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We study the generative power of controlled insertion systems
where the control languages are special codes or ideals instead of
arbitrary regular languages.
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1 Introduction

Controlled insertion systems, as considered here, were introduced in [1]
as extensions of prefixal systems as well as insertion systems with left
context only. In [2], the investigation of controlled insertion systems
was continued. It is required that the insertion of a word x into a
word uv after the subword u is only allowed if u belongs to a regular
set Rx which is associated with x.

A survey about similar systems (insertion-deletion systems, semi-
Thue systems, prefixal systems) together with references can be found
in [1] and [2]. In the latter paper, controlled insertion systems were
investigated where the control languages are all taken from a certain
subfamily of the family of the regular languages. The families consid-
ered were the sets of all finite, nilpotent, definite, regular non-counting,
monoidal, combinational, regular commutative, regular circular, regu-
lar suffix-closed, and union-free languages. In the present paper, this
research is continued by investigating the impact of control languages
which are ideals or codes of a certain type.
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2 Preliminaries

We assume that the reader is familiar with the basic concepts of formal
language theory (see, e. g., [3]). We only recall here some notations used
in the paper.

Let V be an alphabet. By V ∗, we denote the set of all words
(strings) over the alphabet V (including the empty word λ).

By FIN and REG , we denote the families of finite and regular
languages, respectively.

2.1 Ideals and Codes

In the sequel, let V be an alphabet. We now introduce the notion of
an ideal in V ∗ from the theory of rings and semigroups.

A non-empty language L ⊆ V ∗ is called a right (left) ideal if and
only if, for any words v ∈ V ∗ and u ∈ L, we have uv ∈ L (vu ∈ L,
respectively). It is easy to see that the language L is a right (left) ideal
if and only if there is a language L′ such that L = L′V ∗ (L = V ∗L′,
respectively).

We now present some notions from coding theory, especially some
special codes. For details, we refer to [4] and [5].

A language L ⊆ V ∗ is called

� a code if and only if, for any numbers n ≥ 1, m ≥ 1, and words

x1, x2, . . . , xn, y1, y2, . . . ym ∈ L

such that
x1x2 . . . xn = y1y2 . . . ym,

we have the equalities n = m and xi = yi for 1 ≤ i ≤ n (i. e., a
word of L∗ has a unique decomposition into code words.

� uniform if and only if L ⊆ V n for some n ≥ 1 (all words have the
same length);

� prefix if and only if, for any words u ∈ L and v ∈ V ∗ such that
uv ∈ L, we have v = λ (i. e., any proper prefix of a word in L is
not in L);
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� suffix if and only if, for any words u ∈ L and v ∈ V ∗ such that
vu ∈ L, we have v = λ (i. e., any proper suffix of a word in L is
not in L);

� bifix if and only if it is prefix as well as suffix;

� infix if and only if, for any u ∈ L, and v, v′ ∈ V ∗ such that
vuv′ ∈ L, we have v = v′ = λ (i. e., any proper subword of a word
in L is not in L).

Note that uniform, prefix, suffix, bifix, and infix languages are
codes.

A code L ⊆ V ∗ is called

� outfix if and only if, for any words u ∈ V ∗ and v, v′ ∈ V ∗ such
that vv′ ∈ L and vuv′ ∈ L, we have u = λ;

� reflective if and only if, for any words u, v ∈ V ∗ such that uv ∈ L,
we have vu ∈ L.

By rId , lId , C , PfC , SfC , BfC , IfC , OfC , RC , and UC , we denote
the families of regular right ideals, regular left ideals, regular codes,
regular prefix codes, regular suffix codes, regular bifix codes, regular
infix codes, regular outfix codes, regular reflective codes, and uniform
codes, respectively.

Let

G = {FIN ,REG , rId , lId ,C ,PfC ,SfC ,BfC , IfC ,OfC ,RC ,UC}.

In [6], it was proved that any uniform code, any regular outfix code,
and any regular reflective code is finite. Further relations, especially
those depicted in Figure 1, are proved in [6], [4], and [5].

Lemma 1. The hierarchy of the classes in G is presented in Figure 1. □
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Figure 1. Hierarchy of subregular languages families of G (an arrow
from X to Y denotes X ⊂ Y , and if two families are not connected by
a directed path, then they are incomparable)

2.2 Controlled Insertion Systems

We now give the definition of the central concept of this paper.

Definition 1. A controlled insertion system is an (n+ 2)-tuple

G = (V, (R1, I1), (R2, I2), . . . , (Rn, In), A), (1)

where n ≥ 1 is a natural number, V is an alphabet, A is a finite non-
empty subset of V ∗, and, for 1 ≤ j ≤ n, Rj ⊆ V ∗ is a regular set
and Ij ⊂ V ∗ is a finite set of non-empty words.

We say that a word x generates or derives the word y according
to G, written as x =⇒G y, if there are words x1 ∈ V ∗ and x2 ∈ V ∗, an
integer j, 1 ≤ j ≤ n, and a word w ∈ Ij, such that x = x1x2, x1 ∈ Rj,
and y = x1wx2. By =⇒∗

G, we denote the reflexive and transitive closure
of =⇒G.

The language L(G) generated by G consists of all words z such
that a =⇒∗

G z for some a ∈ A.
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For 1 ≤ j ≤ n, Ij is called an insertion set and Rj is called the
control set of Ij . The elements of A are called axioms.

If we want to specify which pair (Rj , Ij) is used in a derivation step,
then we write x =⇒(Rj ,Ij) y. Moreover, if G and/or the pair is clear
from the context, then we simply write x =⇒ y.

We set

m(G) = max{ |w| | w ∈ A }+max{ |p| | p ∈ Ij , 1 ≤ j ≤ n }+ 1.

If x ∈ Ij for some j, 1 ≤ j ≤ n, then |x| ≤ m(G)− 1.
We note some properties of words in L(G). If z ∈ L(G) and z /∈ A,

then there is a derivation

a = w0 =⇒G w1 =⇒G w2 =⇒G · · · =⇒G wk−1 =⇒G wk = z

for some k ≥ 1 and words a ∈ A, w1, w2, . . . , wk−1 ∈ V ∗. Obviously,
by definition, wi ∈ L(G) for 0 ≤ i ≤ k. Thus, for any z ∈ L(G), z /∈ A,
there is a word z′ ∈ L(G) such that z′ =⇒G z and |z′| > |z| −m(G).

On the other hand, if z ∈ L(G) and z = uv with u ∈ Rj for some
index j with 1 ≤ j ≤ n, then uxv ∈ L(G) for all x ∈ Ij .

Let us give an example.

Example 2. We consider the controlled insertion system

G1 = ({a, b, c}, ({bca, ca, a, λ}, {a}), {bca, bcb})

with only one pair of control set and insertion set. The only word that
can be inserted is a. Moreover, since λ is in the control set, if z is
in L(G1), then az is in L(G1), too, because z = λ z allows an insertion
of a at the beginning of the word. Furthermore, if az is in L(G1), then
we also have aaz ∈ L(G1), since a is in the control set. Because bca
is in the control set, we can insert an a after bca in any word bcaw.
Since ca is not the beginning of an axiom and no word starting with ca
can be produced by insertions of a, the control word ca has no influence
on the derivations in G1. Combining these considerations, we obtain

L(G1) = { apbcaq | p ≥ 0, q ≥ 1 } ∪ { arbcb | r ≥ 0 },

where the two given sets are generated from bca and bcb, respectively.
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We now define the families of sets generated by controlled insertion
systems with special control sets.

Definition 2. Let F ∈ G. We say that a controlled insertion system G
as in (1) is of type F if Ri ∈ F holds for all i, 1 ≤ i ≤ n.

We define

I(F ) = { L(G) | G is a controlled insertion system of type F }

as the family of all languages generated by controlled insertion systems
of type F .

If F1 ⊆ F2 for two families F1 and F2 of F , then it is obvious that
any controlled insertion system of type F1 is a system of type F2, too.
Thus, we immediately get the following lemma.

Lemma 3. For any two families F1 and F2 of F , it holds that
if F1 ⊆ F2, then I(F1) ⊆ I(F2). □

3 Control by Codes

We start with a general result on families where every language can be
represented as a union of languages of another family.

Lemma 4. Let X and Y be two language families such that Y ⊆ X and
every language in X has a representation as a finite union of languages
in Y . Then we have I(X) = I(Y ).

Proof. By Lemma 3, we have I(Y ) ⊆ I(X).
Let L be a language in I(X). Then L = L(H) for some controlled

insertion systemH = (V, (R1, I1), (R2, I2), . . . , (Rn, In), A) with control
sets Ri ∈ X and insertion sets Ii ⊂ V ∗ for 1 ≤ i ≤ n. By supposition,
for 1 ≤ i ≤ n, each Ri can be represented as

Ri = Ci,1 ∪ Ci,2 ∪ · · · ∪ Ci,mi

for some integers mi ≥ 1 and languages Ci,j ∈ Y , 1 ≤ j ≤ mi. We
consider the controlled insertion system

H ′ = (V, (C1,1, I1), . . . , (C1,m1 , I1), (C2,1, I2), . . . , (C2,m2 , I2),

. . . , (Cn,1, In), . . . , (Cn,mn , In), A).
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If z =⇒(Ri,Ii) z′ is a derivation step in H, then there is a decompo-
sition z = z1z2 with z1 ∈ Ri and z′ = z1vz2 with v ∈ Ii. Moreover,
z1 ∈ Ci,j holds for some j, 1 ≤ j ≤ mi. Therefore, z =⇒(Ci,j ,Ii) z

′ is
a derivation step in H ′. Conversely, if u =⇒(Ci,j ,Ii) u

′ is a derivation
step in H ′ for some i and j, 1 ≤ i ≤ n and 1 ≤ j ≤ mi, then u = u1u2
with u1 ∈ Ci,j and u′ = u1v

′u2 with v′ ∈ Ii. Because Ci,j ⊆ Ri, we
obtain that u =⇒(Ri,Ii) u′ is a derivation in H. Thus, a derivation
step can be performed in H if and only if it can be performed in H ′.
This implies L(H) = L(H ′). Since all control sets of H ′ are in Y , we
obtain L(H) = L(H ′) ∈ I(Y ) and I(X) ⊆ I(Y ).

Now the equality follows.

Corollary 5. The following equalities hold:

I(FIN ) = I(OfC ) = I(UC ) and I(BfC ) = I(IfC ).

Proof. Obviously, every finite language L is a finite union of uniform
codes (each uniform part of the union consists of all words of L with the
same length). By Lemma 4, we obtain that I(FIN ) = I(UC ) follows.
This further leads, by the relations in Figure 1 and Lemma 3, to

I(FIN ) = I(UC ) ⊆ I(OfC ) ⊆ I(FIN ).

So, both equalities hold.

From [7], we know that every regular bifix code can be represented
as a union of finitely many regular infix codes. Therefore, Lemma 4
implies I(BfC ) = I(IfC ).

We now show that reflective codes as control languages have a
smaller power than uniform codes.

Lemma 6. We have I(RC ) ⊂ I(UC ).

Proof. Since every regular reflective code is a finite code, we get the
relation I(RC ) ⊆ I(FIN ) = I(UC ) by Lemma 3 and Corollary 5.

We now present a controlled insertion system with control sets
which are all uniform codes whose language cannot be generated by

378



Insertion Systems Controlled by Ideals and Codes

a controlled insertion system with reflective codes as control sets. We
consider

H = ({a, b}, ({ab}, {ab}), ({aab}, {ab}), ({ba}, {ba}), {aab, ab, ba}).

We can only insert ab after ab or aab and ba after ba. Hence, we get

L(H) = {aab, ab}{ab}∗ ∪ {ba}+.

Now assume that there is a controlled insertion system

H ′ = (V, (R1, I1), (R2, I2), . . . , (Rn, In), A)

with L(H ′) = L(H) where all control sets Ri, 1 ≤ i ≤ n, are regular
reflective codes.

Let m be the maximal length of words in A. We consider a
word (ab)r with r ≥ 2m. Then there are a word w and an i, 1 ≤ i ≤ n,
such that w =⇒(Ri,Ii) (ab)r. By the structure of the words in L(H),
we have the following possibilities for w, Ri, and Ii:

� w = aab(ab)s with s ≤ r − 2. Then we obtain a ∈ Ri,
b(ab)r−2−s ∈ Ii. But then we can insert b(ab)r−2−s also after a in
the word ab ∈ L(H) which gives ab(ab)r−2−sbab /∈ L(H).

� w = (ab)s. Then we have (ab)ta ∈ Ri, t ≥ 1, and (ba)u ∈ Ii
or (ab)t

′ ∈ Ri, t
′ ≥ 1, and (ab)u

′ ∈ Ii. If t = 0 in the former
case, we can insert (ba)u after the first letter of aab ∈ L(H)
and obtain a(ba)uab /∈ L(H). If t ≥ 1 in the former case, we
have a(ab)t ∈ Ri becauseRi is reflective. Then we can insert (ba)u

after a(ab)t ∈ L(H) and get a(ab)t(ba)u /∈ L(H). In the latter
case, we have (ba)t

′
since Ri is reflective. Inserting (ab)u

′
af-

ter (ba)t
′ ∈ L(H), we obtain (ba)t

′
(ab)u

′
/∈ L(H).

Therefore, in all cases, we can generate a word not in L(H) which
contradicts the assumption L(H) = L(H ′). Consequently, our assump-
tion is false and L(H) /∈ I(RC ).

Now we present a partial incomparability result for suffix and prefix
codes.
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Lemma 7. Let L be the language generated by the controlled insertion
system

G = ({a, b}, ({ban | n ≥ 0}, {ab}), {bab}).

Then we have L ∈ I(SfC ) and L /∈ I(PfC ).

Proof. We first prove L ∈ I(SfC ). Since the only control set of G is a
regular suffix code, we have L ∈ I(SfC ) by definition.

We now prove L /∈ I(PfC ). We do not determine the language L
completely. We only mention a property of the words in L. By
induction on the length of the derivation of words in L, it is easy
to show that any word in L has the form ban1bm1an2bm2 . . . ankbmk

with k ≥ 1, and ni > 0, mi > 0 for 1 ≤ i ≤ k, as well
as n1 + n2 + · · ·+ nk = m1 +m2 + · · ·+mk.

Moreover, if we insert ab in all steps after the last a, we get

bab =⇒ baabb = ba2b2 =⇒ ba2abb2 = ba3b3

=⇒ ba4b4 =⇒ · · · =⇒ banbn,

which proves that banbn ∈ L for all n ≥ 1.

Assume that L ∈ I(PfC ). Then there is a controlled insertion
system

G′ = (V, (R′
1, I

′
1), (R

′
2, I

′
2), . . . , (R

′
n, I

′
n), A

′)

such that all control sets R′
j , 1 ≤ j ≤ n, are regular prefix codes

and L(G′) = L.

Let

r ≥ max{|w| | w ∈ A′}+ n ·max{|v| | v ∈
n⋃

j=1

I ′j}+ 1.

We consider the word barbr ∈ L. By the facts mentioned above,
there is a derivation

bat0bt0 =⇒(R′
j1
,I′j1

) ba
t1bt1 =⇒(R′

j2
,I′j2

) ba
t2bt2

=⇒ · · · =⇒(R′
jp
,I′jp )

batpbtp = barbr,
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where bati−1 ∈ R′
ji

and ati−ti−1bti−ti−1 ∈ I ′ji for 1 ≤ i ≤ p. By the
choice of r, we have p > n and, therefore, there are numbers k and l
with 1 ≤ k < l ≤ p such that (R′

jk
, I ′jk) = (R′

jl
, I ′jl). Thus, we get that

not only batk−1 ∈ Rjk but also batl−1 ∈ Rjk . But tk−1 < tl−1 which
contradicts the prefix-freeness of Rjk .

We conjecture that the converse does not hold.

Lemma 8. Let G = (V, (R, I), A) be a control insertion system,
where R is in PfC . Then there are words u1, u2, . . . , un, v1, v2, . . . vn
and a finite set A′ such that

L(G) = A′ ∪
n⋃

i=1

{ui}I∗{vi}.

Proof. Let w be a word of A. If w has no prefix in R, then no word
can be obtained from w in G by insertions. Then we define A′ as the
set of all words of A which have no prefix in R.

Now assume that w has a prefix in R, that is, w = uv with u ∈ R.
We note that there is no other decomposition of w of this form.
If w = u′v′ with u′ ∈ R also holds, then we have that u is a prefix
of u′ or u′ is a prefix of u. Since R is a prefix code, the only possi-
bility is u = u′. Therefore, by an insertion of a word z in w, we can
only generate the word w′ = uzv. As above, we obtain that u is the
only prefix of w′ in R. Thus, again, we can only insert after u and
obtain w′′ = uz′zv with z′ ∈ I. We can iterate this process and get
that {u}I∗{v} is the set of all words which can be generated from w.

Now the result follows immediately.

From Lemma 8, we immediately obtain that all languages gen-
erated by controlled insertion systems with only one prefix con-
trol language are regular. Moreover, such languages belong to
I(FIN ) because L(G′) = L(G) holds for the controlled insertion sys-
tem G′ = (V, ({u1, u2, . . . , un}, I), A) which has a finite control set.
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4 Results Concerning Ideals

We present some results which imply that I(X) \ I(Y ) is not empty.
Such statements are the basis for incomparabilities of some families.
We start with the situation that Y is the family of right ideals.

Lemma 9. Let L = {ab}+. Then we have L ∈ I(RC ), L ∈ I(lId),
and L /∈ I(rId).

Proof. The language L is generated by the controlled insertion system

G = ({a, b}, ({ab, ba}, {ab}), {ab}).

Starting with the axiom ab, only ab in the control set can be used
to insert another word ab; thus, the system G exactly generates the
language L. The control language of G is a reflective code. Hence, we
have L ∈ I(RC ).

Furthermore, we consider the controlled insertion system

H = ({a, b}, ({a, b}∗{ab}, {ab}), {ab}).

We can insert the word ab after any prefix ending with ab. Thus, start-
ing with ab, we produce successively all words (ab)n with n ≥ 1. Other
words cannot be obtained. Hence, L(H) = L. Because {a, b}∗{ab} is a
left ideal, we get L ∈ I(lId).

Assume that L ∈ I(rId). Then there is a controlled insertion sys-
tem

G′ = (V, (R′
1, I

′
1), (R

′
2, I

′
2), . . . , (R

′
n, I

′
n), A

′)

such that all control sets R′
j , 1 ≤ j ≤ n, are right ideals and L(G′) = L.

We consider (ab)p ∈ L with

p ≥ m(G′) + max{|v| | v ∈ I ′j , 1 ≤ j ≤ n}.

Then there are a word w and an index j with 1 ≤ j ≤ n such
that w =⇒(R′

j ,I
′
j)

(ab)p. By the structure of the words in L, we

have w = (ab)m for some m ≥ 1. There are two cases for the deriva-
tion (ab)m =⇒(R′

j ,I
′
j)
(ab)p.
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Case 1. (ab)m
′ ∈ R′

j , 0 ≤ m′ ≤ m, and (ab)p−m ∈ I ′j with the derivation

(ab)m = (ab)m
′
(ab)m−m′

=⇒(R′
j ,I

′
j)
(ab)m

′
(ab)p−m(ab)m−m′

= (ab)p.

Since (ab)m
′
a ∈ R′

j by the definition of a right ideal, we also have the
derivation

(ab)m
′
ab(ab)m−m′−1 =⇒(R′

j ,I
′
j)
(ab)m

′
a(ab)p−mb(ab)m−m′−1 /∈ L.

Case 2. (ab)m
′
a ∈ R′

j , 0 ≤ m′ < m, and (ba)p−m ∈ I ′j with the
derivation

(ab)m = (ab)m
′
ab(ab)m−m′−1

=⇒(R′
j ,I

′
j)
(ab)m

′
a(ba)p−mb(ab)m−m′−1 = (ab)p.

Then also (ab)m
′
ab ∈ R′

j since R′
j is a right ideal, which gives the

derivation

(ab)m
′
ab(ab)m−m′−1 =⇒(R′

j ,I
′
j)
(ab)m

′
ab(ba)p−m(ab)m−m′−1 /∈ L.

Since in both cases we get a contradiction to L = L(G′), our as-
sumption has to be false. Therefore, L /∈ I(rId).

The following lemmas show that insertion systems with a control by
right and left ideals can generate languages which cannot be obtained
by codes as control languages.

Lemma 10. Let L be the language generated by the controlled insertion
system

G = ({a, b}, ({a}{a, b}∗, {ab}), {ab}).

Then we have L ∈ I(rId) and L /∈ I(C).

Proof. The only control language of G is a right ideal. Hence, we have
the relation L ∈ I(rId).

Assume that L ∈ I(C). Then there is a controlled insertion system

G′ = (V, (R′
1, I

′
1), (R

′
2, I

′
2), . . . , (R

′
n, I

′
n), A

′)
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such that all control sets R′
j , 1 ≤ j ≤ n, are codes and L(G′) = L.

Similarly to the proof of Lemma 7, one can deduce a contradiction
also here. We note that anbn ∈ L for all n ≥ 1.

Let

r ≥ max{|w| | w ∈ A′}+ n ·max{|v| | v ∈
n⋃

j=1

I ′j}+ 1.

We consider the word arbr ∈ L. There is a derivation

at0bt0 =⇒(R′
j1
,I′j1

) a
t1bt1 =⇒(R′

j2
,I′j2

) a
t2bt2

=⇒ · · · =⇒(R′
jp
,I′jp )

atpbtp = arbr,

where ati−1 ∈ R′
ji

and ati−ti−1bti−ti−1 ∈ I ′ji for 1 ≤ i ≤ p. By the
choice of r, we have p > n and, therefore, there are numbers k and l
with 1 ≤ k < l ≤ p such that (R′

jk
, I ′jk) = (R′

jl
, I ′jl). Thus, we get

that not only atk−1 ∈ Rjk but also atl−1 ∈ Rjk . But tk−1 ̸= tl−1 which
contradicts that Rjk is a code (for instance, the word atk−1+tl−1 does
not have a unique decomposition).

Lemma 11. Let L be the language generated by the controlled insertion
system

G = ({a, b}, ({a, b}∗{a}+, {ab}), {ab}).

Then we have L ∈ I(lId) and L /∈ I(C).

Proof. The only control language of G is a left ideal. Hence, we have
the relation L ∈ I(lId).

Assume that L ∈ I(C). Then there is a controlled insertion system

G′ = (V, (R′
1, I

′
1), (R

′
2, I

′
2), . . . , (R

′
n, I

′
n), A

′)

such that all control sets R′
j , 1 ≤ j ≤ n, are codes and L(G′) = L.

In the same way as in the proof of Lemma 10, one can deduce a
contradiction also here. We note that anbn ∈ L for all n ≥ 1. Then
there is a control language R′

j with 1 ≤ j ≤ n which contains two
different words ax and ay. This contradicts that Rj is a code (for
instance, the word ax+y does not have a unique decomposition).
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Finally, we consider languages which cannot be generated by inser-
tion systems with left ideals as control languages.

Lemma 12. Let L be the language generated by the controlled insertion
system

H = ({a, b, c}, ({cb}, {a}), ({ ban | n ≥ 0 }, {ab}), {cb, bab}).

Then we have L ∈ I(SfC ) and L /∈ I(lId).

Proof. We have L ∈ I(SfC ) since both control languages of H are
suffix-free codes.

We note that we can generate {cb}{a}∗ using the first pair of
control and insertion set and L(G) from Lemma 7 using the sec-
ond pair and there is no derivation where both pairs are applied.
Thus, L = {cb}{a}∗ ∪ L(G).

Now assume that L ∈ I(lId). Then there is a controlled insertion
system

G′ = (V, (R′
1, I

′
1), (R

′
2, I

′
2), . . . , (R

′
n, I

′
n), A

′)

such that all control sets R′
j , 1 ≤ j ≤ n, are left ideals and L(G′) = L.

For the word bapbp with

p ≥ m(G′) + max{|v| | v ∈ I ′j , 1 ≤ j ≤ n},

there are a word w and a j, 1 ≤ j ≤ n, such that w =⇒(R′
j ,I

′
j)

bapbp.

By the structure of words in L, we get w = bambm for some m ≥ 1,
bam ∈ R′

j , and ap−mbp−m ∈ I ′j and the derivation

bambm =⇒(R′
j ,I

′
j)
bamap−mbp−mbm = bapbp.

Because cbam ∈ R′
j holds by the definition of left ideal and cbam ∈ L,

we also have the derivation

cbam =⇒(R′
j ,I

′
j)
cbamap−mbp−m /∈ L.

This contradiction to L(G′) = L proves that L /∈ I(lId).
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Lemma 13. Let L be the language generated by the controlled insertion
system

H ′ = ({a, b, c}, ({cb}{a, b, c}∗, {a}), ({b}{a, b, c}∗, {ab}), {cb, bab}).

Then we have L ∈ I(rId) and L /∈ I(lId).

Proof. Since the two control languages of H ′ are right ideals, we
get L = L(H ′) ∈ I(rId).

The proof for L /∈ I(lId) can be given as in the preceding proof. All
words of L which start with the letter c belong to the language {cb}{a}∗
and every word cbam with m ≥ 0 belongs to L. Further, all derivations
from the axiom bab in the system H from Lemma 12 are also possible
in the system H ′. With left ideals as control sets, again some word
would be derived which starts with the letter c and which contains two
letters b. This is a contradiction.

5 Conclusion

Summarizing the above lemmas, we get the following theorem.

Theorem 14.

1. Figure 2 shows the inclusions for the classes I(F ) with F ∈ G.

2. The family I(rId) is incomparable to all the families I(X)
with X ∈ G \ {REG , rId}. □

It remains to study whether the inclusions I(SfC ) ⊆ I(C ),
I(BfC ) ⊆ I(PfC ), and I(UC ) ⊆ I(BfC ) are proper. Moreover, one
has to look whether I(lId) and I(X) with X ∈ {PfC ,BfC ,UC , RC}
and I(PfC ) and I(SfC ) are incomparable.

In order to solve some of these problems, it would be helpful to have
a language in I(PfC ) \ I(SfC ). However, we believe that this is not
an easy task to find such a language, since it seems that the languages
in I(PfC ) have a very special form. Lemma 8 gives a hint that this
conjecture holds for simple insertion systems controlled by prefix codes,
but we have no general result on it.
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I(REG)

I(lId) I(rId)I(C )

I(PfC ) I(SfC )

I(IfC ) = I(BfC )

I(FIN ) = I(OfC ) = I(UC )

I(RC )

Figure 2. Hierarchy of languages families generated by controlled in-
sertion systems (an arrow from X to Y denotes X ⊂ Y , a dashed arrow
from X to Y denotes X ⊆ Y ; if two families are not connected by a
directed path, then they are not necessarily incomparable).

In [2], the special case of controlled insertion systems with only one
pair of control and insertion languages and only singletons as insertion
languages was considered in continuation of [1]. It remains to find
the hierarchy of such families with control by codes and ideals and to
compare it with the families of this paper.
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