
Computer Science Journal of Moldova, vol.32, no.1(94), 2024

Formal Analysis of Medical Systems using
Multi-Agent Systems with Information Sharing

Bogdan Aman Gabriel Ciobanu

Abstract

Improving safety is a main objective for medical systems. To
assist the modelling and formal analysis of medical systems, we
define a language for multi-agent systems handling information,
timed communication, and timed migration. We use a simpli-
fied airway laser surgery scenario to demonstrate our approach.
An implementation in Maude is presented; we use the strate-
gies allowed by Maude to guide the rules application in order to
decrease substantially the number of possible executions and re-
sults in the highly nondeterministic and concurrent multi-agent
systems. Finally, we present how the executable specifications
can be verified with the model-checking tools in Maude to detect
the behavioural problems or desired properties of the agents.

Keywords: multi-agent systems, rewriting engine Maude,
strategies and model-checking, example of airway laser surgery.

MSC 2020: 68Q42, 68Q60, 68Q85, 93A16.
ACM CCS 2020: Theory of computation → Equational

logic and rewriting, Software and its engineering → Model check-
ing, Theory of computation → Process calculi.

1 Introduction

Information about patients history, diagnostics, drugs, and treatment
methods is growing very fast and became more distributed in various
locations. The challenge is to collect properly the relevant information
and to use it smarter. Software agents can be used in medicine to
collect information from many different locations and provide relevant

©2024 by Computer Science Journal of Moldova
doi:10.56415/csjm.v32.01

3

https://doi.org/10.56415/csjm.v32.01

B. Aman, G. Ciobanu

assistance by presenting an integrated view and unexpected relation-
ships or treatment procedures. These agents support decision-making
by accessing distributed resources and coordinating the actions in com-
plex medical processes, and potentially avoid failures in medical pro-
cedures. Agent-based systems overcome the weakness of centralized
systems, improving the performance and providing flexibility, scalabil-
ity, and robustness.

Software agents work in heterogeneous and distributed networks.
An agent operates without the direct intervention of humans and in-
teracts with other agents. A multi-agent system is a collection of au-
tonomous software agents coordinated to solve larger problems. Usu-
ally, the information and knowledge required to solve a large prob-
lem are distributed in several locations of the network; information
is obtained by moving the agents from a location to another. Multi-
agent systems coordinate the actions and interactions of these migrat-
ing agents to provide solutions for a complex problem.

There already exist articles presenting some advantages of the agent
technology and case studies of multi-agent systems in real medical do-
mains [1], [2]. In this article, we present something new: how to use
execution strategies in multi-agent systems in medical environments to
reduce their evolution, and how to verify automatically their behaviour.

In multi-agent systems, an agent can be characterized by several
properties (e.g., cooperation, learning, mobility [3]). In this article, we
consider a language of multi-agent systems named iMAS , which is an
extension of TiMo [4] with timeouts for communication and mobility,
located agents acting in parallel locations and able to migrate between
locations. The interaction among agents is given by message-passing
communication. Such a system has public information that can be
accessed by all agents, while each agent has its private information.

We consider the next example taken from [5] which illustrates the
multi-agent systems with information sharing; this example involves
information sharing and mobility in space and time: “For airway laser
surgery, there are two potential dangers: (1) an accidental burn if both
laser and ventilator are activated; and (2) a low-oxygen shock if the
Saturation of Peripheral Oxygen (SpO) level of the patient decreases
below a given threshold (assume 95%). To prevent the potential dan-

4

Formal Analysis of Medical Systems using MAS

gers when the surgery starts, the airway laser turns on and notifies the
ventilator to turn off; and when the patient’s SpO level becomes below
95%, the ventilator turns on and notifies the airway laser to turn off.”

We provide an implementation in the rewriting engine Maude, and
use the strategies allowed by Maude to guide the rules application in
order to decrease substantially the number of possible results in the
highly nondeterministic and concurrent multi-agent systems. More-
over, we verify their behaviour by using Maude model-checking tools.

The structure of the paper is as follows: Section 2 presents the
syntax and semantics of our language iMAS and illustrates them with
a running example. Section 3 contains an implementation of iMAS in
Maude. In Section 4, we use strategies available in Maude, and verify
that the agents behave as intended by means of model-checking tools
of Maude. Conclusion and references end the article.

2 Multi-Agent Systems with
Information Sharing: Syntax and Semantics

We consider a language named iMAS , where ‘i’ stands for ‘information’
and ‘MAS ’ stands for ‘multi-agent system’. Table 1 contains the syntax
of iMAS, where:

∗ Loc= {l, l′, . . .} is a location set, Chan={a, b, . . .} is channel set,
Id= {id, . . .} is a name set for recursive processes, and N =
{N,N ′, . . .} is a network set;

∗ id(v)
def
= Pid , for all id ∈ Id , is a unique process definition; t ∈ N

is an action timeout, k ∈ Z is a threshold, u is a variable, v
is an expression over variables and values, f is a field, and p is
the type of the accessed information: either private to indicate
the information belonging to an agent or public to indicate the
information belonging to the entire location. If Q(u) is a process
definition, where Q ∈ Id and v1 6= v2, then Q(v1) and Q(v2) are
different.

An agent P B I behaves according to process P and has private in-
formation I. An agent got l then P B I cannot move for t units of

5

B. Aman, G. Ciobanu

Table 1. Syntax of our Multi-Agent Systems

Processes P,Q ::= got l then P (move)
p a∆t!〈v〉 then P else Q (output)
p a∆t?(u) then P else Q (input)
p if test then P else Q (branch)
p stop (termination)
p id(v) (recursion)
p updA(p, f , v) then P (asynch update)
p updS (a, p, f , v) then P (synch update)

Information I ::= ∅ p 〈f ; v〉 p I I
Tests test ::= true p ¬test p test ∧ test

p get(p, f) > k p . . . p ∈ {private, public}
Agents A,B::= P B I
Set of AgentsÃ ::= 0 p Ã || A
Networks N ::= void p l [[I C Ã]] p M | M

time; afterwards the agent P B I moves at location l. Since l can be
instantiated after communication, agents can adapt their behaviours.

An agent a∆t!〈v〉 then P else Q B I waits for up to t units
of time to communicate the value v on channel a to an agent
a∆t′?(x) then P ′ else Q′ B I ′ awaiting at the same location a value
to be written on variable x for up to t′ units of time. If communica-
tion happens, the agents become P B I and {v/x}P ′ B I ′ (all the free
occurrences of the variable x are replaced by value v in P ′) and are
available at the same location. If the timers expire, then the agents
become QB I and Q′ B I ′.

An agent if test then P else Q B I checks test using the available
information (public and private). If the test returns true, then the agent
becomes PBI; otherwise, the agent becomes QBI. For example, a test
get(private, f) > k returns true only if the value stored in the field f
of the private information I is greater than k.

The agent updA(p, f , v) then P B I with p ∈ {private, public} has
two possible outcomes: (i) if the p information does not have a field f ,
then a new piece of information 〈f ; v〉 is added to p; (ii) if the p infor-

6

Formal Analysis of Medical Systems using MAS

mation does have a field f , then its value is updated to v. The agent
continues with the same process P .

The agent updS (a, p, f , v) then P B I has a similar behaviour as
updA(p, f , v) then P B I , except that the update is performed only if
there exists another agent updS (a, p′, f ′, v ′) then P ′ B I ′ at the same
location and using the same channel a that is ready to perform an
update. A = 0B I has no action to execute and terminates.

A network is composed of parallel locations of the form l[[I C Ã]],
where l is a location with public information I and a set Ã of agents;
an empty location is denoted by l[[∅C 0]].

The structural equivalence rearranges agents so that they interact.
This is needed in the operational semantics presented in Table 2; we
present only some of the rules as the others are similar. We denote by
N

Λ−→ N ′ a network N that transforms into a network N ′ by executing
the multiset of actions Λ.

In rule (Stop), we use 6−→ to denote that no action can be exe-
cuted if no agents are available. Rule (Com) models two agents at the
same location l able to communicate on the same channel a. After a
successful communication, the agents become P1BI1 and {v/u}P2BI2.

Rule (Put0) is used for an agent to remove its current output
action if its timer is zero. Afterwards, the agent can execute Q using
the unchanged information I. A similar rule (Get0) is available for the
input action. Since rule (Com) can be applied even when the timers
are zero, it follows that one of the rules (Com), (Put0), and (Get0)
is nondeterministically applied.

Rule (Move0) is used when an agent migrates from location l to
location l′ and becomes P B I. Rule (IfT) is used when the test
performed by an agent returns true. A similar rule (IfF) is available
when the test is false.

Rules (CrtPr) and (UpdPr) are used when an agent extends or
updates, in an asynchronous manner, its private or public information;
afterwards the agent becomes P B I〈f ; v〉. Similar rules are available
for the synchronous updates updS .

Rule (Call) transforms an agent id(v)BI into {v/u}Pid BI. Other
rules are available to compose smaller subnetworks, and to apply the
structural equivalence over networks.

7

B. Aman, G. Ciobanu

Table 2. Operational Semantics for our Multi-Agent Systems

(Stop) l[[I C 0]]6−→

(Com)
l[[Il C a∆t1 !〈v〉 then P1 else Q1 B I1
|| a∆t2?(u) then P2 else Q2 B I2 || Ã]]

a!?@l−−−→ l[[Il C P1 B I1 || {v/u}P2 B I2 || Ã]]

(Put0) l[[Il C a∆0!〈v〉 then P else QB I ||Ã]] a!∆0@l−−−−→ l[[Il CQBI ||Ã]]

(Move0)
l[[Il C go0 l′ then P B I || Ã]] | l′[[I ′l C B̃]]

l.l′−−→ l[[Il C Ã]] | l′[[I ′l C P B I || B̃]]

(IfT)
test@(I Il) = true implies

l[[Il C if test then P else Q B I || Ã]] true@l−−−−→ l [[Il C PBI ||Ã]]

(CrtPr)
6 ∃〈f ; v′〉 ∈ I implies

l[[Il C updA(private, f , v) then P B I || Ã]]
createlf @l
−−−−−−→ l[[Il C P B I〈f ; v〉 || Ã]]

(UpdPr)
l[[Il C updA(private, f , v) then P B I 〈f ; v ′〉 || Ã]]

updlf @l
−−−−→ l[[Il C P B I〈f ; v〉 || Ã]]

(Call) l[[Il C id(v)B I || Ã]] call@l−−−−→ l [[Il C {v/u}Pid B I || Ã]],
where id(u)

def
= Pid

(DStop) l[[Il C 0]]
t
l[[Il C 0]]

(DPut)
t ≥ t′ ≥ 0 implies l[[Il C a∆t!〈v〉 then P else QB I]]

t′
l[[Il C a∆t−t′ !〈v〉 then P else QB I]]

(DGet)
t ≥ t′ ≥ 0 implies l[[Il C a∆t?(u) then P else QB I]]

t′
l[[Il C a∆t−t′?(u) then P else QB I]]

(DMove)
t ≥ t′ ≥ 0 implies l[[Il C got l′ then P B I]]

t′
l[[Il C got−t′ l′ then P B I]]

8

Formal Analysis of Medical Systems using MAS

We denote by N
t
N ′ a network N that transforms into a net-

work N ′ after t units of time. In rule (DStop), the network l[[IC0]] is
not affected by the passing of time. To decrease action timers, we use
the rules (DPut), (DGet), and (DMove), while other rules are used
to compose smaller subnetworks and to apply the structural equiva-
lence.

A derivation N
Λ,t
==⇒ N ′, where Λ = {λ1, . . . , λk} is a multiset of

actions and t is a timeout, denotes a complete computational step:
N

λ1−→ N1 . . . Nk−1
λk−→ Nk

t
N ′.

By N ==⇒∗ N ′ we denote an iMAS network N that transforms into
a network N ′ after zero or more action steps followed by a time step.

In our setting, the passing of time is deterministic. The following
theorem claims that time passing does not introduce nondeterminism
in the evolution of a network.

Theorem 1. The next statements hold for any three networks N , N ′,
and N ′′:

1. if N 0 N ′, then N = N ′;

2. if N t N ′ and N t N ′′, then N ′ = N ′′.

Proof. By induction on the structure of N , as in [6].

The following theorem claims that when only time rules can be
applied for two time steps of lengths t and t′′, then the rules can be
applied also for a time step of length t + t′. This ensures that the
evolution is smooth (without gaps).

Theorem 2. If N t N ′′
t′
N ′, then N

t+t′
N ′ .

Proof. By induction on the structure of N , as in [6].

Example 1. Let us consider the example mentioned before. For this
scenario, we use the following notations for the descriptions of the
involved agents: sl (start laser), lv (laser ventilator), stateL (state
laser), stateV (state ventilator), and SpO (Saturation of Peripheral
Oxygen).

9

B. Aman, G. Ciobanu

The entire system can be described as a network:

LaserSurgerySystem = SurgeryRoom[[emptyC
Surgeon B empty ||Laser B 〈stateL; 0 〉
||Ventilator B 〈stateV ; 1 〉〈SpO ; 98 〉]]

|LockerRoom[[empty C Zero]]

where:
Surgeon = sl∆1 !〈yes〉 then Surgeon else Surgeon

Laser = sl∆1 ?(x) then updS(lv , private, stateL, 1)

then updS(lv , private, stateL, 0) then Laser

else Surgeon

Ventilator = updS(lv , private, stateV , 0) then Ventilator ′

Ventilator ′ = if get(private,SpO) > 95

then updA(private,SpO , get(private,SpO)− 1)

then wait∆1 ?(y) then stop else Ventilator ′

else updA(private,SpO , 98)

then updS(lv , private, stateV , 1) then Ventilator

3 Implementing Multi-Agent Systems with In-
formation Sharing

We provide an implementation for our language iMAS . Maude is a
high-level language and a rewriting platform; it is part of a high-
performance system supporting executable specifications in rewriting
logic. Rewriting logic [7] is basically a framework which combines term
rewriting with equational logic. We use Maude [8] extended with time
aspects taken from Real-Time Maude [9].

In order to implement the multi-agent systems of iMAS , we con-
sider sorts corresponding to sets from our language:

sorts Location Channel Process GlobalSystem .

For the iMAS operators in Table 1, the attached attribute ctor marks
a constructor, while attribute prec followed by a value marks a prece-
dence among operators. Moreover, in real-time Maude we attach the
attributes comm and assoc to mark commutative and associative oper-
ators. For example:

10

Formal Analysis of Medical Systems using MAS

op < _ ; _ > : Field Nat -> Inf .
op _ |> _ : Process Inf -> Agent [ctor] .
op _||_ : Agent Agent -> Agent [ctor prec 5 comm assoc] .

Since some rules of Table 2 have hypotheses, the corresponding rules
in Maude are conditional. To identify the corresponding rule of Table 2,
we use similar names for each of the below rewrite rules. For example:

crl [UpdatePrivate] : k[[I <| ((update(private,f,v)
then (P)) |> (I' < f ; v' >)) || A]]

=> k[[I <| (P |> (I'< f ; v >)) || A]] if A =/= Zero .

As Maude does not support infinite computations, the recursion
operator of iMAS is not directly encodable into Maude. Thus, we en-
code each id(v) into a construction id(v, b), where b is a Boolean value b
limiting the unfolding until the first occurrence of not b (to transform
not b into b, an evolution rule should be used again). For example:

op Laser : Bool -> Process [ctor] .
ceq Laser(b) = ((sl ^ 1 ? (x))

then (updateS(lv,private,stateL,1)
then (updateS(lv,private,stateL,0)

then Laser(not b)))
else Laser(not b)) if b == true .

crl [UnfoldLaser] : k[[I1 <| ((Laser(b)) |> I2) || B]]
=> k[[I1 <| ((Laser(not b)) |> I2) || B]]

if b == false /\ B =/= Zero .
crl [UnfoldLaser] : k[[I1 <| ((Laser(b)) |> I2)]]
=> k[[I1 <| ((Laser(not b)) |> I2)]] if b == false .

The definitions for Surgeon and Ventilator are similar.
The rule [tick] models the maximum passage of time.

crl [tick] : {M} => {delta(M, mte(M))}
if mte(M) =/= INF and mte(M) =/= 0 .

11

B. Aman, G. Ciobanu

The rule [tick] decreases time by means of function delta, and the
value of the maximal passed time is computed by the function mte.

We show that the transition system associated with the rewrite the-
ory in our Maude specification coincides with the reduction semantics
for the multi-agent system. Given a system M , we use ψ(M) to de-
note its representation in Maude. Also, RD denotes the rewrite theory
mentioned previously in this section by the rewrite rules, and also by
the additional operators and equations of these rewrite rules.

The next result relates the structural congruence in our multi-agent
language iMAS with the equational equality of the rewrite theory.

Lemma 1. M ≡ N if and only if RD ` ψ(M) = ψ(N).

Proof. ⇒: By induction on the congruence rules of our language iMAS .
⇐: By induction on the equations of the rewrite theory RD.

The following result emphasizes the operational correspondence be-
tween the high-level systems and their translations into a rewrite the-
ory. Generically, by M −→ N is denoted any rule of Table 2.

Theorem 3. M −→ N if and only if RD ` ψ(M) ⇒ ψ(N).

Proof. ⇒: By induction on the derivation M −→ N .
⇐: By induction on the derivation RD ` ψ(M) ⇒ ψ(N).

4 Strategies and Model-Checking Multi-Agent
Systems with Information Sharing

A strategy controls the rewriting steps such that each step obeys the
strategy. The result of applying a strategy is the subset of computations
produced according to the strategy.

In Maude, a strategy language able to control explicitly the applica-
tion of rules was presented in [10]. The command for executing a strat-
egy expression alpha applied to a term t is srewrite t using alpha;
its output enumerates the solutions that are obtained after this con-
trolled rewriting. Multiple solutions are possible because strategies do
not remove the nondeterminism.

12

Formal Analysis of Medical Systems using MAS

The elementary building block of the strategy language is the appli-
cation of a rule, and the most basic form is the strategy all that does
not use any restriction when applying the rules. The iteration (all)*
runs the strategy all zero or more times consecutively. For example,
the command

srew {LaserSurgerySystem} using (all)* .

returns a number of 78 solutions. However, this number of solutions
can be reduced if we consider a sort of priority on rules. In what
follows, besides the iteration strategy α∗, we consider several others: (i)
the strategy idle that returns the initial term; (ii) the disjunction (or
alternative) strategy α | β that executes α or β, and (iii) the conditional
strategy α?β : γ that executes α and then β on its results; if α does
not produce any result, it executes γ on the initial term.

The simplest strategy we consider is to apply the [Input0] and
[Output0] rules only if any other rule is not applicable, and the time
rule [tick] last. Formally:

sd step := ((Comm | IfT | IfF | UnfoldSurgeon
| UnfoldLaser | UnfoldVentilator | UpdatePrivate
| UpdatePublic | CreatePrivate | CreatePublic
| UnfoldScheduleBus | Move)
? idle : (Input0 | Output0)) .

sd mtestep := (step ? idle : tick)* .

In this case, by running the system LaserSurgerySystem using the strat-
egy mtestep, the number of solutions is decreasing to 53. This num-
ber of solutions can be further reduced by considering the strategy
mtestep1 obtained by removing the number of alternative strategies of
the form α | β; this leads to an important decrease in the state space,
namely 28 solutions.

Since in iMAS systems, the number of possible applicable rules is
high, it turns out to be necessary to use software verification. Vari-
ous properties of the iMAS systems controlled by using strategies can
be analyzed and verified automatically by using the unified Maude

13

B. Aman, G. Ciobanu

model-checking tool umaudemc [11]. In this way, we can check by us-
ing CTL*. CTL* [12] is a branching-time temporal logic that extends
both LTL [13] and CTL [14]. We can check by formulae of the form: (i)
E 〈 〉 φ (checks the reachability: there exists a path such that eventu-
ally φ is satisfied); (ii) A [] φ and E [] φ (checks the safety: something
bad will never happen); (iii) A 〈 〉 φ and φ ψ (checks the liveness:
something good will eventually happen).

The command-line for the umaudemc tool is the following:

umaudemc check < file name > < initial term >
< formula > [< strategy >] .

To illustrate such a verification, we check some CTL* properties of our
running example. Namely, according to [5], the simplified airway laser
surgery scenario has two safety properties, i.e., P1: the laser and the
ventilator can not be activated at the same time; and P2: the patient’s
SpO level can not be smaller than 95%. In what follows, we show the
outcome of verifying these properties:

$ umaudemc check iMASLaserSurgery.maude {LaserSurgerySystem}
' A [] ((InfInLocation(< stateL ; 1 > , SurgeryRoom)
/\ InfInLocation(< stateV ; 0 > , SurgeryRoom))
\/ (InfInLocation(< stateL ; 0 > , SurgeryRoom)
/\ InfInLocation(< stateV ; 1 > , SurgeryRoom)))
' mtestep2

The property is satisfied in the initial state (56 system
states, 587 rewrites, holds in 56/56 states)

$ umaudemc check iMASLaserSurgery.maude {LaserSurgerySystem}
' A [] Saturation(SpO) ' mtestep2

The property is satisfied in the initial state (56 system
states, 475 rewrites, holds in 56/56 states)

5 Conclusion

Outperforming the advantages of the agent technology and case studies
of multi-agent systems presented in real medical domains [1],[2], in this

14

Formal Analysis of Medical Systems using MAS

article we show how to use strategies in multi-agent systems in medical
environments in order to reduce their evolution, and how to verify au-
tomatically their behaviour by using rewriting platform Maude. Both
qualitative aspects (e.g., reachability, safety, liveness) and quantitative
aspects (e.g., related to stored information) are presented.

The prototyping language iMAS can be viewed as a member of
the TiMo family; this family is generated by a process calculus in
which processes can migrate between explicit locations in order to per-
form local communications with other processes. The initial version
of TiMo (presented in [4]) generated various extensions: with access
permissions in perTiMo [15], with real-time in rTiMo [16], combin-
ing TiMo and the bigraphs [17] to obtain the BigTiMo calculus [18].
Related to the approach presented in this article, we mention [19], in
which repuTiMo describes agents with reputation, and [6], in which
knowTiModeals with knowledge of agents represented as sets of trees
whose nodes carry information. A related approach is presented in [20],
where a Java-based software allows the agents to perform timed migra-
tion like in TiMo . In [21], it is given a translation of TiMo into a
Real-Time Maude rewriting language.

References

[1] H. Lieberman and C. Mason, “Intelligent agent software for
medicine,” Studies in Health Technology and Informatics, vol. 80,
pp. 99–109, 2002.

[2] D. Isern, D. Sánchez, and A. Moreno, “Agents applied in health
care: A review,” International Journal of Medical Informatics,
vol. 79, no. 3, pp. 145–166, 2010.

[3] M. J. Wooldridge, An Introduction to MultiAgent Systems, Second
Edition. Wiley, 2009.

[4] G. Ciobanu and M. Koutny, “Timed mobility in process algebra
and Petri nets,” Journal of Logic and Algebraic Programming,
vol. 80, no. 7, pp. 377–391, 2011.

15

B. Aman, G. Ciobanu

[5] C. Guo, Z. Fu, Z. Zhang, S. Ren, and L. Sha, “Design verifiably
correct model patterns to facilitate modeling medical best practice
guidelines with statecharts,” IEEE Internet Things J., vol. 6, no. 4,
pp. 6276–6284, 2019.

[6] B. Aman and G. Ciobanu, “Knowledge dynamics and behavioural
equivalences in multi-agent systems,” Mathematics, vol. 9, no. 22,
2021.

[7] J. Meseguer, “Twenty years of rewriting logic,” Journal of Logic
and Algebraic Programming, vol. 81, no. 7-8, pp. 721–781, 2012.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet,
J. Meseguer, and C. L. Talcott, Eds., All About Maude - A High-
Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, ser. Lecture Notes in Com-
puter Science. Springer, 2007, vol. 4350.

[9] P. C. Ölveczky and J. Meseguer, “The Real-Time Maude tool,”
in 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems, TACAS 2008, Held as Part
of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2008, ser. Lecture Notes in Computer Science, C. R.
Ramakrishnan and J. Rehof, Eds., vol. 4963. Springer, 2008, pp.
332–336.

[10] F. Durán, S. Eker, S. Escobar, N. Martí-Oliet, J. Meseguer, R. Ru-
bio, and C. L. Talcott, “Programming and symbolic computation
in Maude,” Journal of Logical and Algebraic Methods in Program-
ming, vol. 110, 2020.

[11] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo, “Model checking
strategy-controlled systems in rewriting logic,” Automated Soft-
ware Engineering, vol. 29, no. 1, p. 7, 2022.

[12] E. A. Emerson and J. Y. Halpern, “”Sometimes” and ”Not Never”
revisited: on branching versus linear time temporal logic,” Journal
of the ACM, vol. 33, no. 1, pp. 151–178, 1986.

16

Formal Analysis of Medical Systems using MAS

[13] A. Pnueli, “The temporal logic of programs,” in 18th Annual Sym-
posium on Foundations of Computer Science (SFCS 1977), 1977,
pp. 46–57.

[14] E. M. Clarke and E. A. Emerson, “Design and synthesis of syn-
chronization skeletons using branching-time temporal logic,” in
Workshop on Logics of Programs, ser. Lecture Notes in Computer
Science, D. Kozen, Ed., vol. 131. Springer, 1981, pp. 52–71.

[15] G. Ciobanu and M. Koutny, “Timed migration and interaction
with access permissions,” in 17th International Symposium on For-
mal Methods, FM 2011, ser. Lecture Notes in Computer Science,
M. J. Butler and W. Schulte, Eds., vol. 6664. Springer, 2011, pp.
293–307.

[16] B. Aman and G. Ciobanu, “Real-time migration properties of
rTiMo verified in Uppaal,” in 11th International Conference on
Software Engineering and Formal Methods, SEFM 2013, ser. Lec-
ture Notes in Computer Science, R. M. Hierons, M. G. Merayo,
and M. Bravetti, Eds., vol. 8137. Springer, 2013, pp. 31–45.

[17] R. Milner, The Space and Motion of Communicating Agents.
Cambridge University Press, 2009.

[18] W. Xie, H. Zhu, M. Zhang, G. Lu, and Y. Fang, “Formaliza-
tion and verification of mobile systems calculus using the rewrit-
ing engine maude,” in 2018 IEEE 42nd Annual Computer Soft-
ware and Applications Conference, COMPSAC 2018, S. Reisman,
S. I. Ahamed, C. Demartini, T. M. Conte, L. Liu, W. R. Clay-
comb, M. Nakamura, E. Tovar, S. Cimato, C. Lung, H. Takakura,
J. Yang, T. Akiyama, Z. Zhang, and K. Hasan, Eds. IEEE Com-
puter Society, 2018, pp. 213–218.

[19] B. Aman and G. Ciobanu, “Dynamics of reputation in mobile
agents systems and weighted timed automata,” Information and
Computation, vol. 282, p. 104653, 2022.

17

B. Aman, G. Ciobanu

[20] G. Ciobanu and C. Juravle, “Flexible software architecture and
language for mobile agents,” Concurrency and Computation:
Practice and Experience, vol. 24, no. 6, pp. 559–571, 2012.

[21] B. Aman and G. Ciobanu, “Verification of multi-agent systems
with timeouts for migration and communication,” in 16th Inter-
national Colloquium on Theoretical Aspects of Computing, ICTAC
2019, ser. Lecture Notes in Computer Science, R. M. Hierons and
M. Mosbah, Eds., vol. 11884, 2019, pp. 134–151.

Bogdan Aman, Gabriel Ciobanu Received February 14, 2024
Revised February 16, 2024

Accepted February 21, 2024

Bogdan Aman
ORCID: https://orcid.org/0000-0001-7649-8181
Institute of Computer Science, Romanian Academy, Iasi Branch
Str. Teodor Codrescu 2, 700481, Iaşi, Romania
E–mail: bogdan.aman@iit.academiaromana-is.ro

Gabriel Ciobanu
ORCID: https://orcid.org/0000-0002-8166-9456
Academia Europaea, www.ae-info.org/ae/Member/Ciobanu_Gabriel
E–mail: gabriel.ciobanu@iit.academiaromana-is.ro

18

	Introduction
	Multi-Agent Systems with Information Sharing: Syntax and Semantics
	Implementing Multi-Agent Systems with Information Sharing
	Strategies and Model-Checking Multi-Agent Systems with Information Sharing
	Conclusion

