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Abstract
This paper offers a comprehensive retrospective on the devel-

opment and results in the field of insertion-deletion systems over
the past 15 years, building upon an earlier foundational overview
from 2010. We review key theoretical developments, new ex-
tensions, and variations that have emerged, examining their im-
pact on the computational power of insertion-deletion systems.
This retrospective aims to update the field’s understanding of the
model, providing insights into the latest progress and identifying
promising directions for future research.
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1 Introduction
The insertion/deletion operation involves adding or removing a sub-
string within a specified context. It is defined by a triple (u, x, v), where
x is the substring that can be inserted between u and v or deleted from
the substring uxv. So, insertion corresponds to the string rewriting
rule uv → uxv, while deletion corresponds to uxv → uv. While these
operations can be viewed as part of string rewriting, they have a dis-
tinct history due to their relative simplicity: they decouple the action
of rewriting that deletes and inserts in one step.

Moreover, these operations naturally occur in various fields, such
as linguistics [1], formal language theory [2]–[4], protection systems [5],
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restarting automata [6], and DNA computing [7]–[11], see Section 2.3
for more details. This last area concentrates much of the research
efforts on the operations of insertion and deletion, that are one of the
main models in this domain. As pointed out in [12], these operations
correspond to the process of mismatched annealing of DNA strands.
Similarly, in the case of RNA editing, the Uracyl base (U) is inserted
or deleted in some left context [13], giving the inspiration for so-called
one-sided insertion-deletion operations. Recently, another biological
process has been discovered that uses insertion and deletion to edit the
genome forming, being the base for the CRISPR-Cas9 technology [14],
[15].

A finite set of insertion-deletion rules, along with a set of ax-
ioms, forms an insertion-deletion system. This system functions as
a language-generating device: by starting from the set of initial strings
and iterating insertion or deletion operations as defined by the given
rules, one gets a language. The size of an insertion-deletion system
is defined as the tuple (n,m,m′; p, q, q′), where n is the length of the
longest inserted string, m is at least the length of the longest left inser-
tion context, and m′ is at least the length of the longest right insertion
context, whilst the values p, q, and q′ describe the same parameters for
deletion.

From the very beginning of the research on insertion-deletion sys-
tems, the primary focus has been on investigating the computational
completeness of the model in relation to various descriptional complex-
ity parameters, mainly with respect to the size. With few exceptions,
all symmetric combinations of size parameters have been demonstrated
to achieve computational completeness. In 2007, Yurii Rogozhin found
the first non-complete insertion-deletion system family having the size
(1, 1, 1; 1, 1, 0) [10]. This result, as well as the follow-up result on the
non-completeness of systems of size (1, 1, 0; 1, 1, 1) [11], opened a com-
pletely new perspective in the study of insertion-deletion systems by
allowing to consider such rules in a regulated rewriting framework, e.g.,
using graph or matrix control mechanisms. This became the main re-
search direction in this area in the last 15 years, see [16] for a detailed
overview.

In this paper, we provide a quick overview of the main results in
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the area of insertion-deletion systems, focusing on the progress made
in the last 15 years. The paper builds on the foundational overview
from 2010 [17] that describes main proof techniques in the area (for
that time), as well as on the 2022 overview of regulated insertion-
deletion systems [16]. Compared to the two mentioned overviews, we
aim to create an up-to-date reference of the existing results for the
whole area of insertion-deletion systems and to explore some intriguing
ideas employed in proofs, as well as to highlight several original models
and links to the other areas.

The paper is organized as follows. In Section 2, we recall some
basic notions, the definition of insertion-deletion systems and recall
the related models. In Section 3, we present new proof methods used
in the area of insertion-deletion systems. In Section 4, we recall the
best known results on insertion-deletion systems, like matrix, graph-
controlled or semi-conditional insertion-deletion systems. Section 5 is
devoted to results on regulated insertion-deletion systems. In Section 6,
we discuss the model of insertion-deletion with substitutions. Section 7
presents the simulator of insertion-deletion systems. Finally, in Sec-
tion 8, we draw some conclusions and outline some future research
directions.

2 Definitions

In this section, we recall some basic notions and definitions used in
formal language theory. For more details on formal language theory,
we refer to textbooks like [18].

An alphabet V is a finite non-empty set of abstract symbols. The set
of all strings over the alphabet V is denoted by V ∗. The empty string
is denoted by λ and the set of non-empty strings over V is denoted by
V +. A string x is said to be a substring of a string w if w = uxv. The
length of a string w is denoted by |w|. The cardinality of a set M is
denoted by |M |.

The family of regular, linear, context-free, monotone, and recur-
sively enumerable languages is denoted by REG, LIN , CF , MON ,
and RE, respectively.
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2.1 Geffert Normal Form

A type-0 grammar G = ({S} ∪NT , T, S, P ) is said to be in Gef-
fert normal form [19] if the set of non-terminals NT is defined as
NT = {A,B,C,D}, T is an alphabet (of terminal symbols) and P
only contains context-free rules S → uSv with u ∈ (T ∪ {A,C})∗ and
v ∈ {B,D}∗, as well as S → λ, and two (non-context-free) erasing rules
AB → λ and CD → λ.

As shown in [19], there might be several other forms of non-context-
free rules, e.g., only ABC → λ, see [19] for more details.

The rules S → uSv, u, v ∈ (NT ∪ T )∗, and S → λ may be con-
sidered as linear rules over the terminal alphabet NT ∪ T . Based on
the proofs given in [19], various special variants for the linear rules
over the terminal alphabet NT ∪ T have been elaborated, for example,
see [20]–[22].

We would like to note that the derivation of a terminal string in a
grammar being in Geffert normal form is done in three stages. During
the first two stages the “linear” rules are applied. In the first stage, only
productions having strings u ∈ T ∗ are applied and during the second
stage only productions having u ∈ N∗

T are applied. The non-context-
free erasing rules are not applicable during these two stages. The third
stage begins after the application of the rule S → λ and during this
stage only the cooperative erasing rules can be applied anymore.

In the area of insertion-deletion systems, a particular variant of
Geffert normal form is used, namely the special Geffert normal form
(SGNF). In SGNF, the “linear” rules S → uSv from the Geffert normal
form are transformed into a set of “right-” and “left-linear” rules using
a standard approach, e.g., see [22], [23] for more details. These “right-
” and “left-linear” rules are of the forms X → bY and X → Y b with
X,Y ∈ N and b ∈ NT ∪T , where N is the new alphabet of non-terminal
symbols including S. The rule S → λ is replaced by a new rule S′ → λ,
where S′ ∈ N . According to this construction, in the first two stages of
a derivation in a grammar in SGNF, exactly one non-terminal symbol
from N is present, and the third stage starts with applying S′ → λ,
after what only the chosen non-context-free cooperative erasing rules
can be applied.
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Several variants of SGNF have been proposed having interesting
properties for proofs, we refer to Section 2.1 and [24] for more details.

2.2 Insertion-Deletion Systems

Definition 1. Let V be an alphabet, and let x ∈ V +, as well as
u, v ∈ V ∗. Then the triple (u, x, v)ins is called an insertion rule, and
the triple (u, x, v)del is called a deletion rule.

The application of the rule r : (u, x, v)ins (labeled by r) to a string
w yields the string w′ if w = zuvz′ and w′ = zuxvz′, for some z, z′ ∈
V ∗, and we write w =⇒r w′. Similarly, the application of the rule
r′ : (u, x, v)del to a string w yields the string w′ if w = zuxvz′ and
w′ = zuvz′, for some z, z′ ∈ V ∗, and we write w =⇒r′ w

′. Hence, r
corresponds to the rewriting rule uv → uxv, and r′ corresponds to the
rule uxv → uv. However, we would like to note that for an insertion
rule, both contexts u and v are allowed to be empty, which is not
allowed in traditional Chomsky grammars; however, this behavior can
be simulated by using an additional symbol for context marking.

As usual, by =⇒R we denote the set {=⇒r| r ∈ R} and the transi-
tive and reflexive closure of =⇒R by =⇒∗

R.

Definition 2. An insertion-deletion system is a quadruple (V, T,A,R),
where

• V is an alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of initial strings (axioms),

• R ⊆ V ∗ × V + × V ∗ × {ins, del} is a finite set of insertion and
deletion rules.

The language generated by the system Γ = (V, T,A,R) is defined
as follows:

L(Γ) = {x ∈ T ∗ | ∃y ∈ A : y =⇒∗
R x}.
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The size of an insertion-deletion system Γ = (V, T,A,R) is defined
as the tuple (n,m,m′; p, q, q′), where

n = max{|x| | (u, x, v)ins ∈ R} p = max{|x| | (u, x, v)del ∈ R}
m = max{|u| | (u, x, v)ins ∈ R} q = max{|u| | (u, x, v)del,∈ R}
m′ = max{|v| | (u, x, v)ins ∈ R} q′ = max{|v| | (u, x, v)del ∈ R}

By INSm,m′
n DELq,q′

p we denote the family of languages generated by
insertion-deletion systems of size (n,m,m′; p, q, q′).

We call systems of size (n, 0, 0; p, 0, 0) context-free insertion-deletion
systems. Such systems are particular because they do not use any con-
text — this means that any (insertion) operation can happen anytime
at any place in the string. This variant initially appeared as a general-
ization of the operations of concatenation and quotient [2], [3], [25] and
later was studied in the framework of DNA computing [26]–[28] and
strings over an infinite alphabet [29].

2.3 Related Models
Contextual grammars. Contextual grammars [1] use the operation
of context adjoining: x =⇒ y, if y = uxv and (u, v) ∈ C(x), where C(x)
is a list of possible contexts to adjoin for x. Such grammars were in-
troduced with a linguistic motivation and have been used to model
various natural language phenomena. While the operation of context
adjoining is different from the insertion, this model served as an inspi-
ration for the introduction of insertion grammars (under the name of
semi-contextual grammars) [4]. Insertion grammars are pure grammars
and correspond directly to insertion systems (where no deletion rules
are considered). According to [7], they directly inspired the model of
insertion-deletion systems.

Generalization of the operations of concatenation and quo-
tient. In [2], [3], the operation of concatenation was generalized to
the operation of (context-free) insertion, by allowing the concatenation
to happen anywhere in the string (and not only at its end). Differ-
ent language-theoretical properties of this operation were established.
The PhD thesis [2] also introduced several variants of the insertion
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operation like parallel or scattered insertion. In the same thesis, the
operation of quotient was also generalized to the operation of deletion,
where a substring can be removed from any place in the string, see
also [25].

Leftist grammars. Leftist grammars are formal grammars having
rules a → ba and cd → d. Such grammars were used to model accessi-
bility problems in the field of computer security [5]. It is not difficult to
observe that these grammars directly correspond to insertion-deletion
systems of size (1, 1, 0; 1, 1, 0). It was shown that the reachability prob-
lem for such grammars is decidable [5]. At the same time, it was
shown that complex functions can be computed using this model, like
the Ackermann function [30]. The PhD thesis [31] examines in details
this variant of insertion-deletion systems and provides some interesting
insight on its functioning.

Restarting automata. Restarting automata are a machine model
that is motivated by the linguistic technique of analysis by reduction.
The basic variant introduced in [6] works like a finite automaton with
a k−symbols lookahead. It has an additional operation allowing to
shorten the string under the lookahead window and immediately mov-
ing the head to the beginning of the string (thus restarting the com-
putation). This model directly corresponds to the iterated contextual
deletion operation, where the right context is always empty. There are
numerous variants of restarting automata, some of them corresponding
to grammars using different types of insertion-deletion rules.

DNA computing. DNA computing is an interdisciplinary field that
leverages the principles of molecular biology, particularly the proper-
ties of DNA, to perform computational tasks. By manipulating DNA
strands through processes like hybridization, ligation, and polymerase
chain reactions, researchers can encode and solve complex problems,
including mathematical and combinatorial challenges. As pointed out
in [12], the process of mismatched annealing of DNA strands can be
seen as an insertion or a deletion of a string in a specified context.
This observation led to the intense study of insertion-deletion systems
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in the framework of DNA computing, and most of the existing results
directly or indirectly relate to this motivation.

RNA editing. A similar process happens in the case of RNA edit-
ing [13], where the uracil base U is inserted or deleted in some left
context. This was a natural motivation for the study of one-sided and
leftist insertion-deletion systems [21], [32]. A related model, guided-
insertion systems [33] used to model RNA editing, is using a similar
principle of insertion or deletion of a string in a specified left context.

CRISPR-Cas9. Recently, another biological process has been dis-
covered that uses insertion and deletion to edit the genome forming,
being the base for the CRISPR-Cas9 technology [14], [15]. This tech-
nology uses a protein called Cas9 that can be programmed to target
specific DNA sequences and cut them. The cell then repairs the cut
using the insertion and deletion operations. This process is used to
edit the genome of living organisms, including humans, and has a wide
range of applications in medicine, agriculture, and biotechnology. No
formal model has been proposed to capture the action of CRISPR-
Cas9 yet, but it is clear that it can be modeled using insertion-deletion
systems.

3 New Proof Methods
This section introduces two significant proof techniques for computa-
tional completeness in the area of insertion-deletion systems. They
are not described in the previous overview [17] because they originate
from 2011 and 2020. The first key idea is the use of the special Geffert
normal form as a simulation target. By imposing restrictions on how
the terminal string is generated, this approach reduces proof complex-
ity and enhances control over the derivation process. This method has
turned out to be so effective that it is now employed in nearly all proofs
developed over the past 15 years.

The second idea involves the concept of rule independence. When
this condition is met, rules can be applied in any sequence without
affecting the outcome. By strategically selecting specific rule orders, it
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becomes possible to significantly streamline the proof process. This is
a relatively new approach, and we expect it to be further developed in
the future, with an increasing number of proofs likely to adopt it.

3.1 Special Geffert Normal Form Target

The first results on the computational completeness of insertion-
deletion systems were established by simulating Turing machines. Very
quickly, formal grammars were used as a simulation target. In order to
decrease the descriptional complexity parameters, the grammars were
supposed to be in some normal form, usually the Kuroda normal form.
Starting from 2007, the method of direct simulation was developed by
Yurii Rogozhin and the third author of this paper. This method uses
a different insertion-deletion system as a target for the simulation [10].
Hence, instead of simulating a Turing machine or a grammar in Kuroda
normal form, one simulates a particular type of insertion or deletion
rules. For example, to prove the computational completeness of sys-
tems of size (2, 0, 0; 1, 1, 1) it is sufficient to show how an insertion
rule (a, b, c)ins can be simulated using insertion-deletion rules of size
(2, 0, 0; 1, 1, 1). Since the systems of size (1, 1, 1; 1, 1, 1) are computa-
tionally complete, this allows to prove the computational completeness
of systems of size (2, 0, 0; 1, 1, 1). Most of the results from 2007 to 2011
were obtained using this method. We refer to [17], [34] for a detailed
description of the method and for an overview of corresponding results.

However, the method of direct simulation has some limitations.
When considering systems of small size, e.g., (1, 1, 0; 1, 1, 0), in the
regulated insertion-deletion framework like matrix or graph-controlled
systems, the method of direct simulation had difficulties to take into
account the control mechanism. In [22], a different approach was pro-
posed by using as a simulation target a grammar in the special Geffert
normal form (SGNF). The grammar in SGNF has several important
features useful for simulations. First, rules are very simple, correspond-
ing to at most 3 single-symbol insertion-deletion operations: X → bY ,
X → Y b, and AB → λ. In many cases, two of these rule types can
be easily simulated by corresponding (regulated) insertion-deletion sys-
tem. Next, during the first two stages of the derivation, there is only
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one non-terminal symbol present in the string, which is very useful for
the simulation. Finally, during the third stage, only the cooperative
erasing rules can be applied, which is also very useful for the simula-
tion, as one does not have to take into account the interference with
the two other rule types. Different proofs make additional restrictions
on SGNF rules for technical purposes, e.g., ensuring that X is different
from Y , or that there are no sequences of the same symbol (like AAA)
generated by the grammar — such variant is called space-separated
SGNF (ssSGNF) [24]. The proofs using SGNF allow for addressing a
part of the proof difficulty by carefully imposing additional restrictions
on SGNF rules that allow to forbid some proof cases. In turn, this
allows for getting computational completeness results with smaller de-
scriptional complexity parameters. The versatility of the SGNF target
is so significant that it is employed in nearly all existing proofs from
the last 15 years.

3.2 Independent Rules
The core concept of the method of independent rules is to identify the
conditions under which the sequence of rule applications does not influ-
ence the derivation’s outcome. Once these conditions are established,
any given construction can be evaluated against them. If the condi-
tions are met, the rules can be applied in an order that simplifies the
proof. If the conditions are not met, the construction can be adjusted
to ensure they are satisfied, thereby facilitating a more straightforward
proof process by grouping and applying immediately rules that perform
some specific part of the computation.

To simplify the presentation of the method, we consider only inser-
tion rules (hence we omit the subscript ins).

An insertion rule r = (u, x, v) matches the string w if uv is a sub-
string of w. When |uv| > 1, this implies that an insertion (by using r)
may happen inside w.

Definition 3. An insertion rule r1 = (u1, x1, v1) matches an insertion
rule r2 = (u2, x2, u2) if u1v1 = u2v2.

We also define a notion of a perfect match between two rules where
additionally to the match it is required that u1 = u2 and v1 = v2. In
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a specific sense, matching rules compete for being applied on a string
that they match.

Definition 4. An insertion rule r = (u, x, v) overlaps string w (for a
given alphabet V ) if there exist strings w′, w′′, u′, v′ ∈ V ∗ such that
w′ww′′ = u′uvv′ and |u′u| > |w′| and |vv′| > |w′′|.

The notion of overlap expresses the potential possibility to apply
r modifying the string w. It is clear that the notion of overlap makes
sense only for |w| > 1.

By definition, if r = (u, x, v) overlaps w, then there is a factorisation
w′ww′′ = u′uvv′. Then, the condition |u′u| > |w′| implies that w starts
before u ends. Similarly, the condition |vv′| > |w′′| implies that v starts
before w ends. Hence, there are 4 possible cases for positioning of w
within u′uvv′ (they are also depicted in Fig. 1):

a. w starts before u starts and ends after v ends, hence uv is a
substring of w, possibly uv = w,

b. w starts after u starts and ends before v ends, hence w is a proper
substring of uv but it is not a proper substring of either u or v,

c. w starts before u starts and ends before v ends, hence Suff(w) ∩
uPref(v) ̸= ∅,

d. w starts after u starts and ends after v ends, hence Suff(u)v ∩
Pref(w) ̸= ∅.

w

u v

(a)

w

u v

(b)

w

u v

(c)

w

u v

(d)

Figure 1: Four possible cases for string overlap: (a) uv is a substring
of w, (b) w is a substring of uv, (c) Suff(w) ∩ uPref(v) ̸= ∅, (d)
Suff(u)v ∩ Pref(w) ̸= ∅.

We now introduce a crucial concept: the notion of an independent
rule set. The key idea here is to define the conditions under which rules
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can be applied in any sequence, without affecting the overall outcome.
This independence allows us to select specific orders of rule application,
which can significantly simplify the proof process.

Definition 5. A set of insertion rules R is called independent if, for
any two rules r1 = (u1, x1, v1), r2 = (u2, x2, v2) from R, one of the
following two conditions holds:

• r1 and r2 perfectly match,

• r1 does not overlap u2v2 and r2 does not overlap u1v1.

The independence property says that for two insertion rules r1 =
(u1, x1, v1) and r2 = (u2, x2, v2), r1 (resp. r2) can never insert x1 (resp.
x2) inside the site u2v2 (resp. u1v1), except the case when they perfectly
match (and then u1 = u2 and v1 = v2). Neglecting symmetric cases,
this leaves us with only 3 possibilities for the relation between contexts
and they are depicted in Fig. 2.

u1 v1

u2 v2

(a)

u1 v1

u2 v2

(b)

u1 v1

u2 v2

(c)

Figure 2: Three possible rule relations for an independent rule set
(we recall that these conditions are symmetric with respect to rules):
(a) rules perfectly match, (b) rules do not overlap and Suff(u1v1) ∩
Pref(u2v2) = ∅, (c) rules do not overlap and Pref(u2) ∩ Suff(v1) ̸= ∅.

As shown in [23], the independence property allows rules to be
applied in any order.

Theorem 1. Let G = (V,A,R) be an insertion system with an inde-
pendent rule set. Then, for any derivation, the rule application order
is not important, i.e., a rule can be applied to some part of the string at
any time starting from the moment it becomes applicable and yielding
the same result.

343



A. Alhazov, S. Ivanov, S. Verlan

Considering the last theorem, it is worth noting that one can always
choose to apply the rule at the leftmost (or rightmost) position in the
string, which corresponds to the leftmost (or rightmost) derivation.

A similar concept applies to the independence of deletion rules,
where a rule should not overlap the whole context uxv of other rules,
as well as to sets containing both insertion and deletion rules. Although
these definitions are slightly more complex, the conclusion of Theorem 1
remains valid. Even if the construction only partially satisfies the inde-
pendence property — for instance, applying only to insertion rules —
then all insertion rules can be applied in any order, while deletion rules
must be applied in a specific sequence. Therefore, the independence
property is a powerful tool in the study of insertion-deletion systems,
enabling significant simplification of proof arguments.

3.3 Lazy/Eager Deletion

Another interesting idea was explored in [16]. It is custom in regulated
rewriting area to consider particular allowed sequences of rules. Ma-
trix and time-varying insertion-deletion systems are typical examples
of such an approach. The cited article introduces the concept of lazy
and eager deletion. In the case of lazy deletion, any derivation of the
system is performed as follows: first, insertion rules are applied and,
after that, deletion rules are applied. Hence, any rule sequence for a
successful derivation is in I∗D∗. The lazy deletion can be interpreted
as an iterated insertion followed by an iterated deletion. In the case of
eager deletion, a deletion rule is applied immediately after an insertion
rule, so any rule sequence for a successful derivation belongs to (ID)∗.
The paper [16] gives some examples of families of insertion-deletion
systems where it is possible to reorder any derivation to make it lazy
or eager.

The lazy deletion can be very useful for proofs, as it decouples the
derivation into two parts that can be examined independently. The
eager deletion somehow models the string rewriting process (which cor-
responds to one insertion and one deletion), thus helping to simulate
grammar-like targets. In a more general way, the eager deletion is
a particular variant of the notion of M-related rules [26], which are a

344



A 15-Year Retrospective on Insertion-Deletion Systems …

group of related rules that are applied one after another in order to sim-
ulate some particular string rewriting. E.g., by using rule (λ, vR, λ)ins
followed by (λ,Ru, λ)del, the rewriting rule u → v can be simulated.
The proofs from the cited paper basically show that any derivation can
be reorganized as a sequence of applications of M-related rules. The
simplest variant of M-related rules is the eager deletion. In more com-
plex cases, particular sequences of insertions and deletions are needed.
All known proofs on insertion-deletion systems use the concept of M-
related rules (sometimes not explicitly naming it), so we think that it
could be useful to present the proofs from this perspective — for some
string transformation, there is a sequence of insertion-deletion rules
that should be applied in some order, and the proofs show that any
derivation can be reorganized to follow this order.

4 Insertion-deletion Systems
Insertion-deletion systems become computationally complete with rules
of rather small size. We below recall the best known parame-
ters for computationally complete insertion-deletion systems. In the
overview [17], there are more technical details concerning the proof
methods.

4.1 Recall of Results
Table 1 recalls the results on the computational power of symmetrical
insertion-deletion systems.

4.2 One-sided Insertion-deletion Systems
One-sided insertion-deletion systems are a particular case of insertion-
deletion, where one of the contexts in rules is always empty.

Table 2 recalls the results on the computational power of one-sided
insertion-deletion systems.

One-sided systems with small parameters are known to not achieve
computational completeness. In Table 3, the list of non-complete
insertion-deletion systems is depicted. Systems with these (or smaller)
parameters are commonly considered in a regulated framework.
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Table 1: Results on symmetrical insertion-deletion systems

Size Family Reference Size Family Reference

(1, 2, 2; 1, 1, 1) RE [9], [12] (3, 0, 0; 2, 0, 0) RE [26]
(1, 2, 2; 2, 0, 0) RE [9], [12] (1, 1, 1; 2, 0, 0) RE [12]
(2, 1, 1; 2, 0, 0) RE [9], [12] (2, 0, 0; 1, 1, 1) RE [11]
(1, 1, 1; 1, 2, 2) RE [35] (1, 1, 1; 1, 1, 1) RE [35]
(2, 1, 1; 1, 1, 1) RE [35] (2, 0, 0; 2, 0, 0) ⊊ CF [27]
(3, 0, 0; 3, 0, 0) RE [26] (m, 0, 0; 1, 0, 0) ⊊ CF [27]
(2, 0, 0; 3, 0, 0) RE [26] (1, 0, 0; p, 0, 0) ⊊ REG [27]

Table 2: Computationally complete one-sided insertion-deletion sys-
tems

Size Reference Size Reference
(1,1,2;1,1,0) [11] (1,1,0;1,1,2) [10]
(2,0,2;1,1,0) [11] (1,1,0;2,0,2) [10]
(2,0,1;2,0,0) [11] (2,0,0;2,0,1) [10]
(1,2,0;1,0,2) [36]

4.3 Regular Contexts

An interesting variant of insertion-deletion systems was considered
in [31], [32], [38], where the contexts of the rules are regular expres-
sions.

Given an alphabet V , an extended insertion rule r is the tuple
(El, x, Er)ins, where x ∈ V ∗ and El and Er are regular expressions
over V . The rule r can be applied to the string uv to yield uxv, if
u = u1u2 such that u2 ∈ L(El) and v = v1v2 such that v1 ∈ L(Er). An
extended deletion rule is defined in a similar way. The corresponding
families of languages are denoted using the REG string instead of a
number. In [39], the following results are shown:
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Table 3: Insertion-deletion systems known to be non-complete

Size Reference
(1, 1, 1; 1, 1, 0) [10]
(1, 1, 0; 1, 1, 1) [11]
(2, 0, 0; 1, 1, 0) [37]
(1, 1, 0; 2, 0, 0) [37]
(2, 0, 0; 2, 0, 0) [27]
(n, 0, 0; 1, 0, 0) [27]
(1, 0, 0; p, 0, 0) [27]

Theorem 2. [39] The following equalities hold:

INSREG,0
1 DELREG,0

1 = INS2,0
1 DEL1,0

1 = INS1,0
1 DEL2,0

1 .

These results open an interesting perspective. Any insertion-
deletion system having rules with the size greater than shown above
can be considered as having rules with regular contexts. This allows for
simplifying the constructions and for having a greater control over the
derivation process. However, the above equivalence does not always
hold for the regular rewriting variants, like graph or matrix control as
shown in [39]. However, in some cases, it is possible to achieve such
an equivalence. In the cited paper, the proof of the universality of
graph-controlled insertion-deletion systems with two states is done by
first showing the universality using extended rules and then showing
that the proof argument holds for the regular rules. Also, the same
paper contains a series of results on the computational completeness of
insertion-deletion systems with one-sided regular contexts and different
control mechanisms.

4.4 Pure Insertion Systems

When considering only the (contextual) insertion operation, a spe-
cial variant of context-sensitive grammars is obtained, called insertion
grammars. As shown in [23], such grammars are universal (in Tur-
ing sense) with insertion rules of size (2, 2, 2). Since these are pure
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grammars, additional mechanisms are needed to extract the needed re-
sult (the intersection with a terminal alphabet has no sense anymore).
When an appropriate “squeezing” mechanism is used — such as in-
verse morphism plus projection, left/right quotient, intersection with
LOC(2) and projection — they generate any recursively enumerable
language. Matrix control allows to decrease the size of insertion rules
to (2, 1, 1) for similar results. We refer to [23] for the technical details,
as well as for the historical overview of the results in this area.

The study of pure insertion systems is interesting from the point of
view of formal grammars, as this is a particular case of growing context-
sensitive languages [40]. Moreover, similar models are very common in
the linguistics area. Finally, these results allow to immediately claim
the computational completeness of systems of size (2, 2, 2; 2, 0, 0) using
the lazy deletion derivation strategy.

The complexity of the constructions for pure insertion systems mo-
tivated the introduction of the notion of independent rules that allowed
to simplify the main proof. We believe that the study of these systems
can be useful for the discovery of new proof ideas for the insertion-
deletion area.

4.5 Derivation Graphs

Derivation graphs are an alternative representation of a derivation of an
insertion-deletion system with rules of size (1, 1, 0; 1, 1, 0), introduced
in [31]. They can be seen as a generalization of derivation trees [37], and
they are a useful tool to understand complex derivations like in [30].

Consider the insertion-deletion system Γ = (V, T,A,R) with rules
of size (1, 1, 0; 1, 1, 0). Since a rule in R has the form r : (x, y, λ)t,
t ∈ {ins, del}, when r is applied, we may say that “x inserted y” if
t = ins and that “x deleted y” if t = del. To give these statements a
formal meaning, it is necessary to distinguish between the symbols of
the alphabet V and their occurrences in a string w ∈ V ∗. In [31], the
term “letter” is used to designate an occurrence of a symbol in a string.
A derivation graph is a formalization of the relations “x inserted y” and
“x deleted y” between the letters of a derivation.

More formally, consider a derivation C : w ⇒∗
Γ v of Γ and let
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C̄ be the set of letters (different occurrences of symbols) of C. The
derivation graph of C is the labeled graph G = (C̄, E, h), with the
following properties:

• if a letter x inserts the letter y in C, then (x, y) ∈ E and
h((x, y)) = ins,

• if a letter x deletes the letter y in C, then (x, y) ∈ E and
h((x, y)) = del.

We refer to [31] for a more formal treatment of derivation graphs.
For example, consider the system Γabc = (V, V,A,R) with V =

{a, b, c}, A = {a}, and the following set of four insertion rules and one
deletion rule of size (1, 1, 0; 1, 1, 0):

R = {(a, b, λ)ins, (a, a, λ)ins, (b, c, λ)ins, (a, c, λ)ins, (c, b, λ)del}.

Take the following derivation of Γ:

C1 : a ⇒ aa ⇒ aba ⇒ aaba ⇒ aacba ⇒ aacbca ⇒ aacbcca ⇒ aaccca.

Underlining shows the context of the rule applied in the next deriva-
tion step, e.g., in aaba ⇒ aacba, the underlined a inserted the first
occurrence of c, and in aacbcca ⇒ aaccca the underlined c deleted the
occurrence of b. Figure 3 gives a graphical presentation of the deriva-
tion graph corresponding to C1.

a

a

c

b

c c

a

Figure 3: The derivation graph of derivation C1 of Γabc. Full lines
show insertions and dotted lines with a cross show deletions. As
a visual aid, all edges go down and right, because the insertions and
deletions occur to the right of respective contexts

Since multiple derivations may result in the same word, multiple
derivation graphs can correspond to the same word. Furthermore,
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derivation graphs discard some information about the order in which
the operations occur: e.g., a derivation C ′

1 in which b inserts a c before
the second a inserts a c would correspond to the same derivation graph
shown in Figure 3. In [31], further detailed examples are given of using
derivation graphs to deal with classes of derivations sharing a certain
property. Finally, derivation graphs intuitively highlight the connec-
tion between insertion-deletion systems of size (1, 1, 0; 1, 1, 0), leftist
grammars, and access control [41], [42].

5 Regulated Insertion-deletion Systems
5.1 Matrix insertion-deletion systems
A matrix insertion-deletion system is a construct

Γ = (V, T,A,M), where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is a finite set of axioms,

• M = {r1, . . . , rt}, t ≥ 1, is a finite set of sequences of rules called
matrices of the form ri = [ri1, . . . , riki ], with ki ≥ 1, 1 ≤ i ≤ t,
1 ≤ j ≤ ki, where rij is an insertion or deletion rule over V .

For two strings w, z ∈ V ∗, we write w =⇒Γ z if there exist a
matrix ri = [ri1, . . . , riki ] ∈ M and the sequence of strings (wi)1≤i≤n+1,
wi ∈ V ∗, such that w = w1, z = wn+1, and wj ⇒rij wj+1. The
language generated by Γ is the language of terminal strings that can
be obtained from the axioms via the reflexive and transitive closure of
this derivation relation:

L(Γ) = {v ∈ T ∗ | ∃u ∈ A : u =⇒∗
Γ v}.

Note that the semantics of matrix insertion-deletion systems does
not feature appearance checking, as is traditional in regulated rewrit-
ing. This is because appearance checking can often be implemented
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via additional rules in matrices and is not necessary for computational
complexity in most of the cases. We also observe that the matrix con-
trol can be viewed as a particular case of the graph control, we refer
to [16] for more details on this topic.

We summarize in Table 4 the best known computational complete-
ness results on matrix insertion-deletion systems. At the same time,
we remark that systems having rules of size (2, 0, 0; 2, 0, 0) cannot be
computationally complete with matrices of any size, as shown in [37].

Table 4: Computationally complete matrix insertion-deletion systems

Size Matrix size References
(1, 1, 0; 1, 1, 0) 3 [22]
(1, 0, 1; 1, 0, 1) 3 [22], [43], [44]
(1, 0, 1; 1, 1, 0) 3 [43], [44]
(1, 1, 0; 1, 1, 1) 2 [44]
(1, 1, 0; 2, 0, 0) 2 [22]
(2, 0, 0; 1, 1, 0) 2 [22]
(2, 0, 0; 1, 0, 1) 2 [43], [44]
(1, 0, 1; 2, 0, 0) 2 [43], [44]
(1, 1, 1; 1, 0, 0) 2 [45]
(1, 0, 0; 1, 1, 1) 3 [44]
(1, 0, 0; 1, 2, 0) 3 [45]
(1, 2, 0; 1, 0, 0) 2 [45]
(1, 0, 0; 1, 0, 2) 3 [45]
(1, 0, 2; 1, 0, 0) 2 [45]

5.2 Graph-controlled Insertion-deletion Systems
A graph-controlled insertion-deletion system is a construct

Γ = (V, T,A,H, i0, If , R), where

• V is a finite alphabet,

• T ⊆ V is the terminal alphabet,

• A ⊆ V ∗ is the finite set of axioms,
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• H is the set of states of Γ,

• i0 ∈ H is the initial state,

• If ⊆ H is the set of final states,

• R is a finite set of rules of the form (l, r, E), where r is an insertion
or deletion rule over V , l ∈ H is the source state, and E ⊆ H is
a set of target states.

The relation {(i, j) | (i, r, E) ∈ R, j ∈ E} defines the communica-
tion graph of the system. Some works assume without losing generality
that the correspondence between the source state i and the rule r is a
bijective mapping. Other works slightly modify the definition by as-
signing the rules to the edges between the states rather than the states
themselves, which yields an equivalent model.

A configuration of Γ is a pair (i, w), where i ∈ H is the current
state and w is the current string. For two strings w, z ∈ V ∗, we write
(w, i) =⇒Γ (z, j) if there exists a rule (i, r, E) ∈ R such that w =⇒r z
and j ∈ E. The language generated by Γ is the language of termi-
nal strings that can be obtained from the axioms by the reflexive and
transitive closure of this derivation relation:

L(Γ) = {v ∈ T ∗ | ∃u ∈ A, ∃if ∈ If : (u, i0) =⇒∗
Γ (v, if )}.

Some of the best results on computational completeness for such
systems are summarized in Table 5. On the other hand, as shown
in [37], graph-controlled insertion-deletion systems of size (2, 0, 0; 2, 0, 0)
cannot be computationally complete.

By using appearance checking [48], more powerful systems can be
constructed. From [49], it can be immediately deduced that Parikh sets
of graph-controlled insertion-deletion systems with appearance check-
ing and rules of size (1, 0, 0; 1, 0, 0) are exactly PsRE, the Parikh sets of
all recursively enumerable languages. A similar result from [50] shows
that by using the priority of deletion over insertion (which can also be
seen as a special type of appearance check), PsRE can be generated
with rules of size (1, 0, 0; 1, 0, 0). By adding more context, RE can be
generated as well. In Table 6, we collect the results on the computa-
tional completeness of graph-controlled insertion-deletion systems with
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Table 5: Computational completeness for graph-controlled insertion-
deletion systems

Size Graph size Reference
(2, 0, 0; 1, 1, 0) 3 [46]
(2, 0, 0; 1, 0, 1) 3 [46]
(1, 1, 0; 2, 0, 0) 3 [46]
(1, 0, 1; 2, 0, 0) 3 [46]
(2, 0, 0; 1, 1, 1) 2 [43]
(1, 1, 0; 1, 2, 0) 2 [21]
(1, 2, 0; 1, 1, 0) 2 [21]
(1, 1, 1; 1, 0, 0) 5 [47]
(1, 0, 0; 1, 1, 1) 5 [47]
(1, i, i′; 1, j, j′), i+ i′ = 1, j + j′ = 1 3 [47]

deletion priority. We remark that the size of the graph depends on the
simulated register machine.

Another possibility is to consider insertions or deletions on the
left/right side of the string. In this case, context-free insertion-deletion
of one symbol leads to computational completeness in the context of
the graph control with the size of the graph equal to 8 [51].

Table 6: Results for graph-controlled insertion-deletion systems with
the priority of deletion over insertion

Size Graph size Family Reference
(1, 0, 0; 1, 0, 0) * PsRE [50]
(1, 1, 0; 1, 0, 0) * RE [50]
(1, 0, 0; 1, 1, 0) * RE [50]

Several recent works have focused on graph-controlled insertion-
deletion systems in which the graph has a particular shape. Table 7
lists the results from [52] for graphs having a star topology, and Table 8
describes the results from [53] on graphs having a path topology.

Another particular case of graph-controlled insertion-deletion sys-
tems are time-varying insertion-deletion systems [16]. For such sys-
tems, the rule set available cyclically changes in each step. In the
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Table 7: Computational completeness for graph-controlled insertion-
deletion systems with a star-shaped control graph

Size Graph size Reference
(1, 1, 0; 2, 0, 0) 6 [52]
(1, 0, 1; 2, 0, 0) 6 [52]
(2, 1, 1; 1, 0, 0) 4 [52]

Table 8: Computational completeness for graph-controlled insertion-
deletion systems with a path-shaped control graph, where i′, i′′, j′, j′′ ∈
{0, 1}

Size Constraints Graph size Reference
(1, i′, i′′; 1, j′, j′′) i′ + i′′ = 1, j′ + j′′ = 2 3 [53]
(2, i′, i′′; 1, j′, j′′) i′ + i′′ = 1, j′ + j′′ = 1 3 [53]
(2, i′, i′′; 1, j′, j′′) i′ + i′′ = 0, j′ + j′′ = 1 4 [53]
(1, i′, i′′; 1, j′, j′′) i′ + i′′ = 1, j′ + j′′ = 1 4 [53]

cited paper, computational completeness is shown for rules of size
(1, 1, 0; 1, 1, 1) and period 3, as well as for rules of size (1, 0, 1; 1, 0, 1)
and period 5.

Moreover, paper [39] shows the computational completeness of
graph-controlled insertion-deletion systems with extended rules having
the size (1, REG, 0; 1, REG, 0) and two states.

5.3 Context-dependent Insertion-deletion Systems
Context conditions can be attached to an insertion or a deletion rule
by indicating a set of permitting and forbidding strings, i.e., rules are
of the form (q, P, F ), where q is an insertion or a deletion rule, and
P, F are finite subsets of V ∗. The application of a rule r : (q, P, F ) to
a string w is defined as follows: w =⇒r w′ if and only if w =⇒q w′

and for all x ∈ P , x is a substring of w, and for all y ∈ F , y is not a
substring of w.

Definition 6. A semi-conditional insertion-deletion system (SID for
short) is a tuple GSID = (V, T,A,R), where V is an alphabet, T ⊆
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N is the terminal alphabet, A ⊆ V ∗ is a finite set of initial strings
(axioms), and R ⊆ (V ∗)3×{ins, del}×2V

∗ ×2V
∗ is a finite set of semi-

conditional insertion-deletion rules. The derivation relation obtained
by the definition of a derivation using a rule r : (q, P, F ) in R is denoted
by =⇒GSID

, its reflexive and transitive closure – by =⇒∗
GSID

.

The language generated by an SID GSID = (N,T,A,R) is defined
by

L(GSID) = {w ∈ T ∗ | ∃u ∈ A : u =⇒∗
GSID

w}.

Table 9: Results for semi-conditional and random-context insertion-
deletion systems

Size Degree Power Reference
(1, 0, 0; 1, 0, 0) (2,2) = RE [39]
(2, 0, 0; 1, 1, 0) (1,1) = RE [39]
(1, 1, 0; 1, 1, 0) (3,1) = RE [54]
(1, 0, 1; 1, 1, 0) (3,1) = RE [54]
1 + i, i′, i′′; 1 + j, j′, j′′) (2,1) = RE [55]
i+ i′ + i′′ = 1 = j + j′ + j′′

(1 + i, i′, i′′; 1 + j, j′, j′′) (0,2) = RE [24]
i+ i′ + i′′ = 1 = j + j′ + j′′

(1, 0, 0; 1, 0, 0) (1,2) = RE [56]
(1, 0, 0; 0, 0, 0) (2,2) ⊆ MON [39]
(1, 1, 0; 1, p, 0) (1,1) ̸= RE [39]
(1, 0, 0; 1, 0, 0) (n,1) ̸= RE [56]
(1, 0, 0; 1, 0, 0) (0,2) ⊇ REG [56]

We define the degree of a semi-conditional insertion-deletion system
GSID = (N,T,A,R) as the pair (a, b), where

a = max{|w| | w ∈ P, ((u, x, v)z, P,Q) ∈ R, z ∈ {ins, del}},
b = max{|w| | w ∈ Q, ((u, x, v)z, P,Q) ∈ R, z ∈ {ins, del}}.

355



A. Alhazov, S. Ivanov, S. Verlan

We denote the family of languages generated by semi-conditional
insertion-deletion systems of size (n,m,m′; p, q, q′) and degree (a, b) by
SCa,bINSm,m′

n DELq,q′
p . Moreover, semi-conditional insertion-deletion

systems of degree (1, 1) are called random context insertion-deletion
systems. We will refer to the families of languages produced by such
systems by the notation RC INSm,m′

n DELq,q′
p .

The results on semi-conditional and random-context insertion-
deletion systems are summarized in Table 9. What is interesting in
this table is that, while generally most of the computational complete-
ness results in the area of insertion-deletion systems hold if the sizes
of insertion and deletion are exchanged, this is not the case for semi-
conditional and random-context insertion-deletion systems, where the
size of the insertion or the length of the forbidding context seem to be
more important than the converse counterparts.

We would like to point out the result from [56] about the compu-
tational completeness of semi-conditional insertion-deletion systems of
size (1, 0, 0; 1, 0, 0) and degree (1, 2). First of all, this result uses only
context-free insertions and deletions of single symbols. For most vari-
ants of insertion-deletion systems, such parameters do not allow for
achieving computational completeness. Moreover, in the construction,
all rules are of degree (0, 2) except a single rule of degree (1, 2). This
suggests that more optimal results could be obtained, e.g., by using
rules of degrees (1, 0) and (0, 2) only.

5.4 Other Models

In this section, we mention some models of regulated insertion-deletion
systems, as introduced in [16]. The first model, Cooperating Dis-
tributed Insertion-Deletion Systems (CD-IDS), is the adaptation of the
idea of CD grammar systems [57] to the use of the insertion-deletion
operations instead of rewriting. We recall that the CD model features
a set of components containing insertion-deletion rules and that are
applied in turns according to different derivation strategies. The above
paper introduces the model and shows some relations between deriva-
tion modes.
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Another model introduced in the above paper is an insertion-
deletion system with activation of rules. The main idea of the con-
cept of activation of rules is to activate rules for succeeding steps of a
derivation with the application of a specific rule in a derivation step.
This concept of activation of rules allows for a dynamic evolution of
the rule sets available at a specific time during a derivation, depending
on the history of the derivation steps carried out so far, i.e., depending
on the rules having been applied in the derivation steps carried out
previously. The cited paper shows tight relations between this model
and time-varying insertion-deletion systems.

6 Insertion-deletion with Substitutions

An interesting extension of insertion-deletion systems has been studied
in [58]–[60]. It enriches the standard model with the operation of sub-
stitution of a single symbol by a single symbol, possibly with context.
We remark that the context-free substitution was also considered to-
gether with context-free insertion-deletion operations restricted to the
left/right side of the string [51].

For an alphabet V , a substitution rule (of symbol a by symbol b
with left context u and right context v) is written as (u, a → b, v)
with a, b ∈ V and u, v ∈ V ∗. It precisely corresponds to the rewriting
rule uav → ubv. Let S be the set of rewriting rules. Then, r =
max{|u| : (u, a → b, v) ∈ S} and r′ = max{|v| : (u, a → b, v) ∈ S}. For
insertion-deletion systems of size (n,m,m′; p, q, q′), enriching them with
substitution rules with left context of size at most r and right context
of size at most r′ gives us insertion-deletion-substitution systems of
size (n,m,m′; p, q, q′; r, r′), and the corresponding family of languages
is denoted by INSm,m′

n DELq,q′
p SUBr,r′ .

Remark 1. Since exactly one symbol is replaced by exactly one sym-
bol by any substitution rule, there is no subscript below SUB in the
notation. Note, however, that, unlike INS0,0

0 or DEL0,0
0 represent-

ing absence of insertion or deletion operations, SUB0,0 represents a
set of substitution operations without context, i.e., rules (λ, a → b, λ),
precisely corresponding to renaming rules a → b with a, b ∈ V .
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In [60], one goes even further, considering matrices of insertion-
deletion-substitution rules; the definitions are similar to those in Sub-
section 5.1. The size of such systems with matrices of size at most k is
denoted by (k;n,m,m′; p, q, q′; r, r′), and the corresponding families of
languages are denoted byMATkINSm,m′

n DELq,q′
p SUBr,r′ . Superscript

ac is added to MAT if appearance checking is allowed. An unbounded
parameter is denoted by ∗.

Table 10 recalls the computationally complete insertion-deletion-
substitution systems.

Table 10: Computationally complete insertion-deletion-substitution
systems

Size Reference
(1, 1, 0; 1, 1, 0; 0, 1) [58]
(1, 1, 1; 1, 1, 0; 1, 0) [58]
(1, 1, 0; 2, 0, 0; 0, 1) [58]
(2, 0, 0; 2, 0, 0; 1, 0) [59]
(1, 0, 0; 1, 0, 0; 1, 1) [59]
(1, 0, 1; 1, 0, 0; 1, 0) [60]

In Table 11, the list of non-complete insertion-deletion-substitution
systems is given.

Table 11: Insertion-deletion-substitution systems known to be non-
complete

Size Reference
(n,m,m′; 0, 0, 0; r, r′) [58]
(1, 1, 0; 1, 1, 1; 0, 0) [58]

In Table 12, we summarize the best known computational com-
pleteness results on matrix insertion-deletion-substitution systems.

Table 13 lists non-completeness results on matrix insertion-deletion-
substitution systems.

In [58], one conjectures non-completeness of insertion-deletion-
substitution systems of sizes (1,1,0;1,1,0;1,0) and (1,1,0;2,0,0;1,0) and
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Table 12: Computationally complete matrix insertion-deletion-
substitution systems

Size Matrix size Reference
(1, 0, 0; 1, 1, 1; 0, 0) 2 [60]
(1, 1, 1; 1, 0, 0; 0, 0) 2 [60]
(1, 0, 0; 1, 0, 0; 1, 0) 2 [60]
(1, 0, 0; 2, 0, 0; 0, 0) *,ac [60]
(1, 0, 0; 1, 1, 0; 0, 0) *,ac [60]
(1, 1, 0; 1, 1, 0; 0, 0) 2 [60]
(1, 1, 0; 1, 0, 1; 0, 0) 2 [60]
(2, 0, 0; 1, 1, 0; 0, 0) 2 [60]
(1, 1, 0; 2, 0, 0; 0, 0) 2 [60]

Table 13: Matrix insertion-deletion-substitution systems known to be
non-complete

Size Matrix size Reference
(1, 1, 0; 1, 0, 0; 0, 0) 2 [60]
(1, 0, 0; 1, 1, 0; 0, 0) * [60]
(2, 0, 0; 2, 0, 0; 0, 0) * [60]
(1, 0, 0; 0, 0, 0; 1, 0) 2 [60]

declares the problem for size (1,1,0;1,0,1;1,0) open. In [59], one conjec-
tures non-completeness for systems of size (1,0,0;1,0,0;1,0).

Networks of Evolutionary Processors

Networks of evolutionary processors are a distributed computational
model with biological inspiration [61]. The model consists of a set of
processors arranged in a graph that can communicate with each other.
The processors can perform the operations of context-free insertion,
deletion, or substitution of one symbol. Hence, they are closely related
to insertion-deletion systems with substitutions. In terms above, they
have rules of size (1, 0, 0; 1, 0, 0; 0, 0). The computation is a sequence of
compute and communication steps. During the compute step, all pos-
sible rules are applied to the set of strings from the processor, yielding
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a new set of strings. During the communication step, the processors
can exchange strings as follows. Each processor has an attached regular
input and output filters. All strings that pass the output filter of the
processor are removed from it. Next, such strings (that pass the output
filter) are added to the connected processors if they pass their input
filter. Several variants of the model have been studied, including those
with specialized processors (performing only one type of operation) and
having special subregular filters (e.g., LOC(2), Star, finite, etc.). We
refer to [62] for a recent review of this topic. We would only like to
mention that Yurii Rogozhin constructed a small universal network of
evolutionary processors having only 4 rules [63].

7 Simulator for Insertion-deletion Systems
Early proofs of computational completeness for graph-controlled and
matrix insertion-deletion systems [20],[22] encountered significant chal-
lenges due to the numerous possible rule applications in each derivation
step. The complexity was much greater than for ordinary insertion-
deletion systems, primarily because the shorter context length provided
less control over the derivation process. This complexity made it in-
creasingly difficult and error-prone to manually trace the derivation
tree. In fact, our peer review activity of insertion-deletion systems-
related papers from the last decade revealed that every first version
contained at least one error in their computational completeness proofs,
typically due to overseeing some possible rule applications. Recognizing
the need for better tools, we developed a simulator for graph-controlled
semi-conditional grammars, called gcrsim and written in the Perl lan-
guage. Initially distributed privately from 2010, gcrsim is now freely
available on GitHub [64]. Since 2011, we have systematically used this
tool to aid in the design of insertion-deletion systems in all our papers,
as well as during paper peer reviews.

The syntax of the input file for gcrsim is simple and intuitive. It
contains two keywords “Axioms” and “Rules” that delimit correspond-
ing sections. The axioms are listed as a sequence of strings, separated
by commas and enclosed in square brackets. The rules are listed one
per line and are in the following format: state1,u->v,state2, where
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state1 and state2 are the states of the graph control, and u → v is the
rewriting rule applied to the string, see Fig 4. The simulator generates
a trace of the derivation indicating all new strings obtained during the
derivation process. It also allows for tracking the application of rules
and for visualizing the graph control, see Fig. 5.

Axioms
[S, aSb]
Rules
1,S->aS,2
2,S->Sb,1
1,S->,1

Figure 4: Example of the simulator input file

.........
============
STEP 2
============
Component 1:
aaSbb
Component 2:
============
STEP 3
============
Component 1:
aabb
Component 2:
aaaSbb

Figure 5: The second and the third step of the simulation of the gram-
mar from Fig. 4

More details and usage examples can be found on the GitHub page
of the simulator.
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8 Conclusion

The field of insertion-deletion systems has undergone continuous de-
velopment, with significant advancements made over the past decade.
In particular, much of the recent research has focused on regulated
insertion-deletion systems, exploring their potential and expanding the
boundaries of the model.

We recall that the operations of insertion and deletion are simpler
than traditional string rewriting, as they decouple the processes of
inserting and deleting in a single step. These operations naturally
occur in various domains, including linguistics and biological systems,
making them more intuitive and applicable to real-world scenarios.

As the field progresses, several promising directions for future re-
search can be identified. It would be beneficial to explore insertion-
deletion systems beyond their traditional role in generating recursively
enumerable languages. Their application in linguistics — particularly
for modeling agreement languages or ambiguity — and in the gener-
ation of biomolecular structures, offers new interdisciplinary perspec-
tives. Additionally, investigating the generation of specific types of
languages, such as regular languages, can broaden our understanding
of the model’s computational scope and yield interesting applications.

Finally, one of the most exciting prospects for future work in-
volves modeling biological processes, particularly the CRISPR-Cas9
gene-editing mechanism. Insertion-deletion systems are well-suited for
simulating the insertion and deletion operations integral to CRISPR
technology. By exploring this connection, researchers can propose ex-
periments that test the theoretical models in a biological setting, poten-
tially leading to valuable insights for both computational and biological
sciences.
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