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Abstract
In this paper, we introduce the notion of a generalized dis-

tributed reaction system with computations following the con-
cept of the original reaction system: the resulting products in
the individual components are obtained by applying rules which
take into account the objects in the components of the system as
reactants and inhibitors and yield results in specified components
of the system. As specific variants, we investigate (i) generalized
distributed reaction systems which look at all components for
the presence or absence of objects, but the resulting products are
only produced in the component the rule is assigned to as well as
(ii) generalized distributed reaction systems which look for the
presence or absence of objects only in the component the rule
is assigned to, but the resulting products can be sent to spec-
ified components within the whole system. We first show how
all these variants of generalized distributed reaction systems can
be flattened to a reaction system having only one component.
Moreover, we show how each of these two variants, which are
restricted variants of the general model, can simulate even the
general model. Finally, we prove that all these variants of gen-
eralized distributed reaction systems working with the standard,
total parallel application of rules can be transferred into a usual
reaction system working with the sequential application of rules.
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1 Introduction
Reaction systems (R systems) have extensively been studied over the
past two decades, after having been introduced by A. Ehrenfeucht and
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G. Rozenberg as a formal model for understanding interactions among
biochemical reactions. For the original motivation behind this model,
we refer to [1]. The primary goal was to model the behavior of biological
systems where numerous individual reactions interact with each other.
In a reaction system, a reaction is represented as a triplet consisting of
reactants (objects required for the reaction to occur), inhibitors (objects
whose presence prevents the reaction from taking place), and products
(objects produced by the reaction). The dynamic behavior of a reac-
tion system is determined by applying all reactions in parallel which
are enabled for the current configuration. Only the union of products
obtained in this way constitutes the next state of the system. For more
detailed information on reaction systems, see [2].

Reaction systems are a qualitative model, in contrast to P systems
(also known as membrane systems, see [3], [4]), which are quantita-
tive. This distinction arises because reaction systems focus solely on
the presence or absence of chemical species, without considering their
quantities. Reactions that share common reactants do not interfere
with one another, and all reactions enabled at a given time step oc-
cur simultaneously. Another distinctive feature of reaction systems,
compared to other bio-inspired computational models like P systems,
is the absence of permanency: the system’s current state consists only
of the products from the reactions that occurred in the previous time
step, while objects not involved in any reaction are eliminated from the
system.

Research on reaction systems is quite extensive. Over the past two
decades, various properties of reaction systems have been investigated,
and numerous extensions have been developed. For instance, studies
have addressed fundamental topics such as the concept of time in reac-
tion systems [5], explored dynamic processes and how these processes
influence the formation of compounds [6], and examined the mathe-
matical nature of functions (mapping states to states and, therefore,
finite sets to finite sets) that can be defined by reaction systems [7].
In [8]–[10], several mathematical aspects of reaction systems were ex-
plored, including functions defined by these systems, the properties of
their state sequences, the impact of limited resources, and their connec-
tions to propositional logic. Another research direction focuses on the
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use of reaction systems as a modeling framework. For verifying tem-
poral properties in reaction systems, a temporal logic was introduced
in [11]. Biologically inspired characteristics of reaction systems were
studied in [12]–[14]. Additionally, reaction systems can be structured
within a distributed communication framework [15], [16]. In this con-
text, reactions are positioned at the nodes of virtual graphs, or more
specifically, represented as an n-tuple of reaction systems. These re-
actions operate synchronously and interact through distribution and
communication protocols. Interaction can take place either by receiv-
ing input from an external environment or through communication be-
tween reactants, inhibitors, products, or reactions within the systems.
Examples of such frameworks include distributed reaction systems [11],
extended distributed reaction systems [17], [18], communicating reac-
tion systems with direct communication [19], and further variants of
distributed reaction systems [20], [21]. Further developments of these
constructs can be found in [22], [23].

In this paper, we introduce the concept of the generalized dis-
tributed reaction system with computations following the concept of
the original reaction system, i.e., the resulting products in the individ-
ual cells are obtained by applying reaction rules that take into account
the objects in all the components of the system as reactants and in-
hibitors; the obtained results may be sent to any component.

As specific variants of this general model of generalized distributed
reaction systems, we investigate

(i) generalized distributed reaction systems which look at all com-
ponents for the presence or absence of objects, but the resulting
products are only produced in the component the rule is assigned
to as well as

(ii) generalized distributed reaction systems which look for the pres-
ence or absence of objects only in the cell the rule is assigned to,
but the resulting products can be sent to specified components
within the whole system.

As a basic result, we will show how all these variants of generalized
distributed reaction systems can be flattened to a reaction system,
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which corresponds to a generalized distributed reaction system having
only one component. Moreover, we elaborate on the simulation of each
of these two variants by the other one. Finally, we shall prove that
all these variants of reaction systems working with the total parallel
application of rules according to the basic model of reaction systems can
be transferred into a usual reaction system working with the sequential
application of rules, i.e., applying only one rule in every computation
step.

The paper is structured as follows: Section 2 reviews key concepts
from formal language theory and reaction systems. In Section 3, we first
introduce the model of generalized distributed reaction systems and
its two variants along with some small examples. Then we elaborate
our results concerning flattening and the simulation of one variant by
the other one as well as the results for generalized distributed reaction
systems working in the sequential derivation mode. Finally, we provide
a conclusion of the results obtained in this paper and propose some
directions for future research.

2 Preliminaries
For basic notions and notations in formal language and computation
theory, the reader is referred to textbooks like [24].

The cardinality of a set M is denoted by |M |, the empty set – by ∅.
The set of natural numbers is denoted by N, the set of positive natural
numbers – by N+.

We now recall the key concepts related to reaction systems from
[1],[2]. Note that some notations may have slightly been modified from
the ones appearing in other papers for technical reasons.

Definition 1. Let S be a finite, nonempty set, referred to as the back-
ground set. A reaction over S is defined as a triplet ρ = (R, I, P ),
where R, I, and P are nonempty subsets of S with the condition that
R∩ I = ∅. The sets R, I, and P are referred to as the set of reactants,
the set of inhibitors, and the set of products of ρ, respectively, and can
also be denoted by Rρ, Iρ, and Pρ.
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Definition 2. A reaction system is defined as an ordered pair Π =
(S,A), where S is the background set, and A is a finite, non-empty set
of reactions over S.

Next, we define the effect of a reaction given a specific state or
configuration of a reaction system, i.e., on a finite subset of S.

Definition 3. Let Π = (S,A) be a reaction system with S being the
background set and A a set of reactions over S as well as T ⊆ S and
ρ = (Rρ, Iρ, Pρ) ∈ A a reaction over S. Then

1. ρ is enabled for T if and only if Rρ ⊆ T and Iρ ∩ T = ∅.

2. The result of applying ρ to T , denoted resρ(T ), is Pρ if ρ is
enabled for T , and ∅ otherwise.

3. The result of applying A to T , denoted resA(T ), is
∪

ρ∈A resρ(T );
resA defines a function on 2S, called the result function.

Thus, reaction ρ is enabled for T if T includes all reactants of ρ
and none of its inhibitors. When ρ is enabled for T , it contributes its
products to the successor state. For T ⊆ S, enA(T ) denotes the set of
reactions from A that are enabled for T . If no confusion arises, we may
use enρ(T ) instead of en{ρ}(T ), where ρ is a single reaction.

The state sequence of a reaction system ρ with initial state T is
given by successive iterations of the result function, with res0A(T ) = T :

(resnA(T ))n∈N = (T, resA(T ), res
2
A(T ), . . . ).

Remark 1. In the usual definition of reaction systems, the set Rρ in a
reaction ρ = (Rρ, Iρ, Pρ) ∈ A is required to be non-empty, which means
that a state sequence yielding the empty set ends without successor
state. Yet, to be consistent with the generalized model introduced later,
we avoid pecularities with disallowing this special case. Moreover, we
also allow the result set Pρ to be the empty set, which anyway does not
contribute to the result set of the whole system.

It is important to note that, because the background set of a re-
action system is finite, the state space, i.e., the number of possible
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configurations, is also finite. As a result, every state sequence either is
finite, ending up with the empty set, or eventually becomes periodic.
Therefore, usually the behavior of reaction systems is considered as
an interactive process, where the reaction system gets input from the
environment.

Definition 4. Let Π = (S,A) be a reaction system with S being the
background set and A a set of reactions over S. An interactive process
with Π considers an initial set T and a sequence of inputs

(D0, D1, . . . ), Di ⊆ S, i ≥ 0,

thus yielding the sequence of results

(R0, R1, . . . ), Ri, i ≥ 0,

with R0 = T and Ri = resA(Di−1 ∪Ri−1), i ≥ 1.

Example 1. Consider the reaction system Π = (S,A), S = {a, b},
A = {ρ1} = ({a}, {b}, {b})}.

With T = {a}, but without input sequence, we would only obtain
the finite state sequence ({a}, {b}, ∅), as ρ1 is not enabled for {b}. Yet,
together with the input sequence

(D0, D1, . . . ), Di = {a}, i ≥ 0,

we obtain the result sequence

(R0, R1, . . . ), Ri, i ≥ 0,

with R2n = {a}, R2n+1 = {a, b} and R2n+2 = ∅ ∪ {a} = R2n, for
all n ≥ 0, as ρ1 applied to R2n yields {b}, ρ1 cannot be applied to
R2n+1 = {a, b}, yielding the empty set as result.

3 Generalized Distributed Reaction Systems
Reaction systems can be generalized to work as a distributed and com-
municating system. As we mentioned in the Introduction, in these
models reactions are positioned at the nodes of virtual graphs, or more
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specifically, represented as an n-tuple of reaction systems. These re-
actions operate synchronously and interact through distribution and
communication protocols. For example, communicating reaction sys-
tems with direct communication (cdcR systems for short) are given by
an (n+1)-tuple Π = (S,A1, . . . , An), where S is a background set and
A1, . . . , An are sets of reactions over S, the components of Π [19]. Two
variants of cdcR systems have been examined: cdcR systems, where
the components, after performing the enabled reactions, communicate
copies of the obtained products to designated components, and cdcR
systems, where the components, after performing the enabled reaction,
communicate copies of the reaction itself to some designated compo-
nents. In [19], it was shown that both types of cdcR systems can be
flattened, i.e., to be converted to a single reaction system. That is, the
state sequence of the cdcR system and that of the R system correspond
to each other.

In part, these results and proof techniques have inspired the de-
velopment of the notion of the generalized distributed reaction sys-
tem, which provides a common framework for studying variants of dis-
tributed reaction systems.

We first define the general model and then consider the two re-
stricted variants already mentioned in the Introduction.

Definition 5. A generalized distributed reaction system (a GDR sys-
tem for short) is a triple (n, S,A), where n is the number of components
labeled 1, · · · , n, S is the background set, E = {1, · · · , n}×S is defined
as the extended alphabet, i.e., pairs of component index and object, and
A is the set of reactions of the form ρ = (Rρ, Iρ, Pρ), where Rρ, Iρ, Pρ

are subsets of E, called reactants, inhibitors, and products, respec-
tively. We write elements of E as [i, a], where 1 ≤ i ≤ n and a ∈ S.

In the following, we use notation Component([i, a]) = i and
Component(T ) = {Component(t) | t ∈ T}.

A configuration C is a subset of E, which can be split into n
components, resulting in an n-tuple (C1, . . . , Cn) of subsets of S with
Ci = {[i, a] | [i, a] ∈ C, a ∈ S}. We then may also write Ci = {a |
[i, a] ∈ C, a ∈ S}.

A reaction ρ = (Rρ, Iρ, Pρ) is enabled if and only if each reactant
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in Rρ is present and each inhibitor in Iρ is absent, yielding Pρ as a
result. The next configuration is the set union of products of all enabled
reactions.

3.1 Restricted Variants of GDR Systems
We now consider the two special variants of GDR systems already
mentioned above:
(i) generalized distributed reaction systems which look at all com-

ponents for the presence or absence of objects, but the resulting
products are only produced in the component the rule is assigned
to as well as

(ii) generalized distributed reaction systems which look for the pres-
ence or absence of objects only in the component the rule is as-
signed to, but the resulting products can be sent to specified
components within the whole system.

In case (i), we denote such a GDR system as a GDR system with
total checks and local output (a GDRt,l system for short), in case (ii),
as a GDR system with local checks and total output (a GDRl,t system
for short).

In both cases, the GDR system (n, S,A) can be represented as
∆ = (n, S,A) with A consisting of n components Ai, 1 ≤ 1 ≤ n, i.e.,
A = (A1, . . . ,An).

(i) For a GDRt,l system, we get

Ai = {[i, a] | [i, a] ∈ Pρ for some reaction ρ ∈ A};

observe that, for every reaction ρ ∈ A, all results must go
to the same component i, i.e., |Component(Pρ)| = 1 and
Component(Pρ) = i; and

(ii) for a GDRt,l system, we get

Ai = {[i, a] | [i, a] ∈ Rρ ∩ Iρ for some reaction ρ ∈ A},

i.e., we collect all reaction rules with reactants and inhibitors
only in component i; observe that for every reaction ρ ∈ A all
reactants and inhibitors must be from the same component, i.e.,
|Component(Rρ ∪ Iρ)| = 1 and Component(Rρ ∪ Iρ) = i.
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We mention that these two variants have been considered as vari-
ants of communicating reaction systems. GDRl,t systems were called
communicating reaction systems with direct communication (cdcR sys-
tems) where products are communicated (cdcR(p) systems) [19]. Pre-
decessor models of GDRt,l systems, the cdcR(c) systems, represent indi-
rect communication. Namely, the execution of a reaction also requires
checking the presence/absence of objects in some designated nodes of
the communicating reaction system [25], [26].

We now give two short examples for these special variants of GDR
systems, yielding simple periodic sequences of configurations:

Example 2. Consider the GDRt,l system ∆ = (2, {a, b},A) with
A1 = {({[1, a], [2, b]}, ∅, {[1, a]})} and A2 = {({[1, a], [2, b]}, ∅, {[2, b]})}.
Starting with the initial configuration C0 = ({[1, a]}, {[2, b]}, by applying
reaction rule ({[1, a], [2, b]}, ∅, {[1, a]}) in the first component and reac-
tion rule ({[1, a], [2, b]}, ∅, {[2, b]}) in the second component, we again
obtain the same configuration, i.e., the periodic sequences of configu-
rations (C0, C1, . . . ) with Ci = ({[1, a]}, {[2, b]}) for i ≥ 0; we observe
that these configurations can also be represented in a simpler way by
Ci = ({a}, {b}).

Example 3. Consider the GDRl,t system ∆ = (2, {a, b},A) with
A1 = {({[1, a]}, ∅, {[1, a], [2, b]})} and A2 = ∅. Starting with the ini-
tial configuration C0 = ({[1, a]}, ∅), i.e., C0 = ({a}, ∅), by applying
reaction rule ({[1, a]}, ∅, {[1, a], [2, b]}) in the first component, we ob-
tain the configuration C1 = ({[1, a]}, {[2, b]}) = ({a}, {b}); in the next
computation steps, we obtain the same configuration again, i.e., from
the initial configuration, we get the periodic sequences of configurations
(C1, C2, . . . ) with Ci = ({[1, a]}, {[2, b]}) = ({a}, {b}) for i ≥ 1.

3.2 Flattening of GDR Systems
The following theorem shows that GDR system (n, S,A) can be flat-
tened to a corresponding standard reaction system (E,A).

Theorem 1. Every GDR system (n, S,A) can be converted into the
corresponding standard reaction system (E,A).
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Proof: We set E = {1, · · · , n} × S. The extended alphabet simply
becomes the background set in the new system. The computation in
the reaction system (E,A) is isomorphic to the computation in the orig-
inal GDR system (n, S,A), with the object a in component i precisely
corresponding to object [i, a] in the reaction system (E,A). □

Hence, the generalization of reaction systems to generalized dis-
tributed reaction systems does not increase the power of reaction sys-
tems. Moreover, we immediately infer that the same flattening proce-
dure also works for the the special cases of GDRt,l and GDRl,t systems.
Therefore, we also infer that these variants can simulate each other.
However, to recover original sequences of configurations, one needs to
unpack the objects a from the extended objects [i, a] and group them
in the respective regions i.

As for standard reaction systems, GDR systems also can be con-
sidered with input streams

• of symbols from the extended alphabet and they can enter the
corresponding components;

• of symbols from the background alphabet S which can only enter
a designated input component.

The computations of GDR systems with input streams can be de-
fined as for standard reaction systems, especially when looking at the
corresponding flattened systems, see Theorem 1. Yet, in this paper, we
refrain from giving a formal definition and continue our investigations
without considering the dynamics coming along with input sequences.

3.3 Simulation of GDR Systems by Restricted Variants
of GDR Systems

We now show how any GDR system (n, S,A) can be simulated by a
corresponding GDRl,t system as well as by a corresponding GDRt,l sys-
tem in such a way that in the first n components in these restricted
systems any computation coincides with the first n components of the
original GDR system. The main idea of the constructions elaborated
in the proof of the following theorem is to simulate the flattened sys-
tem of the given GDR system (n, S,A) according to Theorem 1 in an
additional component.
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Theorem 2. Every GDR system (n, S,A) can be simulated by a corre-
sponding GDRl,t system as well as by a corresponding GDRt,l system,
respectively, with the first n components in any computation coinciding
with the first components of the original GDR system.

Proof: We start with an arbitrary GDR system (n, S,A), which we
can flatten according to Theorem 1, thus obtaining a reaction system
(E,A).

We now construct the corresponding GDRl,t and GDRt,l system,
respectively, with n + 1 components, where, in component n + 1, the
flattened reaction system (E,A) is simulated. Note that each object
[i, a] from the set of products of a reaction in A, when placed in com-
ponent n+ 1, is to be written as [[i, a], n+ 1]. Now we have two cases,
depending on what kind of system we construct.

Constructing the GDRl,t system

Of course, in the initial configuration, we have the first n components
to match those in the original system. For the subsequent steps, com-
ponent n+1 already performs the complete computation for the whole
system, so it suffices to also unpack a copy of each object, and send it
to the correct component. Hence, we replace each reaction

(R, I, {[[i1, a1], n+ 1], · · · , [[ik, ak], n+ 1]}) ∈ An+1

by the corresponding reaction in component n+ 1

(R, I, {[[i1, a1], n+ 1], · · · , [[ik, ak], n+ 1], [i1, a1], · · · , [ik, ak]}).

To the first n components no reaction rules need to be assigned, every-
thing only happens in the additional component n+ 1.

Constructing the GDRl,t system

Also in this case, we want the first n components of the initial con-
figuration to match those in the original system. For the subsequent
steps, component n+1 will already perform the complete computation,
so it suffices to import (a copy of) each object by the corresponding

325



Artiom Alhazov, Erzsébet Csuhaj-Varjú, Pramod Kumar Sethy

component. Hence, now every component i, 1 ≤ i ≤ n, has to have
reactions ({[[i, a], n+ 1]}, ∅, {a}) for each object a ∈ S.

Yet, in order to make this simulation realtime, component n + 1
must contain the results of a one-step look-ahead computation, i.e.,
in the mth configuration Cm, m ≥ 0, of a computation sequence
C0, C1, . . . , component n + 1 must already contain the result of com-
putation step m + 1 to allow the other components to get the correct
objects in this computation step, which, for the initial configuration,
means that component n + 1 already contain the result of the first
computation in the flattened system. □

Therefore, GDRt,l systems and GDRl,t systems can simulate arbi-
trary GDR systems and, hence, each other, retaining the original values
in the first n components of any sequence of configurations, both with
using one additional component.

3.4 Sequential GDR Systems

Let us call the derivation mode when all enabled reactions are applied
in parallel total parallelism. We claim that this total parallelism used
in reaction systems can be simulated by a sequential reaction system,
i.e., when at most one reaction is enabled in any step.

Theorem 3. Every GDR system (n, S,A) can be converted into the
corresponding sequential reaction system (E,A).

Proof: We start with applying Theorem 1 to obtain the correspond-
ing flattened reaction system (E,A′) from the given GDR system
(n, S,A). Hence, we only have to construct the corresponding sequen-
tial reaction system Π = (E,A) for Π′ = (E,A′). Now consider the
function f : 2E → 2E defined as f(T ) = T ′ if T ′ can be derived from
T in Π, for any T ⊆ E. We claim that function f can be implemented
by the sequential reaction system Π = (E,A), as we add to A reaction
(T,E \ T, T ′). Note that this reaction is only enabled for configuration
T , and it produces the desired result. □

The proof of the preceding theorem immediately infers the following
even stronger result for standard reaction systems.
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Corollary 1. Every reaction system (S,A) can be converted into the
corresponding sequential reaction system (E,A) with even preserving
the sequences of configurations.

4 Conclusions
In this article, we extended the concept of reaction systems to general-
ized distributed reaction systems (GDR systems), where the resulting
products in the individual components are obtained by applying rules
which take into account the objects in all the components of the system
as reactants and inhibitors and yield results in specified components of
the system. As specific variants, we have investigated for the presence
or absence of objects, but the resulting products are only produced in
the component the rule is assigned to, as well as (ii) GDR systems
which look for the presence or absence of objects only in the compo-
nent the rule is assigned to, but the resulting products can be sent to
specified components within the whole system.

All these variants of GDR systems can be flattened to a standard re-
action system. Moreover, we showed how each of these two variants can
simulate each other with corresponding state sequences. Furthermore,
GDR systems working with the total parallel application of rules can
be transferred into a usual reaction system working with the sequential
application of rules.

In [27], [28], occurrence problems and their complexity for reaction
systems have been studied and were shown to be NP-complete (or
PSPACE-complete) problems, depending on how the problem is for-
mulated. Such an analysis should also be done for GDR systems and
its variants as, for example, already discussed partly for the communi-
cation dynamics within the system for GDRl,t systems in [19].

Although the variants of GDR systems discussed in this paper show
that GDR systems do not go beyond the boundaries of reaction sys-
tems, there are interesting problems that need to be studied. One such
research topic could be: to investigate which communication protocols
might be reasonable to define and to study the different semantics as-
sociated with them. It would also be of interest to investigate how the
input streams of the GDR system can be classified, and which type of
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input streams has a significant impact on the configuration sequence
of the GDR system, and how its significance can be measured.
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