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Abstract

The central issue of the development of the multivariate pub-
lic key algorithms is the design of reversible non-linear mappings
of n-dimensional vectors over a finite field, which can be repre-
sented in a form of a set of power polynomials. For the first time,
finite fields GF

(
(2d)m

)
of characteristic two, represented in the

form of m-dimensional finite algebras over the fields GF (2d) are
introduced for implementing the said mappings as exponentia-
tion operation. This technique allows one to eliminate the use of
masking linear mappings, usually used in the known approaches
to the design of multivariate cryptography algorithms and caus-
ing the sufficiently large size of the public key. The issues of using
the fields GF

(
(2d)m

)
as algebraic support of non-linear mappings

are considered, including selection of appropriate values of m and
d. In the proposed approach to development of the multivariate
cryptography algorithms, a superposition of two non-linear map-
pings is used to define resultant hard-to-reverse mapping with
a secret trap door. The used two non-linear mappings provide
mutual masking of the corresponding reverse maps, due to which
the size of the public key significantly reduces as compared with
the known algorithms-analogues at a given security level.
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Vector finite fields of characteristic two

1 Introduction

Multivariate public-key cryptography (MPC) is one of the attractive
directions of post-quantum cryptography [1]. It exploits the compu-
tational difficulty of solving systems of many power equations with
many unknowns. Quantum computers are not efficient for solving the
said problem, therefore, the MPC cryptalgorithms are secure against
quantum attacks [1], [2]. The MPC algorithms have sufficiently high
performance and a small size of digital signature and are promising for
practical applications in the coming post-quantum era [3],[4]. However,
the known MPC algorithms have a significant drawback for practical
application, which is the very large size of the public key.

The present paper considers a novel concept of the design of
MPC algorithms, which consists in the use of two non-linear map-
pings specified in the form of exponentiation operations in finite fields
GF

(
(2d)m

)
defined in the form of finite m-dimensional algebras [5].

The main meaning of the used vector form [5] for specifying finite
fields GF

(
(2d)m

)
is that the result of exponentiation operations can

be effectively obtained as a calculation of the values of m polynomials
over the field GF

(
2d
)
. Selecting appropriate values of d and m allows

a significant reduction of the public key size at a given security level.

2 Preliminaries

In the MPC algorithms, the public key is usually specified as a hard
to reverse non-linear mapping Π of an n-dimensional vectors over a
finite field Fq into a u-dimentional vectors over Fq (u ≥ n) [1], [3],
the said non-linear mapping being set in the form of a set of u power
polynomials (usually of degree two) in n variables and having a secret
trapdoor. Using the latter, the owner of the public key can perform
decryption of ciphertexts and generate digital signatures.

The development of an MPC algorithm is connected with specifying
a set of u secret power polynomials fj (x1, x2, . . . , xn) over Fq, where
j = 1, . . . u, which define a reversible nonlinear mapping Ψ : Fn

q → Fu
q .

Then, using two linear maps Λ1 : Fn
q → Fn

q and Λ2 : Fu
q → Fu

q (for
example, implemented as multiplication of the n-dimensional and u-
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dimensional vectors by n×n and u×u secret matrices, correspondingly),
calculate the set of u polynomials pj (x1, x2, . . . , xn) over Fq, where
j = 1, . . . u, which define the mapping:

Π = Λ2◦Ψ◦Λ1. (1)

From a known set of polynomials Π, it is easy to find the image Z =
Π(X) of some vector X, but it is computationally difficult to calculate
the vector-preimage V for a given random vector R. However, the
creator (owner) of the public key Π can effectively calculate the vector
V :

V = Λ−1
1

(
Ψ−1

(
Λ−1
2 (R)

))
= Π−1(R). (2)

The public key represents the superposition (1) of secret mappings.
However, the mapping Π is given as a set of power polynomials
pj (x1, x2, . . . , xn), and the public encryption of a message M , repre-
sented in the form of n-dimensional vector, is performed as calculation
of u coordinates of the u-dimensional vector C = Π(M):

c1 = p1 (x1, x2, . . . , xn) ; c2 = p2 (x1, x2, . . . , xn) ; . . . .

cu = pu (x1, x2, . . . , xn) .

If a ciphertext C = (c1, c2, . . . , cu) is given, then a potential adversary
can find the source message, solving the system of u power equations
with n unknowns x1, x2, . . . , xn, which is defined by the latter formulas.
Such attacks on the MPC algorithms are called direct. The best known
direct attacks are based on using so-called algorithms F4 [6] and F5 [7].

The owner of the public key Π can decipher the ciphertext C as
follows: M = Λ−1

1 ◦Ψ−1◦Λ−1
2 (C).

A digital signature can be calculated in the form of n-dimensional
vector S as follows:

1. Calculate the hash value from a message M to be signed and
represent it in the form of u-dimensional vector H.

2. Find preimage S of the vector H: S = Λ−1
1 ◦Ψ−1◦Λ−1

2 (H).
The signature verification algorithm includes the next two steps:
1. Compute the image H ′ of the signature S: H ′ = Π(S).
2. Calculate the hash value from the message M and represent it as

an u-dimensional vector H. If H = H ′, then the signature S is genune,
else the signature is false.
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The role of linear mappings Λ1 and Λ2 is to mask a secret trapdoor
that allows you to invert the mapping Π. The present paper consideres
a new technique for designing the mapping Π, characterized in using
two reversible nonlinear mappings Ψ−1

1 and Ψ−1
2 ensuring the rejection

of the use of masking linear mappings. The said two mappings are set
using exponentiation operations in the vector finite fields [5], namely, in
the fields specified in the form of finite algebras over Fq, where q = 2d;
d ≥ 5.

Suppose an m-dimensional vector space is set over a finite field
GF (q), where q is a prime number or a power of a prime number. If
a multiplication operation that is distributive at the left and at the
right relatively addition operation is defined additionally, then we have
m-dimensional finite algebra. We will use the following two notations
of the vector A: A = (a1, a2, . . . am) = a1e1 + a2e2 + . . . , amem, where
e1, e2 + . . . , em are basis vectors. The multiplication of two vectors A
and B = (b1, b2, . . . bm) is defined as follows:

AB =

m∑
i,j=1

aibj (eiej) ,

where every product eiej is to be substituted by a one-component
vector µek (µ 6= 1 is called structural constant) indicated in the cell at
the intersection of the ith row and jth column of so-called basis vector
multilication table (BVMT). In [5], it had been shown, if m ≥ 2 divides
the value q − 1, then it is possible to specify a BVMT such that the
algebra is the finite field GF (qm).

Table 1, where π = µετ−1, presents a general form of BVMT with
three different structural constants µ, ε, and τ , which was introduced
for specifying the vector finite fields of arbitrary dimension m ≥ 2 [5].
For a given value of m, there are various types of BVMTs by which
vector fields can be specified. Every of these BVMTs can include from
one to m different structural constants with their different distributions
across the cells of the table. The vector fields are set by selecting
suitable values of the structural constants.
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Table 1. A general form of BVMT for defining the vector fields
GF (qm) [5] (m ≥ 2).

· e1 e2 e3 e4 · · · em−1 em
e1 τe1 τe2 τe3 τe4 τ · · · τem−1 τem
e2 τe2 εe3 εe4 ε · · · εem−1 εem πe1
e3 τe3 εe4 ε · · · εem−1 εem πe1 µe2
e4 τe4 ε · · · εem−1 εem πe1 µe2 µe3
· · · τ · · · εem−1 εem πe1 µe2 µe3 µ . . .
em−1 τem−1 εem πe1 µe2 µe3 µ · · · µem−2

em τem πe1 µe2 µe3 µ · · · µem−2 µem−1

3 Specifying the vector finite fields GF
((
2d
)m)

In the introduced method for the development of the MPC algorithms,
we use the vector finite fields set over the fields GF

(
2d
)
, elements of

which are the binary polynomials of the degree less or equal to d − 1.
The multiplication operation in GF

(
2d
)

is specified as multiplication of
binary polynomials modulo a low-weight binary irreducible polynomial
(in order to reduce the computational complexity of the multiplication
in GF

(
2d
)
). The values of d define the values of m for which the m-

dimensional algebra is a vector field GF
((
2d
)m)

, since for the latter, it
is required to fulfill the condition m|2d− 1. Suitable values of d and m
are shown in Table 2, where the cases d = 8, 16, 24 are of preferable
interest from the practical point of view.

Consider the case of using the vector fields set over GF
(
28
)

relating
to the development of an MPC algorithm with a public key Π = Ψ2◦Ψ1

defining the mapping F85
256 → F85

256. The input 85-dimensional vector
X is represented as concatenation of 17 vectors of dimension 5 (j =
1, 2, . . . , 17):

X = (X1, X2, . . . X17) , where Xj = (x
(j)
1 , x

(j)
2 , . . . x

(j)
5 ).

The mapping Ψ1 is specified as exponentiation of every vector Xj to the
power 257 in a unique vector field GF

((
28
)5). Since the integer 257
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Table 2. Suitable values of d and m.
d 2d − 1 m d 2d − 1 m

5 31 31 18 33 · 7 · 19 · 73 7; 9; 19;
27; 73

6 32 · 7 3; 7; 9; 21 20 17 · 61681 17

8 3 · 5 · 17 3; 5; 15; 17 21 72 · 127 · 337 7; 49; 127

9 7 · 73 7; 73 22 3 · 23 · 89 · 683 3; 23; 89

14 3 · 43 · 127 3; 43; 127 23 47 · 178481 47

15 7 · 31 · 151 7; 31 24 32 · 5 · 7 · 13· 5; 7; 9;
·17 · 241 13; 15; 17

16 3 · 5 · 17 · 257 3; 5; 15; 17 . . . . . . . . .

is mutaully prime with the integer 240 − 1 (order of the multiplicative
group of GF

((
28
)5)), the latter operation defines bijective nonlinear

mapping Yj = Ψ1(j)(Xj). The inverse mapping Xj = Ψ−1
1(j)(Yj) can

be performed as exponentiation to the power b = 551894941568, since
b ≡ 257−1 mod 240 − 1.

To specify the 17 unique mappings Ψ1(j) (j = 1, 2, . . . , 17), we define
two different types of the vector fields GF

((
28
)5) using two different

BVMTs with 5 structural constants ε, λ, µ, σ, and τ , shown in Tables 3
and 4. The values of the said constants are generated at random and
independently for each of the mappings Ψ1(j).

The fact that a field is formed for a given set of values of structural
constants is ensured by checking experimentally the existence of a field
element whose order is equal to 240 − 1. If there is no such element,
then another set of random values of structural constants is generated
and the specified check is repeated until the presence of a generator of
a cyclic group of the order 240 − 1 is established. The latter fact will
mean the reversibility of every non-zero 5-dimensional vector, i.e., it
will mean the formation of a vector field GF

((
28
)5).

For the values j = 1, 2, 3, 5, 6, 8, 9, 10, 12, 13, 15, 16, and 17, the map-
ping Ψ1(j) is defined as the exponentiation operation (represented in

51



A. Moldovyan, N. Moldovyan

the form of a set of polynomials over GF (28)) in the vector finite field
GF

((
28
)5) set by the BVMT of the first kind represented by Table 3.

For the values j = 4, 7, 11, and 14, the mapping Ψ1(j) is specified as a set
of five polynomials over GF (28), the values of which define the result of
exponentiating to the degree 257 in the vector finite field GF

((
28
)5)

set by the BVMT of the second kind represented by Table 4.

Table 3. The BVMT of the first kind for specifying the vector field
GF

((
28
)5).

· e1 e2 e3 e4 e5
e1 λµe4 λµe5 τe1 λσe2 ελµστ−1e3
e2 λµe5 εµe1 τe2 ελµστ−1e3 εµe4
e3 τe1 τe2 τe3 τe4 τe5
e4 λσe2 ελµστ−1e3 τe4 λσe5 εσe1
e5 ελµστ−1e3 εµe4 τe5 εσe1 εσe2

Table 4. The BVMT of the second kind for specifying the vector field
GF

((
28
)5).

· e1 e2 e3 e4 e5
e1 τe1 τe2 τe3 τe4 τe5
e2 τe2 ελe3 εσe4 ελe5 ελµστ−1e1
e3 τe3 εσe4 εσe5 ελµστ−1e1 λσe2
e4 τe4 ελe5 ελµστ−1e1 λµe2 λµe3
e5 τe5 ελµστ−1e1 µσe2 λµe3 µσe4

Selection of the power 257 for specifying the mapping Ψ1(j) is de-
termined by the purpose of defining a bijective nonlinear mapping of
5-dimensional vectors as calculation of five quadratic polynomials in-
cluding three terms. Indeed, from Table 1, taking into account that
in GF (28) we have v + v = 0 ∀v ∈ GF (28), the exponentiation of
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the vector V in GF
((

28
)5) to the degre 2i, where i = 1, 2, . . . , 8, can

be performed as calculation of monomials of the form k
(i)
1 v2

i

1 , k(i)2 v2
i

2 ,
. . . k

(i)
5 v2

i

5 (where coefficients k(i) represent products of some powers of
structural constants):

V 2 = (v1, v2, . . . , v5)
2 =

(
εµv22, εσv25, τv23, λµv21, λσv24

)
;

V 4 =
(
V 2

)2
=

(
ε3µσ2v45, ελ2σ3v44, τ3v43, ε2λµ3v42, λ3µ2σv41

)
;

V 8 =
(
V 4

)2
=

(
ε3λ4µσ6v84, ελ6µ4σ3v81, τ7v83, ε6λµ3σ4v85, ε4λ3µ6σv82

)
;

V 16 =
(
ε3λ12µ9σ6v161 , ε9λ6µ12σ3v162 , τ15v163 , ε6λ9µ3σ12v164 ,

)
ε12λ3µ6σ9v165

)
;

V 32 =
(
ε19λ12µ25σ6v322 , ε25λ6µ12σ19v325 , τ31v323 , ε6λ25µ19σ12v321 ,

)
ε12λ19µ6σ25v324

)
;

V 64 =
(
ε51λ12µ25σ38v645 , ε25λ38µ12σ51v644 , τ63v643 , ε38λ25µ51σ12v642 ,

)
ε12λ51µ38σ25v641

)
;

V 128 =
(
ε51λ76µ25σ102v1284 , ε25λ102µ76σ51v1281 , τ127v1283 ,

ε102λ25µ51σ76v1285 , ε76λ51µ102σ25v1282

)
;

V 256 =
(
ε51λ204µ153σ102v1, ε

153λ102µ204σ51v2, v3, ε
102λ153µ51σ204v4,

ε204λ51µ102σ153v5
)
.

Using Table 3, calculation of the vector U = (u1, u2, . . . , u5) = V 257 =
V 256V gives the next result:

u1 = ε154λ103µ204σ51v22 +
(
τ + ε51λ204µ153σ102τ

)
v1v3+

+
(
ε205λ51µ102σ154 + ε103λ153µ51σ205

)
v5v4;

u2 =
(
ε102λ154µ51σ205 + ε51λ205µ153σ103

)
v4v1+

+
(
τ + ε153λ102µ204σ51τ

)
v3v2 + ε205λ51µ102σ154v25;

u3 =
(
ε205λ52µ103σ154τ−1 + ε51λ204µ153σ102τ−1

)
v5v1+

+
(
ε103λ154µ52σ205τ−1 + ε154λ103µ205σ52τ−1

)
v2v4 + τv23;
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u4 = ε51λ205µ154σ102v21 +
(
ε205λ51µ103σ153 + ε154λ102µ205σ51

)
v2v5+

+
(
ε102λ153µ51σ204τ + τ

)
v3v4;

u5 =
(
ε153λ103µ205σ51 + ε51λ205µ154σ102

)
v1v2+

+
(
ε204λ51µ102σ153τ + τ

)
v3v5 + ε204λ52µ102σ154v24.

(3)
In a similar way, the exponentiating to the degree 257 in the vector
finite field GF

((
28
)5) set by Table 4 can be represented as the cal-

culation of the values of five trinomials over the field GF
(
28
)
. The

proposed nonlinear mapping Ψ1(X) is specified as performing seven-
teen mappings Ψ1(j), when the vector X is represented in the form of
cancatenation of the vectors X1, X2, . . . , X17:

Ψ1 (X1, X2, . . . , X17) =
(
Ψ1(1) (X1) , Ψ1(2) (X2) , . . . , Ψ1(17) (X17)

)
,

where every coordinate of the output 85-dimensional vector Y = Ψ1 (X)
is calculated as a value of some trinomial over GF

(
28
)
. The inverse

mapping X = Ψ−1
1 (Y ) is performed by the formula

X = (X1, X2, . . . , X17) = Ψ−1
1 (Y1, Y2, . . . , Y17) =

=
(
Ψ−1
1(1) (X1) , Ψ

−1
1(2) (X2) , . . . , Ψ

−1
1(17) (X17)

)
,

where mappings Ψ−1
1(j) (Xj) are performed as exponentiation to the

power b = 551894941568 in seventeen different modifications of the
field GF

((
28
)5). Every of the said modifications is characterized in

using a unique set of values of structural constants ε, λ, µ, σ, and τ .
The nonlinear mapping Ψ2 is specified, using five unique mappings

Ψ2(j) performed as exponentiations to the power 257 in five unique
modifications of the field GF

((
28
)17), implementation of every of the

exponentiations being performed as computation of seventeen different
power polynomials (over GF

(
28
)
) every of which contains nine terms.

The vector finite field GF
((

28
)17) is set by BVMTs with the basis

vector distribution shown in Table 1 and with 17 different structural
constants (for prime values of the dimension m it is sufficiently simple
to find distributions of m different structural constants, for which the
multiplication operation is commutative and associative).
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Suppose the 85-dimensional vector Y = (Y1, Y2, . . . Y5) is repre-
sented as concatenation of 5 vectors Yi =

(
y
(i)
1 , y

(i)
2 , . . . y

(i)
17

)
of the

dimension 17 (i = 1, 2, . . . , 5). The mapping Ψ2 is specified as expo-
nentiation of every vector Yi to the power 257 in a unique vector field
GF

((
28
)17). Since the integer 257 is mutually prime with the integer

2136 − 1 (order of the multiplicative group of GF
((

28
)17)), the latter

operation defines bijective nonlinear mapping Zi = Ψ2(i)(Yi). The in-
verse mapping Yi = Ψ−1

1(i)(Zi) can be performed as exponentiation to
the power

b′ = 43725622121389384503558299750298495778688,

since b′ ≡ 257−1 mod 2136 − 1. To specify five unique mappings Ψ2(i)

(i = 1, 2, . . . , 5), one is to set five different sets of the values of structural
constants in the BVMT specifying the vector field GF

((
28
)17). The

values of the said constants are generated at random but so that the
said field is set. Thus, the mapping Z = Ψ2(Y ) is described as follows:

Z = (Z1, Z2, . . . , Z5) = Ψ2 (Y1, Y2, . . . , Y5) =(
Ψ2(1) (Y1) , Ψ2(2) (Y2) , . . . , Ψ2(5) (Y5)

)
,

where every coordinate of the output 85-dimensional vector Z = Ψ2 (Y )
is calculated as a value of some power polynomial (containing 9 terms)
over GF

(
28
)
. We do not provide a set of 17 square polynomials de-

scribing the mappings Ψ2(i), since this would require a rather cumber-
some table with 17 structural constants. This can be done similarly
to the case of description of the mappings Ψ1(j). Note that the poly-
nomials describing the mappings Ψ2(i) contain 9 terms of the second
degree. (It is reasonable to leave a detailed consideration of this is-
sue, including the generation of a BVMT for the case m = 17 with 17
different distributions of structural constants, for the stage of software
implementation of the algorithm.)

The inverse mapping Y = Ψ−1
2 (Z) is performed by the formula

Y = (Y1, Y2, . . . , Y5) = Ψ−1
2 (Z1, Z2, . . . , Z5) =

=
(
Ψ−1
2(1) (Z1) , Ψ

−1
2(2) (Z2) , . . . , Ψ

−1
2(5) (Z5)

)
,
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where mappings Yi = Ψ−1
2(i) (Zi), for i = 1, 2, . . . , 5, are performed as

exponentiation to the power b′ in five different modifications of the
field GF

((
28
)17). Every of the said modifications is characterized by

using a unique set of values of 17 structural constants.
Obviously, the generated public key Π represents a set of 85 poly-

nomials (of the 4th degree), whose variables are the coordinates of the
input vector X. Every polynomial contains 81 terms, the latter being
ordered in the lexicographic order of the products of the variables. As-
suming the term ordering convention, each polynomial can be specified
as a set of 8-bit coefficients. Therefore, the size of public key is equal
to 85 · 81 = 6885 bytes (≈7 kB. The 170-byte secret key represents the
set of 170 structural constants used to specify 17 modifications of the
field GF

((
28
)5) and 5 modificatios of the field GF

((
28
)17).

Each public key coefficient is the product of some set of structural
constants. However, the calculation of structural constants from known
coefficients is associated with the solution of a system of equations of
high degree (>50; see formulas (3)), which includes 170 unknowns.
The latter represents a specific structural attack against the introduced
MPC algorithm, which is similar to a standard direct attack represent-
ing solving a system of 85 equations (set by the public-key polynomials)
of the 4th degree with 85 unknowns. Due to the supposed computa-
tional difficulty of the said structural attack, the calculation of map-
pings Ψ1 and Ψ2 (such that Π = Ψ2 ◦Ψ1) by the public key seems to be
a computationally infeasible task.

4 Discussion

Using the data in Table 1, by analogy with the proposed algorithm,
other MPC algorithms can be developed. Besides, linear mappings
(for example, permutations of the coordinates of the input vector) can
be used additionally, which do not lead to an increase in the number
of terms in the public key polynomials. It is also of interest to specify
non-linear mappings in the form of exponentiation operations in vector
fields GF ((p)m) with an odd characteristic p.

In general, the proposed approach provides quite ample opportuni-
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Table 5. The minimum number of equations in GF (q) for the case
u = n [1].

L = . . . 280 2100 2128 2192 2256

q = 16 30 39 51 80 110
q = 31 28 36 49 75 103
q = 256 26 33 43 68 93

ties for developing algorithms with a relatively small size of the public
key, when providing a given security level. When estimating the se-
curity of the MPC algorithms, two types of attacks are distinguished:
i) direct attacks and ii) structural ones. An attack of the first type
consists in solving a system of power equations given by the public key
polynomials for some vector Z = (z1, z2, . . . , zu). The solution gives
preimadge X = (x1, x2, . . . , xn) of the vector Z, i. e., X = Π−1(Z).
The computational difficulty of the best direct attack defines the up-
per limit of the MPC algorithms’ security. The best-known methods
for solving a system of many power equations with many unknowns
use the algorithms F4 [6] and F5 [7]. The computational difficulty of
the complexity of those methods depends exponentially on the number
of equations and weakly depends on the degree of the equations and
on the order of the field in which the equations are given. Table 5
shows the minimum number of equations (for the case n = u) that are
required to get a given security level.

In the introduced algorithm, we have n = u = 85 and q = 256,
therefore, the security against direct attack can be evaluated as 2192.
Modifications of the MPC algorithms, Rainbow [8] (signature finalist of
the NIST competition for development of the post-quantum public-key
standards) and GeMSS [9] (alternative algorithm participated in the
third round of the NIST competition), have the size of public key equal
to ≈260 kB and ≈1300 kB for the case of the 2192 security level, corre-
spondingly (≈40 and ≈190 times more than the proposed algorithm).

Thus, the proposed method represents a significant interest in de-
veloping the MPC algorithms with a practical size of the public key.
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In addition, the size of the secret key (170 bytes) is also significantly
smaller against Rainbow (≈600 kB) and GeMSS (≈35 kB). Obviously,
the essential advantage of algorithms Rainbow and GeMSS is that the
resistance to structural attacks of various modifications of the algo-
rithms was considered within a fairly long period of time. Study of
the security of the introduced algorithm against potential structural
attacks is connected with the following two items:

i) due to significantly different designs, the known structural attacks
are hardly applicable to the proposed algorithm;

ii) new stuructural attacks are to be considered.
A natural structural attack against the proposed algorithm is the

calculation (by the known coefficients of the public key polynomials) of
170 structural constants used to define 17 modifications of the vector
field GF

((
28
)5) and 5 modifications of the field GF

((
28
)17). This

structural attack is similar to the direct attack, since it is connected
with solving a system of many power equations with many unknowns,
given in GF (28). In this structural attack, we have 6885 power equa-
tions and 170 unknowns. A potential attacker may attempt to select
different subsets of power equations, for which the solution has a lower
computational complexity. However, taking into account the signifi-
cantly larger number of unknowns (170 versus 85), we can expect that
the complexity of this structural attack will be higher compared to the
direct attack.

In fact, the proposed specific algorithm is an illustration of the
proposed new paradigm for constructing MPC algorithms, and there
are significant reserves for the development of new algorithms and their
modification taking into account structural attacks that may appear in
the future.

The development of new structural attacks on the algorithms de-
veloped in the framework of the proposed approach and their detailed
consideration represent independent research tasks.

It is also of interest to use exponentiation operations in the vec-
tor finite fields GF

(
(2d)m

)
to specify a nonlinear mapping within the

framework of the generally accepted approach to the development of
the MPC algorithms [1]–[3].

58



Vector finite fields of characteristic two

5 Conclusion

For the first time the exponentiation operations in vector finite fields
of characteristic two have been proposed to implement nonlinear map-
pings in the MPC algorithms, the public key being formed as a super-
position of two different nonlinear mappings, which is given as a set
of power polynomials of the fourth degree. The introduced approach
seems promising for the development of practical post-quantum algo-
rithms, including digital signature algorithms for possible submission
to the NIST competition in framework of the call for additional pro-
posals [4].
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