is crossed m+ 1
times in counter j in α. First, assume 0 < c < uj − 1 (uj − 1 is the
biggest number crossed). Then each time after c is crossed, α must
guess that c > 0 and decrease one of Dj,i for some i, 1 ≤ i ≤ m and
add one crossing to at least one of them, and so it will have at least
one more crossing from Cj,0, but to the value c− 1 (and not to c). But
because c is crossed at least once (since c < uj − 1), some counter Dj,i

for some i, say will create at least one extra cross of c and, therefore, c
will be crossed at least one fewer times in the simulation than Dj,i of
M ′ and, therefore, the simulation of M has at least one fewer crosses
of c than m + 1, which is thus at most m crosses. Assume c = 0. If
the simulated computation crosses 0 at most m times, we are done.
Assume it crosses zero m+1 times (thus, α does this as well). But M ′

does not let the simulation continue after the vjth cross and, therefore,
this cannot happen. Assume finally that c = uj − 1. But Cj,0 crossed
uj − 1 one more time than in the simulation (as it decreased, then
increased once at its maximum value). Hence, w ∈ Lm(M).

4 Decidability Properties

In this section, we look at several decidability properties related to
m-crossing computations of either multicounter or partially-blind mul-
ticounter machines.

Proposition 5. It is decidable, given a PBLIND machine M and m ≥
0, whether every accepting computation is m-crossing.

Proof. Given M with k counters and m, create a partially-blind M ′

with k + 2(m + 1) counters. We create labels for the counters of M ′,
the first k − 1 counters are called D1, . . . , Dk−1, and the remaining
are C0, . . . , C2m+1 and C. To start, M ′ nondeterministically guesses
a counter j and a value xj that is crossed at least m + 1 times in
some accepting computation. Then, M ′ stores xj in 2m + 1 identical
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copies on C1, . . . , C2m+1 (by adding in parallel to them all). Then
M ′ simulates M using the D1, . . . , Dk−1 to simulate all counters other
than j, but initially uses C0 to simulate counter j. But at m + 1
nondeterministically guessed spots after a cross of the simulation from
i := 0 to m, M ′ reduces counters C2i and C2i+1 by the same amount
and then they will not be used again (they must therefore both be zero
at the same time to accept and, therefore, both contain the same value
beforehand). After the m+1st time, it uses C for counter i and accepts
if M does.

It is evident that M ′ will accept all words where some accepting
computation that crosses some counter value at least m + 1 times.
Thus, we can use the decidable non-emptiness property of PBLIND [2]
to decide the property of interest.

Despite PBLINDFIN being equal to COUNTERFIN, we get the fol-
lowing interesting contrast to Proposition 5.

Proposition 6. It is undecidable, given a deterministic COUNTER(2)
machine M and m ≥ 0, whether every accepting computation is m-
crossing.

Proof. It is known that it is undecidable, given a deterministic
COUNTER(2) machineM with an empty input and initially zero coun-
ters, whether M will halt [9]. Given such a machine M , we construct a
deterministic COUNTER(2) machineM ′ (with right end marker) which
when given any unary ad (for some d ≥ 1), first crosses zero on the first
counter m+1 times and then simulates M , and accepts ad if M halts.

If M does not halt, then M ′ accepts the empty language, which is
obviouslym-crossing (for anym ≥ 0). IfM halts, then the first counter
of M ′ makes at least m+ 1 crosses in every accepting computation.

It follows that M ′ is m-crossing if and only if M does not halt,
which is undecidable.

This proposition cannot be strengthened to hold for COUNTER(1)
as we show below.

Proposition 7. It is decidable, given a COUNTER(1) machine M and
m ≥ 0, whether every accepting computation is m-crossing.
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Proof. The proof uses the known result that the emptiness problem for
one-way nondeterministic pushdown automata with reversal-bounded
counters is decidable [8]. Actually, in our proof, the pushdown will just
be an unrestricted counter; call this class of machines NCCM.

Given a COUNTER(1) machine M and m ≥ 0, we construct an
NCCM M ′ with one unrestricted counter called C, and 2(m + 1) 1-
reversal-bounded counters called C1, . . . , Cm+1, D1, . . . , Dm+1. Then
M ′ operates as follows, when given input x:

First M ′, on input w, without reading the input, increments the
1-reversal-bounded counters C1, . . . , Cm+1 to the same nondeterminis-
tically guessed value d (by adding 1 to them all in parallel). Next, M ′

simulates the computation of M (which has one unrestricted counter)
on w using counter C. At m+1 nondeterministically guessed points af-
ter an upward cross in the computation from i := 1 tom+1,M guesses
that the contents in C is equal to d by checking that it contains the
same value as in Ci by decreasing C and Ci in parallel to check that
they reach zero at the same time, while also increasing counter Di to
temporarily save the value of C. If they are equal, it restores the value
in C using Di. The process is iterated until M ′ has checked that d
occurs after a cross at least m + 1 times in M . Then M ′ accepts w if
M accepts. Clearly,M is m-crossing if and only L(M ′) is empty, which
is decidable.

For the next result, we will need the following lemma, which is
almost the same as the standard proof of undecidability of whether a
1-reversal-bounded NCM(1) (a family we denote by NCM(1, 1)) accepts
Σ∗ [10]. NCM(1, 1) is known to be properly contained in COUNTER(1),
and it is the same family as 1-crossing NCM(1).

Lemma 1. It is undecidable, given an NCM(1, 1) M over input alpha-
bet Σ, whether L(M) = Σ∗. Moreover, in the proof of this undecidabil-
ity, it is the case that if L(M) ̸= Σ∗, then Σ∗ − L(M) is infinite.

Proof. This follows from the standard proof of accepting all strings
that do not represent the valid sequence of IDs of a deterministic Turing
machineM halting computation (on an initially blank tape) [10], which
can be accepted by an NCM(1, 1). The idea is to modify M so that
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when it halts on blank tape, it continues the computation by just re-
entering the halting state. Then the number of valid sequences of IDs
of the deterministic Turing machine is infinite.

Proposition 8. The following problems are undecidable:

1. Given a PBLIND(1) (respectively, an NCM(1)) M and m ≥ 1, is
Lm(M) = L(M)?

2. Given a PBLIND(1) (respectively, an NCM(1)) M and m ≥ 1,
does every input that is accepted have an accepting computation
that is m-crossing?

3. Given a PBLIND(1) (respectively, a COUNTER(1) M , is there an
m ≥ 1 such that Lm(M) = L(M)?

Proof. To prove Part 1, given an M ∈ NCM(1, 1) (see Lemma 1), build
a PBLIND(1) (or an NCM(1)) M ′ so that it does one of two things
nondeterministically when given input x:

1. M ′ simulates M on x with 1 crossing.

2. M ′ first crosses the number 0 (m + 1) times (by adding 1 and
subtracting 1 that many times) and then reads x and accepts.

Then Lm(M ′) = L(M) and L(M ′) = Σ∗. Hence, Lm(M ′) = L(M ′) if
and only if L(M) = Σ∗, which is undecidable.

Part 2 is just a restatement of Part 1.
Part 3 is similar to part 1 setting m = 1. We alter step 2, however,

so that after crossing 0 (m + 1) times, it then crosses 0 up and down
for every symbol in x and accepts. So, if L(M) = Σ∗, then L(M ′) =
L1(M

′). If L(M) ̸= Σ∗, by Lemma 1, there is an infinite number of
strings in Σ∗ that are not in L(M) and these strings are accepted by
M ′ with an unbounded number of crossings (by the construction ofM ′

adding 1 crossing for each symbol of x), and hence there is no m ≥ 1
such that Lm(M ′) = L(M ′).

We note that Part 2 of Proposition 8 contrasts Proposition 5 as
Proposition 5 shows that it is decidable, given a PBLIND machine and
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m whether every accepting computation is m-crossing, whereas Propo-
sition 8 says that it is undecidable if every word has an accepting
computation that is m-crossing.

Proposition 8 also holds for COUNTER(2), in fact, it holds for de-
terministic COUNTER(2):

Proposition 9. The following problems are undecidable:

1. Given a deterministic COUNTER(2) M and m ≥ 0, is Lm(M) =
L(M)?

2. Given a deterministic COUNTER(2) M and m ≥ 0, does every
input that is accepted have an accepting computation that is m-
crossing?

3. Given a deterministic COUNTER(2) M , is there an m ≥ 0 such
that Lm(M) = L(M)?

Proof. Again, we use the fact that it is undecidable, given a deter-
ministic COUNTER(2) machine M with empty input and initially zero
counters, whether it will eventually halt [9]. We construct a determin-
istic COUNTER(2) M ′ with input alphabet {a}. Let w ∈ {a}∗ be an
input to M ′.

� If w = λ, M ′ rejects without using the counters.

� If w = a, M ′ accepts without using the counters.

� If w = aak for some k ≥ 1, M ′ first simulates M after reading
the first a and if M halts, the first counter of M ′ crosses 0 up
and down for every a in ak and accepts.

If M does not halt, then M ′ will only accept the language {a} with 0
crossings. Then Lm(M ′) = L(M ′) for every m ≥ 0. If M halts, then
every string of the form aak, k ≥ 1 will be accepted by M ′ with the
first counter crossing 0 a number of times that grows with k; hence
M ′ is not m-crossing for any m, i.e., Lm(M ′) ̸= L(M ′). It follows that
Lm(M ′) = L(M ′) if and only if M does not halt, which is undecidable.
Parts 2 and 3 also follow.
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To note finally, that for deterministic COUNTER(1) where each
accepted word has a unique accepting computation, it follows from
Proposition 7 that it is decidable, given a deterministic COUNTER(1)
machine and m ≥ 0, whether every input that is accepted has an
accepting computation that is m-crossing.

5 Conclusions and Future Directions

We introduced a new notion of them-crossing language accepted by a k-
counter machine, or a k-counter partially-blind machine. We establish
some basic properties, and that for both multicounter and partially-
blind multicounter machines, their m-crossing languages are contained
in their (m+1)-crossing languages. We also showed that finite-crossing
multicounter languages are equal to finite-crossing partially-blind mul-
ticounter languages and, therefore, the ability to test whether counters
are empty or not does increase their power.

However, we have just scratched the surface of this new topic. In-
deed, we have not been able to establish any inclusions (or incompara-
bility) between finite-crossing partially-blind languages, and partially-
blind languages in general. It is also open whether the emptiness and
membership problems are decidable for these languages.
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