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Outer independent total double Italian
domination number

Seyed Mahmoud Sheikholeslami, Lutz Volkmann

Abstract

If G is a graph with vertex set V (G), then let N [u] be the
closed neighborhood of the vertex u ∈ V (G). A total double
Italian dominating function (TDIDF) on a graph G is a function
f : V (G) → {0, 1, 2, 3} satisfying (i) f(N [u]) ≥ 3 for every vertex
u ∈ V (G) with f(u) ∈ {0, 1} and (ii) the subgraph induced by
the vertices with a non-zero label has no isolated vertices. A
TDIDF is an outer-independent total double Italian dominating
function (OITDIDF) on G if the set of vertices labeled 0 induces
an edgeless subgraph. The weight of an OITDIDF is the sum of
its function values over all vertices, and the outer independent
total double Italian domination number γoi

tdI(G) is the minimum
weight of an OITDIDF on G. In this paper, we establish various
bounds on γoi

tdI(G), and we determine this parameter for some
special classes of graphs.

Keywords: (Total) double Italian domination. Outer inde-
pendent (total) double Italian domination.
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1 Introduction

For notation and graph theory terminology, we in general follow
Haynes, Hedetniemi and Slater [11]. The starting point of Roman
and Italian domination in graphs, as well as all its variants, can be
attributed to the mathematical formalization of a defensive model of
the Roman Empire described by Stewart in [18]. The formal definition
was given by Cockayne et al. [9] as follows. Given a graph G = (V,E),
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with vertex set V = V (G) and edge set E = E(G), a Roman dominat-
ing function (RDF) on G is a function f : V → {0, 1, 2}, that assigns
labels to vertices of G, such that every vertex labeled with 0 must
be adjacent to a vertex with a label 2. The sum of all vertex labels,
w(f) = f(V ) =

∑
v∈V f(v), is called the weight of the RDF f and

the minimum weight over all possible RDF’s is the Roman domination
number, γR(G), of the graph G. For the sake of simplicity, an RDF
with minimum weight is known as a γR(G)-function or a γR-function
of G. Clearly, there is a one-on-one relation between Roman domi-
nating functions and the set of subsets {V f

0 , V f
1 , V f

2 } of V (G), where
V f
i = {v ∈ V | f(v) = i}. That is why an RDF f is usually represented

as f = (V f
0 , V f

1 , V f
2 ) or simply by (V0, V1, V2), if there is no possibility

of confusion. An Italian dominating function (IDF) on a graph G is
defined in [5] as a function f : V → {0, 1, 2} satisfying f(N(u)) ≥ 2
for each vertex u with f(u) = 0. An IDF f = (V0, V1, V2) is an outer
independent total Italian dominating function (OITIDF) if V0 is an in-
dependent set and G[V1 ∪ V2] is a subgraph without isolated vertices.
The outer independent total Italian domination number γoitI (G) equals
the minimum weight of an OITIDF on G, and an OITIDF of G with
weight γoitI (G) is called a γoitI (G)-function. For more details on Roman
and Italian domination and its variants, the reader can consult the
following book chapters [6], [7] and the survey [8].

In this paper, we only consider simple graphs G = (V,E) with
vertex set V = V (G) and edge set E = E(G). The size of a graph is
its number of edges and its order is the number of elements in V . The
open (resp. closed) neighborhood N(v) (resp. N [v]) of a vertex v is the
set {u ∈ V (G) | uv ∈ E(G)} (resp. N [v] = N(v)∪{v}). The number of
adjacent vertices with v is its degree, deg(v) = |N(v)|. We denote by
δ = δ(G) (resp., ∆ = ∆(G)) the minimum (resp., maximum) degree of
a graph G. A leaf in a graph is a vertex whose degree is equal to 1 and its
neighbor is a support vertex. Let α(G) and β(G) be the independence
number and the covering number of a graph, respectively. If G is a
graph of order n without isolated vertices, then α(G) + β(G) = n.

We denote by Pn the path graph of order n, and by Cn the cycle
graph of order n. The corona of a graph G denoted G◦K1, is the graph
formed from a copy of G by adding for each v ∈ V , a new vertex v′
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and the edge vv′.
A function f : V → {0, 1, 2, 3} is an outer independent total double

Roman dominating function (OITDRDF) on a graph G if it meets the
following requirements:

• Every vertex v ∈ V with f(v) = 0 is adjacent to either a vertex
w such that f(w) = 3 or to two vertices w,w′ ∈ V with f(w) =
f(w′) = 2.

• Every vertex v ∈ V with f(v) = 1 is adjacent to a vertex w ∈ V
with f(w) ≥ 2.

• The set of vertices with weight 0 induces an edgeless subgraph
and the set of vertices with positive weight induces an isolated-
free vertex subgraph.

The outer independent total double Roman domination number
(OITDRD-number for short ) γoitdR(G) equals the minimum weight of an
OITDRDF on G, and an OITDRDF of G with weight γoitdR(G) is called
a γoitdR(G)-function. The outer independent total double Roman dom-
ination was investigated by Teymourzadeh and Mojdeh [17]; Abdol-
lahzadeh Ahangar, Chellali, Sheikholeslami, and Valenzuela-Tripodoro
[2]; and Sheikholeslami and Volkmann [16].

In [12], Mojdeh and Volkmann defined a variant of double Roman
domination, namely double Italian domination. A double Italian dom-
inating function (DIDF) on a graph G is a function f : V (G) →
{0, 1, 2, 3} satisfying f(N [u]) ≥ 3 for every vertex u ∈ V (G) with
f(u) ∈ {0, 1}. According to Shao, Mojdeh, and Volkmann [15], a DIDF
on a graph G with no isolated vertices is a total double Italian dominat-
ing function (TDIDF) if the subgraph induced by the vertices of the
positive label has no isolated vertices. The total double Italian domi-
nation number γtdI(G) is the minimum weight of a TDIDF on G. A
TDIDF on G with weight γtdI(G) is called a γtdI(G)-function. An outer
independent double Italian dominating function (OIDIDF) of a graph
G is a DIDF for which the vertices with weight 0 are independent. The
outer independent double Italian domination number γoidI(G) is the
minimum weight of an OIDIDF on G (see [1], [3], [4], [19]). An OIDIDF
on G with weight γoidI(G) is called a γoidI(G)-function.
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Our aim in this work is to continue the study of a new variation of
Italian domination, namely the outer independent total double Italian
domination. A TDIDF is an outer independent total double Italian
dominating function (OITDIDF) on G if the set of vertices with weight
0 induces an edgeless subgraph. The outer independent total double
Italian domination number (OITDID-number for short) γoitdI(G) equals
the minimum weight of an OITDIDF on G, and an OITDIDF of G
with weight γoitdI(G) is called a γoitdI(G)-function.

In this paper, we present basic properties and sharp bounds for
the outer independent total double Italian domination number. In
addition, we determine this parameter for special classes of graphs.

If G is a graph without isolated vertices, then the definitions lead
to γtdI(G) ≤ γoitdI(G) ≤ γoitdR(G).

We make use of the following results in this paper.

Theorem 1. [10],[13] For a graph G with even order n and no isolated
vertices, γ(G) = n/2 if and only if the components of G are the cycle
C4, or the corona H ◦K1 for any connected graph H.

Proposition 2. [15] If Cn is a cycle of length n ≥ 3, then γtdI(Cn) =
n. If Pn is a path of order n ≥ 2, then γtdI(Pn) = n + 2 when
n ≡ 1 (mod 3) and γtdI(Pn) = n+ 1 otherwise.

Proposition 3. [16] If G is a graph of order n without isolated vertices,
then γoitdR(G) ≤ 2n−∆(G).

Proposition 4. [2] For n ≥ 3,

(i) γoitdR(Pn) =

{
6 if n = 4,

d6n5 e otherwise.

(ii) γoitdR(Cn) = d6n5 e.

The next lemma is easy to see, and therefore its proof is omitted.

Lemma 5. Let G be a graph without isolated vertices. If v is a support
vertex and u a leaf neighbor of v, then for any OITDIDF f of G, we
have f(u) + f(v) ≥ 3 and f(v) ≥ 1.
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2 Special classes of graphs
In this section, we determine the outer independent total double Italian
domination number for cycles, paths, and complete t-partite graphs.

Proposition 6. If Cn is a cycle of length n ≥ 3, then γoitdI(Cn) = n. If
Pn is a path of order n ≥ 2, then γoitdI(Pn) = n+ 2 when n ≡ 1 (mod 3)
and γoitdI(Pn) = n+ 1 otherwise.

Proof. Define the function f : V (Cn) → {0, 1, 2, 3} by f(x) = 1 for
each vertex x ∈ V (Cn). Clearly, f is an OITDIDF on Cn of weight n,
and thus γoitdI(Cn) ≤ n. Using Proposition 2 we obtain

n = γtdI(Cn) ≤ γoitdI(Cn) ≤ n,

and thus γoitdI(Cn) = n.
Let now Pn = v1v2 . . . vn. If n = 3t+ 1 with an integer t ≥ 1, then

define f by f(v1) = f(vn) = 2 and f(vi) = 1 for 2 ≤ i ≤ n − 2. Then
f is an OITDIDF on Pn of weight n + 2, and thus γoitdI(Pn) ≤ n + 2.
Using Proposition 2, we obtain

n+ 2 = γtdI(Pn) ≤ γoitdI(Pn) ≤ n+ 2,

and so γtdI(Pn) = n+ 2 when n ≡ 1 (mod 3).
Let next n = 3t with an integer t ≥ 1. Define f by f(v3i) = 0 for

1 ≤ i ≤ t− 1, f(v3t) = 1, f(v3i−1) = 2 for 1 ≤ i ≤ t, and f(v3i−2) = 1
for 1 ≤ i ≤ t. Then f is an OITDIDF on Pn of weight n+ 1, and thus
γoitdI(Pn) ≤ n+ 1. It follows from Proposition 2 that

n+ 1 = γtdI(Pn) ≤ γoitdI(Pn) ≤ n+ 1

and so γtdI(Pn) = n + 1 in this case. Finally, let n = 3t + 2 with an
integer t ≥ 0. Define f by f(v3i) = 0 for 1 ≤ i ≤ t, f(v3i−1) = 2
for 1 ≤ i ≤ t + 1, and f(v3i−2) = 1 for 1 ≤ i ≤ t + 1. Then f is an
OITDIDF on Pn of weight n + 1, and thus γoitdI(Pn) ≤ n + 1. Again
Proposition 2 leads to the desired result.

Proposition 4 implies γoitdR(Cn) = d6n5 e and γoitdR(Pn) = d6n5 e for n ≥
5. Therefore, Proposition 6 shows that the difference γoitdR(G)−γoitdI(G)
can be arbitrarily large.
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Proposition 7. If Kp.q is the complete bipartite graph with 3 ≤ p ≤ q,
then γoitdI(Kp,q) = p+ 2.

Proof. Let X,Y be a bipartition of Kp,q with |X| = p and |Y | = q,
and let f = (V0, V1, V2, V3) be an OITDIDF on Kp,q. If |V0| = 0,
then γoitdI(Kp,q) ≥ p + q > p + 2. So let now |V0| ≥ 1, and assume,
without loss of generality, that V0 ⊆ Y . This implies f(X) ≥ p and
f(Y ) ≥ 1. If f(X) ≥ p + 1, then γoitdI(Kp,q) ≥ f(X) + f(Y ) ≥ p + 2.
In the remaining case that f(X) = p, we deduce that f(x) = 1 for
each x ∈ X, and therefore f(Y ) ≥ 2. Also in this case we obtain
γoitdI(Kp,q) ≥ p+ 2.

Conversely, let w ∈ Y . Define the function g by g(x) = 1 for x ∈ X,
g(w) = 2 and g(y) = 0 for y ∈ Y \{w}. Then g is an OITDIDF on Kp,q

of weight p+2. Hence γoitdI(Kp,q) ≤ p+2 and so γoitdI(Kp,q) = p+2.

Note the following completion to Proposition 7.

Proposition 8. If q ≥ 2, then γoitdI(K1,q) = 4. If q ≥ 3, then
γoitdI(K2,q) = 5.

Proposition 9. Let G = Kn1,n2,...,nt be the complete t-partite graph
with n1 ≤ n2 ≤ · · · ≤ nt, n = n1 + n2 + · · · + nt and t ≥ 3. If n1 = 1
and t = 3, then γoitdI(G) = n+ 1− nt and γoitdI(G) = n− nt otherwise.

Proof. Let X1, X2, . . . , Xt be the partite sets of G with |Xi| = ni for
1 ≤ i ≤ t. If f = (V0, V1, V2, V3) is an OITDIDF on G, then |V0| ≤ nt,
and therefore γoitdI(G) ≥ n − nt. If n1 ≥ 2 or t ≥ 4, then the function
g with g(x) = 0 for x ∈ Xt and g(x) = 1 for x ∈ V (G) \ Xt, is an
OITDIDF on G of weight n − nt. Hence γoitdI(G) ≤ n − nt and so
γoitdI(G) = n− nt in this case.

Let now t = 3 and n1 = 1 with X1 = {w}. If |V0| = 0, then
γoitdI(G) ≥ n ≥ n + 1 − nt. So let now |V0| ≥ 1, and assume, without
loss of generality, that V0 ⊆ X3 = Xt. This implies f(X1) ≥ n1 and
f(X2) ≥ n2. If f(X3) ≥ 1, then we deduce that γoitdI(G) ≥ f(X1) +
f(X2) + f(X3) ≥ n1 + n2 + 1 = n + 1 − n3 = n + 1 − nt. Let now
f(X3) = 0. If f(X2) ≥ n2+1, then γoitdI(G) ≥ f(X1)+f(X2)+f(X3) ≥
n1 + n2 + 1 = n + 1 − nt. In the remaining case that f(X2) = n2, we
deduce that f(x) = 1 for each x ∈ X2, and therefore f(w) ≥ 2. Also in
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this case we obtain γoitdI(G) ≥ n+1−nt. Conversely, define the function
g by g(x) = 1 for x ∈ X2, g(w) = 2 and g(x) = 0 for x ∈ X3. Then g
is an OITDIDF on G of weight n+1− nt. Hence γoitdI(G) ≤ n+1− nt

and so γoitdI(G) = n+ 1− nt.

3 Bounds on γoi
tdI(G)

In this section, we establish upper and lower bounds for the outer
independent total double Italian domination number of graphs. We
start with a simple result.

Proposition 10. Let G be a graph of order n. If δ(G) ≥ 2, then
γoitdI(G) ≤ n.

Proof. If δ(G) ≥ 2, then define the function f : V (G) → {0, 1, 2, 3} by
f(x) = 1 for each vertex x ∈ V (G). Clearly, f is an OITDIDF on G of
weight n, and thus γoitdI(G) ≤ n.

For connected graphs G with minimum degree at least two and ∆(G) =
n(G)− 1, we can improve the bound of Proposition 10 slightly.

Proposition 11. Let G be a connected graph of order n ≥ 4 with
δ(G) ≥ 2 and ∆(G) = n − 1. Then γoitdI(G) ≤ n − 1. This bound is
sharp for complete graphs.

Proof. Let v ∈ V (G) be a vertex of degree n − 1. If G is complete,
then γoitdI(G) = n− 1 by Proposition 9. If G is not complete, then two
neighbors, say w and z of v are independent. Since n ≥ 4 and δ(G) ≥ 2,
we observe that ({w, z}, V (G) \ {v, w, z}, {v}, ∅) is an OITDIDF on G
of weight n− 1. Thus γoitdR(G) ≤ n− 1, and the proof is complete.

Proposition 12. If G is a graph of order n without isolated vertices,
then γoitdI(G) ≤ γ(G) + n ≤ n+ bn2 c.

Proof. Given a minimum dominating set D of G, the function f defined
by f(x) = 2 if x ∈ D and f(x) = 1 otherwise, is an OITDIDF on G,
implying that γoitdI(G) ≤ |D| + n = γ(G) + n. Using Ore’s result
γ(G) ≤ bn2 c for graphs without isolated vertices, we obtain γoitdI(G) ≤
n+ bn2 c.
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The next result is an immediate consequence of Theorem 1 and
Propositions 6 and 12.

Corollary 13. If G is a graph of order n without isolated vertices,
then γoitdI(G) ≤ 3

2n with equality if and only if the components of G are
the corona H ◦K1 for any connected graph H.

Next we focus on graphs with minimum degree at least three. A
set of vertices P ⊆ V (G) is a 2-packing of G if the distance in G
between any pair of distinct vertices from P is larger than two. The
maximum cardinality of a 2-packing of G is the packing number of G
and is denoted by ρ(G).

Theorem 14. If G is a graph of order n with δ(G) ≥ 3, then γoitdR(G) ≤
n− ρ(G). Moreover, this bound is sharp.

Proof. Suppose that A = {v1, v2, . . . , vρ} is a 2-packing of G. Define
the function f by f(vi) = 0 for 1 ≤ i ≤ ρ and f(x) = 1 for x ∈ V (G)\A.
Since δ(G) ≥ 3, f is an OITDIDF on G, and thus γoitdR(G) ≤ n− ρ(G).

Now let H1,H2, . . . , Ht be isomorphic to the complete graph Kp

with p ≥ 4, and let ai, bi ∈ V (Hi) for 1 ≤ i ≤ t. Define H as H1 ∪
H2 ∪ . . . ∪ Ht together with the edges biai+1 for 1 ≤ i ≤ t − 1. If
g = (V0, V1, V2, V3) is an OITDIDF on H, then we observe that |V0 ∩
V (Hi)| ≤ 1 for 1 ≤ i ≤ t, and therefore |V0| ≤ t. It follows that

ω(g) = |V1|+2|V2|+3|V3| ≥ |V1|+ |V2|+ |V3| = n(H)−|V0| ≥ n(H)− t.

Since ρ(H) = t, the bound above implies γoitdR(H) ≤ n(H) − ρ(H).
Hence we obtain γoitdR(H) = n(H)− t = n(H)− ρ(H).

Using Proposition 3, we get the next result.

Theorem 15. Let G be a connected graph of order n ≥ 2. Then
γoitdI(G) ≤ 2n−∆(G) with equality if and only if G = F ◦K1, where F
is a connected graph with maximum degree ∆(F ) = n(F )− 1.

Proof. Proposition 3 implies that γoitdI(G) ≤ 2n−∆(G).
If G = F ◦K1, where F is a connected graph with maximum degree

∆(F ) = n(F )− 1, then ∆(G) = n(F ) and γoitdI(G) = 3n(F ) = n(G) +
n(F ) = 2n(G)− n(F ) = 2n(G)−∆(G).
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Conversely assume that γoitdI(G) = 2n−∆(G). Proposition 10 yields
δ(G) = 1. If ∆(G) = 2, then G is a path and applying Proposition
6, we obtain G ∈ {P2, P4} and so G satisfied the condition. Assume
that ∆(G) ≥ 3. Let v be a vertex of maximum degree ∆(G) and let
N(v) = {u1, u2, . . . , ut}. Assume that X = V (G) − N [v]. If X = ∅,
then suppose, without loss of generality, that deg(u1) = 1 and define
the function f on G with f(v) = 3, f(u1) = f(u2) = 0 and f(x) = 1
otherwise. Clearly, f is an OITDIDF of G of weight n < 2n−∆(G),
which is a contradiction. Thus X 6= ∅. Let X = {w1, w2, . . . , ws}.
If there is an edge wiwj ∈ E(G), then the function f defined on G
by f(wi) = 1, f(u1) = · · · = f(ut) = 1 and f(x) = 2 otherwise, is
an OITDIDF of G of weight 2n − ∆(G) − 1 < 2n − ∆(G), which is
a contradiction. Thus X is an independent set. If some wi has two
neighbors in N(v), then the function f defined on G by f(wi) = 1,
f(u1) = · · · = f(ut) = 1 and f(x) = 2 otherwise, is an OITDIDF of
G of weight 2n − ∆(G) − 1 < 2n − ∆(G), which is a contradiction.
Therefore, each vertex in X has exactly one neighbor in N(v) because
G is connected. Hence deg(wi) = 1 for each 1 ≤ i ≤ s. If some ui has
two neighbors in X, say w1, w2, then the function f defined on G by
f(ui) = 3, f(w1) = f(w2) = 0, f(u1) = · · · = f(ut) = 1, and f(x) = 2
otherwise, is an OITDIDF of G of weight less than 2n−∆(G), which
is a contradiction. Thus, each ui is adjacent to at most one vertex
in X. Assume, without loss of generality, that wiui ∈ E(G) for each
1 ≤ i ≤ s. If s = t, then the function f defined on G by f(v) = 1,
f(u1) = · · · = f(ut) = 3, and f(x) = 0 otherwise, is an OITDIDF of
G of weight less than 2n − ∆(G), a contradiction. Hence t > s. If
deg(ui) ≥ 2 for some i ∈ {s + 1, . . . , t}, say i = t, then the function
f defined on G by f(v) = 2, f(u1) = · · · = f(us) = 3, f(ui) = 1 for
s + 1 ≤ i ≤ t − 1, and f(x) = 0 otherwise, is an OITDIDF of G of
weight less than 2n − ∆(G), a contradiction. Thus deg(ui) = 1 for
each i ∈ {s + 1, . . . , t}. If t − s ≥ 2, then the function f defined on G
by f(v) = 3, f(u1) = · · · = f(us) = 3, and f(x) = 0 otherwise, is an
OITDIDF of G of weight less than 2n−∆(G), a contradiction, yielding
t = s+ 1. Thus, G = F ◦K1, where F = G− {w1, w2, . . . , ws, ut} and
that ∆(F ) = n(F )− 1. This completes the proof.
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Next we present an upper bound on γoitdI(G) in terms of γoidI(G).

Theorem 16. If G is a graph without isolated vertices, then

γoitdI(G) ≤
⌊
1

2
(3γoidI(G)− 1)

⌋
.

The bound is sharp for the stars K1,p for p ≥ 2, and the complete
bipartite graphs K2,q for q ≥ 3.

Proof. Let f = (V0, V1, V2, V3) be a γoidI(G)-function, and assume that
V1 ∪ V2 ∪ V3 = {v1, v2, . . . , vt}. If V0 = ∅, then γoitdI(G) = γoidI(G) ≤⌊
1
2(3γoidI(G)− 1)

⌋
, as desired. Hence assume that V0 6= ∅. Now let

H1,H2, . . . , Hr be the connected components of the subgraph G[V1 ∪
V2 ∪ V3], and let w ∈ V0. Assume, without loss of generality, that
N(w) ∩ V (Hi) 6= ∅ for each i with 1 ≤ i ≤ s. We observe that s ≤
r ≤ t,

∑r
i=s+1

∑
x∈V (Hi)

f(x) ≥ 2(r − s) and
∑s

i=1

∑
x∈V (Hi)

f(x) ≥ 3.
Therefore, it follows that

γoidI(G) =

t∑
i=1

f(vi) =

s∑
i=1

∑
x∈V (Hi)

f(x)+

r∑
i=s+1

∑
x∈V (Hi)

f(x) ≥ 3+2(r−s),

and thus
(r − s) ≤ 1

2
(γoidI(G)− 3).

Now let, without loss of generality, Hs+1,Hs+2, . . . , Hk (k ≤ r) be
exactly the components of order one. Since G is a graph without iso-
lated vertices, we can choose a vertex wi ∈ V0 for each s + 1 ≤ i ≤ k
such that wi has a neighbor in Hi. Then the function g defined by
g(w) = g(wi) = 1 for each s+ 1 ≤ i ≤ k and g(x) = f(x) otherwise is
an OITDIDF on G, and thus

γoitdI(G) ≤ ω(g) ≤ ω(f)+(k−s)+1 ≤ ω(f)+(r−s)+1 ≤ 1

2
(3γoidI(G)−1).

This leads to the desired bound.
Proposition 8 implies γoitdI(K1,p) = 4 and γoitdI(K2,q) = 5. Since

γoidI(K1,q) = 3 and γoidI(K2,q) = 4, we deduce that

γoitdI(K1,q) = 4 =

⌊
1

2
(3γoidI(K1,q)− 1)

⌋
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and
γoitdI(K2,q) = 5 =

⌊
1

2
(3γoidI(K2,q)− 1)

⌋
.

In what follows we establish some lower bounds on γoitdR(G). The
proof of the next result is similar to the proof of Theorem 3.1 in [1].

Theorem 17. Let G be a graph of order n with minimum degree δ ≥ 1
and maximum degree ∆. Then

γoitdR(G) ≥
⌊

δn

∆+ δ − 1

⌋
+ 1,

and this bound is sharp.

Proof. Let f = (V0, V1, V2, V3) be a γoitdI(G)-function. Since V0 is an
independent set, every vertex of V0 has at least δ neighbors in V1 ∪
V2 ∪ V3. In addition, every vertex of V1 ∪ V2 ∪ V3 has at most ∆ − 1
neighbors in V0. Therefore, it follows that

δ(n− |V1| − |V2| − |V3|) = δ|V0| ≤ (∆− 1)(|V1|+ |V2|+ |V3|),

and thus
δn

∆+ δ − 1
≤ |V1|+ |V2|+ |V3| = γoitdI(G)− |V2| − 2|V3|.

If V2∪V3 6= ∅, then the last inequality chain leads to the desired bound.
If V2∪V3 = ∅, then each vertex of V1 is adjacent to at least two vertices
of V1, and we obtain analogously

γoitdI(G) ≥ δn

∆+ δ − 2
>

δn

∆+ δ − 1
.

Since γoitdI(G) is an integer, we deduce the desired bound also in this
case.

For each integer p ≥ 3, let H3p be the graph obtained from a cycle
Cp by adding 2p new vertices and joining each new vertex to all vertices
of Cp. Then we observe that n(H3p) = 3p, ∆(H3p) = 2p+2, δ(H3p) = p

and γoitdI(H3p) = p =
⌊

3p2

3p+1

⌋
+ 1.
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Theorem 18. If G is a connected graph of order n ≥ 2, then γoitdI(G) ≥
β(G). Furthermore, this bound is sharp for the complete t-partite graph
G = Kn1,n2,...,nt with n1 ≤ n2 ≤ . . . ≤ nt and t ≥ 4, or t = 3 and
n1 ≥ 2.

Proof. Let f = (V0, V1, V2, V3) be an OITDIDF on G. Then |V0| ≤
α(G), and therefore

β(G) = n− α(G) ≤ n− |V0| = |V1|+ |V2|+ |V3|.

Thus

γoitdI(G) = |V1|+ 2|V2|+ 3|V3| ≥ |V1|+ |V2|+ |V3| ≥ β(G),

as desired.
Observation 9 shows that

γoitdI(Kn1,n2,...,nt) = n− nt = β(Kn1,n2,...,nt)

if n1 ≤ n2 ≤ . . . ≤ nt and t ≥ 4, or t = 3 and n1 ≥ 2.

Theorem 19. If G is a connected graph of order n ≥ 2, then γoitdI(G) ≤
2γoitI (G)− 1. The bound is sharp for any graph G with γoitI (G) = 2.

Proof. If f = (V0, V1, V2) is a γoitI (G)-function, then γoitI (G) = |V1| +
2|V2|. If V1 = ∅, then |V2| ≥ 2 and the function (V0, ∅, ∅, V2) is an
OITDIDF on G of weight 3|V2|, and so

γoitdI(G) ≤ 3|V2| ≤ 4|V2| − 2 = 2γoitI (G)− 2.

Assume that V1 6= ∅ and let w ∈ V1. Now the function (V0, {w}, V1 \
{w}, V2) is an OITDIDF on G. If V2 6= ∅, then

γoitdI(G) ≤ 1 + 2(|V1| − 1) + 3|V2| < 2|V1|+ 4|V2| − 1 = 2γoitI (G)− 2.

Suppose that V2 = ∅. Then we have

γoitdI(G) ≤ 1 + 2(|V1| − 1) ≤ 2|V1| − 1 = 2γoitI (G)− 1.
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4 Nordhaus-Gaddum type inequalities
In this section, we present Nordhaus-Gaddum type inequalities for the
outer independent total double Italian domination number. Let G be
a family of graphs G such that G is obtained from a complete graph
Kp, (p ≥ 4), an empty graph Ks, where s ≥

⌈
3p
p−3

⌉
and a new vertex u,

by joining u to every vertex of Kp and joining each vertex of Ks to at
least three vertices of Kp such that each vertex of Kp is non-adjacent
to at least three vertices of Ks. It is clear from the construction of G
that G ∈ G if and only if G ∈ G. The proof of the following result can
be found in [3].

Theorem 20. If G and G are connected graphs of order n ≥ 4, then

γoidI(G) + γoidI(G) ≥ n− 1,

with equality if and only if G ∈ G.

Since for any graph G without isolated vertices, γoitdI(G) ≥ γoidI(G),
we get the following result.

Theorem 21. If G and G are connected graphs of order n ≥ 4, then

γoitdI(G) + γoitdI(G) ≥ n− 1,

with equality if and only if G ∈ G.

Theorem 22. Let G and G be graphs without isolated vertices of order
n. If δ(G) = δ(G) = 1, then

γoitdI(G) + γoitdI(G) ≤ 2n+ 4.

The equality holds if and only if G = P4.
If δ(G) ≥ 2 and δ(G) ≥ 2, then

γoitdI(G) + γoitdI(G) ≤ 2n.

This bound is sharp for C5.
If δ(G) ≥ 2 or δ(G) ≥ 2, then

γoitdI(G) + γoitdI(G) ≤ 2n+
⌊n
2

⌋
.

This bound is sharp for C4.
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Proof. If δ(G) = δ(G) = 1, then it follows from Theorem 15 that

γoitdI(G) + γoitdI(G) ≤ (2n−∆(G)) + (2n−∆(G))

= (2n− (n− 2)) + (2n− (n− 2)) = 2n+ 4.

If G = P4, then G = P4, and Proposition 6 implies that γoitdI(G) +
γoitdI(G) = 6 + 6 = 2n+ 4. Conversely, let γoitdI(G) + γoitdI(G) = 2n+ 4.
Then we deduce from the above inequality chain that γoitdI(G) = 2n −
∆(G) and γoitdI(G) = 2n+∆(G). Theorem 15 implies that G = F ◦K1

and G = F ′ ◦K1, where F and F ′ are connected graphs with ∆(F ) =
n(F )− 1 and ∆(F ′) = n(F ′)− 1. If ∆(F ) ≥ 2, then we have δ(G) ≥ 2
which is a contradiction. Hence ∆(F ) = 1, and so F = K2. Thus
G = P4.

Proposition 10 implies γoitdI(G) + γoitdI(G) ≤ 2n immediately when
δ(G) ≥ 2 and δ(G) ≥ 2. According to Proposition 6, this bound is
sharp for C5.

Finally assume, without loss of generality, that δ(G) ≥ 2. We
deduce from Propositions 12 and 10 that

γoitdI(G) + γoitdI(G) ≤ n+
⌊n
2

⌋
+ n = 2n+

⌊n
2

⌋
.

If G = C4, then G = 2P2, and we observe that γoitdI(G) + γoitdI(G) =
4 + 6 = 2n+

⌊
n
2

⌋
.

Figure 1. Graphs in family A
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Figure 2. Graphs in family B

Using Theorem 14, we improve Theorem 22 for n ≥ 12. We recall
the definition of some families of graphs. Let A be the collections of
graphs in Figure 1 and B be the collections of graphs in Figure 2. Let

G1 = {C4} ∪ {G | G = H ◦K1, where H is connected}

and
G2 = A ∪ B − {C4}.

For any graph H, let S(H) denote the set of connected graphs, each of
which can be formed from H ◦K1 by adding a new vertex x and edges
joining x to one or more vertices of H and define

G3 = ∪HS(H),

where the union is taken over all graphs H. Let y be a vertex of a copy
of C4 and for G ∈ G3, let θ(G) be the graph obtained by joining G to
C4 with the single edge xy, where x is the new vertex added in forming
G. Define

G4 = {θ(G) | G ∈ G3}.
Next, let uvw be a path P3. For any graph H, let P(H) be the set of
connected graphs which may be formed from H ◦ K1 by joining each
of u and w to one or more vertices of H. Then define

G5 =
⋃
H

P(H).

Let H be a graph X ∈ B. Let R(H,X) be the set of connected graphs
which may be obtained from H◦K1 by joining each vertex of U ⊆ V (X)
to one or more vertices of H such that no set with fewer than γ(X)
vertices of X dominates V (X)− U . Then define

G6 =
⋃
H,X

R(H,X).

The proof of the following result can be found in [14], [20].
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Theorem 23. A connected graph G satisfies γ(G) = bn(G)
2 c if and only

if G ∈ ∪6
i=1Gi.

Lemma 24. If G ∈ ∪6
i=1Gi and n(G) ≥ 12, then γoitdI(G) ≤ n− 2.

Proof. Let G ∈ ∪6
i=1Gi. Since n(G) ≥ 12, we have G 6∈ G2. Let G ∈ G1

and let G = H ◦ K1. We deduce from n(G) ≥ 12 that n(H) ≥ 6.
If z ∈ V (H) and z′ is a leaf adjacent to z in G, then the function f
defined on V (G) by f(z) = f(z′) = 0 and f(s) = 1 otherwise, is an
OITDIDF on G of weight n− 2, and so γoitdI(G) ≤ n− 2, the required
bound.

If G ∈ G3 ∪ G4 ∪ G5 ∪ G6, then G has at least four leaves and the
function f defined above leads to γoitdI(G) ≤ n− 2.

Theorem 25. If G and G are graphs without isolated vertices of order
n ≥ 12, then

γoitdI(G) + γoitdI(G) ≤ 2n+
⌊n
2

⌋
− 2.

Proof. If δ(G) = δ(G) = 1 or δ(G) ≥ 2 and δ(G) ≥ 2, then the desired
result follows from Theorem 22. Let now, without loss of generality,
δ(G) = 1 and δ(G) ≥ 2. If δ(G) = 2, then ∆(G) = n− 3, and thus we
deduce from Theorem 15 and the hypothesis n ≥ 12 that

γoitdI(G) + γoitdI(G) ≤ (2n−∆(G)) + (2n−∆(G)− 1)

= (2n− (n− 3)) + (2n− (n− 2)− 1)

= 2n+ 4 ≤ 2n+
⌊n
2

⌋
− 2.

Assume that δ(G) ≥ 3. If G ∈ ∪6
i=1Gi, then by Lemma 24 and Propo-

sition 12, we obtain

γoitdI(G) + γoitdI(G) ≤ n+
⌊n
2

⌋
+ n− 2 = 2n+

⌊n
2

⌋
− 2.

If G /∈ ∪6
i=1Gi, then using Theorems 23, 14 and Proposition 12, we

obtain

γoitdI(G) + γoitdI(G) ≤ n+
⌊n
2

⌋
− 1 + (n− 1) = 2n+

⌊n
2

⌋
− 2.
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