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Abstract

The rapid rise in power usage by GPUs due to advances in ma-
chine and deep learning has led to an increase in power consump-
tion of GPUs in Deep Learning workloads. To address this issue,
a novel research project focuses on integrating Particle Swarm
Optimization into a model training optimization framework to
effectively reduce GPU power consumption during machine learn-
ing and deep learning training workloads. By utilizing the Parti-
cle Swarm Optimization (PSO)[1] algorithm within the proposed
framework, we show the effectiveness of PSO in creating a more
efficient power management strategy while also maintaining the
performance. Upon evaluation of the proposed framework, it
shows a reduction of 15.8% to 75.8% in power consumption across
multiple workloads, with little to no performance loss.

Keywords: GPU, power reduction, machine learning, Parti-
cle Swarm Optimization.
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1 Introduction
Over recent years, Graphics Processing Units (GPUs) have emerged
as pivotal components across various domains such as gaming, com-
putational graphics, machine learning, and scientific simulations [2].
The catalyst behind their prominence is their parallel processing capa-
bilities, revolutionizing high-performance computing by enabling more
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efficient and rapid calculations. This progression in GPU technology
has ushered in an era of heightened computing power, enabling the con-
current execution of numerous tasks. This parallelism contrasts with
the sequential nature of central processing units (CPUs), conferring
a significant advantage in handling computationally intensive appli-
cations. This multifaceted computation ability enhances speed and
efficacy across diverse fields. However, the remarkable advancement in
GPU computational capacity is accompanied by a significant escala-
tion in energy consumption. The intrinsic parallel processing potential
of GPUs, due to their multitude of processing cores, necessitates sub-
stantial electricity usage. The escalating power consumption of GPUs
has raised pertinent concerns about environmental sustainability and
energy conservation.

The elevated energy consumption of GPUs can be attributed to
their specific design and architecture, which are optimized for paral-
lel processing. Unlike CPUs, GPUs are engineered to execute tasks
concurrently, resulting in a substantial core count to handle multi-
ple calculations simultaneously. While this architectural choice boosts
performance, it concurrently demands a greater power supply to ac-
commodate the augmented workload. In response to these concerns,
GPU manufacturers are actively exploring diverse avenues to mitigate
power consumption and enhance energy efficiency [13]. This pursuit
includes the development of more power-efficient architectures that op-
timize the balance between computational prowess and power usage.
Additionally, software improvements play a pivotal role in enhancing
energy efficiency. Software optimizations enable the effective distri-
bution of computing tasks across available cores, thereby maximizing
parallel processing capabilities and minimizing superfluous power con-
sumption.

Clock gating [17] is a technique that selectively blocks the clock
signal to individual GPU component when the component in question
is not executing tasks. Power consumption can be substantially reduced
by switching off the clock in dormant or seldom utilized components.
Energy savings can be obtained by reducing wasted power consumption
in GPU units that are not actively engaged in computations.

Another hardware-based technique called dynamic voltage and fre-
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quency scaling (DVFS) [16] adjusts the GPU’s operating voltage and
frequency in accordance with workload demands. Energy usage can
be optimized by dynamically adjusting these parameters to the ideal
efficiency level [5]. In periods of reduced processing activity, DVFS
permits the GPU to operate at lower voltages and frequencies, thus
reducing power consumption while maintaining performance. While
these hardware-driven optimization methods have shown some degree
of effectiveness in lowering GPU power usage, there is still room for
improvement. Researchers keep looking at new concepts and ways to
improve energy efficiency.

This article delves into the potential of leveraging machine learn-
ing (ML) models to curtail GPU power consumption, concentrating on
optimal batch size and power limit configurations [8], an aspect often
overlooked in the pursuit of model performance enhancement. Notably,
ML’s transformative impact on energy efficiency has surpassed its im-
mediate domain, with far-reaching consequences. The astronomical
energy consumption exhibited by large-scale models like GPT-3, which
consumes as much as 1,287 megawatt-hours (MWh) of electricity, ex-
emplifies this critical issue. This consumption equates to the energy
utilization of an average U.S. home over a span of 120 years. While
commendable strides have been made to reduce operational power foot-
prints, the unceasing growth of artificial intelligence processing require-
ments poses potential energy challenges.

Given the evolving landscape of GPUs in machine learning and deep
neural networks, it is imperative to address the research and innovation
gap concerning energy efficiency [14] [12]. This research project aims
to fill this void by comprehensively investigating the intricate interplay
between energy consumption and processing capacity in the context
of GPUs. The endeavor seeks to redefine the role of GPUs in energy-
efficient AI and inspire researchers and industry professionals alike. By
cultivating an in-depth understanding of energy-efficient GPU utiliza-
tion, we aspire to foster a collaborative endeavor that amalgamates
technological innovation with sustainable resource management in the
dynamic realm of machine learning and deep neural networks.

In response to the existing gap in model training optimization, our
research introduces a framework [11] aimed at reducing the power con-
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sumption of a workload [4] [9] [6]. This framework achieves optimiza-
tion by adjusting the batch size and establishing an optimal power
limit for a given workload [7]. To enhance batch size optimization,
we employ a Multi Armed Bandit with GS-MOPSO strategy, allowing
exploration of the search space to determine the most suitable batch
size for the workload [10]. Simultaneously, power optimization is ad-
dressed through the utilization of a Just-in-Time profiler. This profiler
leverages pre-calibrated configurations if optimization has been pre-
viously conducted for a similar workload. For novel workloads, the
profiler measures throughput and average power consumption across
various power limits, ultimately selecting the configuration that maxi-
mizes throughput while minimizing average power consumption. [15]

2 Methodology

2.1 Experimental Methodology

Figure 1. Proposed Methodology architecture

The proposed methodology, illustrated in Figure 1, aims to enhance
efficiency through a multi-stage process. Tasks or jobs are channeled
into the optimization framework (1), which unfolds as follows:
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Optimization Stage: The initial phase employs Particle Swarm Op-
timization (PSO) to ascertain the optimal configuration for batch size
and power limits (2). Subsequently, the training procedure commences
employing the established configuration (3).

Monitoring and Feedback: Throughout the training process, the
optimization framework gathers continuous statistics and information
as feedback from the model’s progression (4).

Our Proposed Framework works on step 2 (Optimization) of the
proposed methodology, where it interacts with the GPU hardware to
set the optimal configuration for the incoming jobs.

Adaptive Learning: Leveraging the collected feedback, the frame-
work engages in adaptive learning, iteratively refining its configuration
settings. This iterative loop persists until the predefined performance
measure set by the user is attained or until the model’s performance
does not become more efficient within a specified time duration.

The iterative learning process empowers the framework to dynam-
ically adapt its configuration based on feedback data, maintaining a
trajectory towards the defined performance target or until saturation
in model improvement is detected. Notably, the framework bifurcates
the challenges associated with batch size and power limits, two param-
eters substantially influencing GPU performance and energy consump-
tion. This strategic separation enables independent determination of
the optimal power limit for any given batch size. Additionally, due to
this decoupling, our exploration space is effectively confined to diverse
batch sizes that harmonize with the optimal power limit. This focused
exploration approach expedites the search for the optimum batch size,
obviating the need to exhaustively assess every conceivable configura-
tion.

2.2 Theoretical methodology

Our framework places a strong emphasis on the cost metric, which is
a crucial component of our approach, hence we propose the following
metric

Cost = α.Etar(s, w) + (1− α).Pmax.Ttar(s, w). (1)

Here a is the significance factor – if it is 0, then the framework
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optimizes for time efficiency, and if it is 1, then it optimizes for energy
efficiency; Pmax is the maximum power allowed by the GPU; and Etar

and Ttar are energy consumed and time taken to reach the target metric
with configuration batch size s and power limit w.

In conclusion, our cost metric is a flexible tool that enables you to
customise the optimisation method for your framework in accordance
with your unique goals. You may efficiently strike a balance between
time and energy efficiency by modifying the importance factor, ensuring
that your framework fits your intended objectives and limits.

2.2.1 Choosing Ideal Cost

Expanding the equation (1), we get

Cost = (α.Pavg(s, w) + (1− α).Pmax).Ttar(s, w). (2)

In order to get the best cost, one must navigate a huge search
space that is bounded by different batch sizes (s) and power restrictions
(w). Additionally, because of the inherent variability in neural network
training and the various hardware configurations of GPUs, it can be
difficult to estimate both the average power consumption (Pavg(s, w))
and the time needed to obtain the goal metric (Ttar(s, w)).
We’ve put in place a dual approach to deal with these complications
and uncertainties:

1. Just-in-Time Profiler: A Just-in-Time profiler has been in-
corporated into our system. During the execution of neural net-
work training, this profiler is essential for dynamically measuring
and monitoring the performance traits of various (s, w) configu-
rations. We can make better judgments since it offers real-time
information about the time and power needs [20], [19].

2. Multi-Armed Bandit with GS-MOPSO: We’ve used a
Multi-Armed Bandit approach along with GS-MOPSO (Multi-
Objective Particle Swarm Optimisation) to effectively explore the
enormous search area and adapt to the stochastic nature of neural
network training. Through careful consideration of the trade-offs
between energy and time efficiency, this combination enables us
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to deploy resources in a sensible manner. It continually modi-
fies the (s, w) settings depending on performance data from the
past, assisting us in more efficiently converging towards the ideal
solution.

Essentially, our strategy makes use of real-time profiling and sophisti-
cated optimisation techniques to address the problems brought on by
the expansive and unpredictable (s, w) search space, as well as the in-
herent variability in GPU hardware and neural network training. This
allows us to ultimately find the best cost-effective solutions.

2.2.2 Optimising power

Utilising the capabilities of our Just-in-Time profiler to increase power
efficiency is fundamental to our optimisation approach. Within our
system, when a job is started, the profiler activates and adheres to the
following protocol:

1. Batch Size Check: The profiler first determines if the job’s
batch size has been calculated and optimised. It uses the pre-
calibrated and optimised power limit for that specific batch size
if optimisation has already been done for this batch size. With
this strategy, we can rapidly and effectively distribute the right
power resources for batches of known sizes.

2. First Epoch Profiling: When the batch size is used for the first
time, our profiler intervenes to collect crucial information. During
the first epoch of the work, it measures throughput and average
power consumption (Pavg) for various power restrictions. We
can create a baseline understanding of how various power restric-
tions effect performance for this particular batch size thanks to
this thorough profiling.

2.2.3 Optimising batch size

We use Multi Armed Bandit with GS-MOPSO as shown in the al-
gorithms below, to improve our batch size optimisation process. To-
gether, these algorithms enable us to effectively calculate the optimal
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batch size based on the provided power restriction and then to carry
out the training task using the identified power limit (w) and batch
size (s).

Algorithm 1.
Input: Batch Sizes B, belief posterior meanb and std2b
Output: Batch size to run b∗

Function: Predict(B,meanb, std
2
b):

Initialize random population P
Initialize Personal Best Set Spb and External set Se

For a=1:B do
Spb{a}=P(a)

Se=P
For i=1:B do

Assign rank to each particle in Pi according to fast
non-dominated sort
For k=1:B

Pbest = first particle in sorted Spb{k}
Nbest= particle closest to kth particle in Se

Update Pi(k) to Pi+1(k)
if rand > Ranki/maxRank

if rand > i/B
Sample=[Pbest, Nbest]
Pi+1(k)=N(meanb, std

2
b)

else
Divide [P, Spb, Se] into N clusters using
K-means
Identify the cluster, to which particle Pi(k)
belongs and assign it to Sample
Pi+1=N(meanb, std

2
b)

Update Se

b∗ ←− argminSe
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Algorithm 2.
Input: Batch Size b and Total cost Ct,
Previous cost Cp

belief posterior meanb and std2b
Output: updated belief posterior meanb and std2b
Function: Observe(b, Ct, Cp,meanb, std

2
b):

Cp ←− Cp
⋃
{Ct}

std2 ←− V ariance(Ct)

std2b ←− ( 1
std20

+
|Cp|
std2

)

meanb ←− std2b(
mean0

std20
+

∑
Cp

std2
)

Algorithm 3.
Input: Batch Size b
belief posterior mean0 and std20
while t<T do
b∗ ←− Predict(B,meanb, std

2
b∀b ∈ B)

Run job with b* and add to cost C
meanb,std2b ←− Observe(b, C,mean0, std

2
0)

t←− t+ 1

Our novel optimisation framework stands at the forefront in enhanc-
ing computational efficiency in GPU-centric deep learning tasks. It
successfully integrates three essential algorithms to dynamically mod-
ify batch sizes and minimize power usage. The sophisticated Algo-
rithm 1 (Predict) at the heart of this technique incorporates the Multi
Armed Bandit with GS-MOPSO strategy. Using belief posterior pa-
rameters like meanb and std2b, this strategy systematically explores
and determines the ideal batch size. By proactively adjusting to the
changing subtleties of the workload, it makes sure that the batch sizes
have been carefully selected to match the deep learning model’s exact
specifications.

After the first prediction, Algorithm 2 (Observe) plays an essential
role in coordinating an adaptive learning process at the end of every
task run. This technique improves the model’s understanding of the
computation environment by iteratively updating the belief posterior
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with observed batch sizes, total cost (Ct), and the cumulative history
of past costs (Cp). This continuous learning loop increases our opti-
mization framework’s versatility so that it can dynamically adjust to
changing computing needs. Lastly, Algorithm 3 handles the whole it-
erative procedure, including belief posterior updates, task execution,
and prediction in a smooth manner across a predefined number of
iterations, T. The integrated approach’s comprehensive nature high-
lights its effectiveness in managing power consumption and computing
efficiency while also adeptly navigating the dynamic nature of deep
learning workloads. With the help of these methods, our system shows
itself to be a comprehensive and flexible approach, well suited to max-
imize GPU-driven deep learning’s performance in the always changing
field of computational difficulties.

We can speed up the batch size selection process and make sure
that it perfectly matches the determined power limit(w) by combining
these approaches. With this strategy, we may dynamically adjust and
optimise the batch size(s) in response to shifting circumstances and
limitations. As a consequence, we are able to control and carry out the
training workloads with the best possible balancing of batch size and
power limit.

3 Experiment/Results

In our evaluation, we considered prominent Deep Neural Network
(DNN) models such as DeepSpeech2, ResNet-50, and NeuMF and oth-
ers as shown in Table 1. Our investigation revolved around comparing
training time and energy utilization across three methodologies: the
default strategy, grid search exploration, and our novel approach on
system specification as shown in Table 2. The outcomes of our research
unveiled significant insights, outlined as follows:

3.1 Energy Consumption Reduction:

Figure 2 depicts the graphical representation of performance for the
most recent five iterations of our approach, grid search, and the default
baseline. Our methodology showcases a remarkable reduction in energy
consumption, ranging from 15.3% to an impressive 75.8%.
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Table 1. Models and datasets used in our evaluation of the respective
configurations
Task Dataset Model Opti-

mizer
De-
fault
batch
size

Target
Metric

Speech
Recogni-
tion

Lib-
riSpeech

Deep-
Speech2

Adam 176 WER:
55

Question
answers

Senti-
ment140

BERT(QA) Adam 44 F1:88.0

Sentiment
Analysis

ImageNet BERT(SA) Adam 122 Accu-
racy:86%

Image
Classifica-
tion

CIFAR
-100

RESNET-
50,
ShuffleNet-
v2

Adadelta 232,
1000

Accu-
racy:
68%,
65%

Recom-
menda-
tion

MovieLens-
1M

NeuMF Adam 1000 NDCG:
0.52

This is further supported with Figure 5 and Table 3. This sub-
stantial decrease in energy usage is achieved while imposing minimal
impact on training time.

3.2 Balanced Time-Consumption Trade-offs:

Within the context of training time, our strategy demonstrates a bal-
anced trade-off with energy efficiency. Figure 2b elucidates this aspect
by illustrating the duration of the last five rounds for both our method-
ology and grid search, compared to the default baseline. Notably, our
methodology achieves a training time reduction of up to 60.1% for
specific workloads, alongside a modest 12.8% increase for a distinct
group of workloads. This finding underscores the delicate equilibrium
between optimizing time and enhancing energy efficiency.
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Table 2. GPU and System Specifications used in evaluation of our
framework.
GPU Specifications System Specification
Model A40
CPU AMD EPYC 7513
VRAM 48GB
RAM 512GB DDR4
Architecture Ampere
Disk 960 GB NVMe SSD
Model V100
CPU AMD EPYC 7542
VRAM 32GB
RAM 512GB DDR4
Architecture Volta
Disk 2TB HDD
Model RTX 6000
CPU Xeon Gold 6126
VRAM 24GB
RAM 192GB DDR4
Architecture Turing
Disk 256GB SSD
Model P100
CPU Xeon E5-2670 v3
VRAM 16GB
RAM 128 GB DDR4
Architecture Pascal
Disk 1TB HDD

Table 3. Improvements of different methodologies employed on DL
training workloads w.r.t. Default NVIDIA strategy [18]
Method Employed Least Best
DVFS [16] 8.7% 23.1%
Clock Gating [17] 11.2% 60%
GPOEO [4] 8% 29.5%
Our Framework with
PSO

15.3% 75.8%

143



R. Rehman, M. Chishti, H. Yamin

Figure 2. Energy consumption and training time of last 5 iterations
of Grid Search and Our framework with PSO w.r.t. baseline NVIDIA
strategy

3.3 Progressive Regret and Resource Efficiency:

While our methodology and grid search exhibit comparable perfor-
mance, our approach showcases superior resource efficiency for con-
vergence. As illustrated in Figure 3, the increasing regret trajectories
for DeepSpeech2 and ResNet-50 models underscore our methodology’s
ability to attain similar outcomes with significantly fewer resources
compared to grid search, this is also supported by Figure 6.
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Figure 3. Progressive Regret of our framework with both Grid Search
and PSO
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3.4 GPU Model-Independent Energy Savings:

Figure 4. Energy consumption for DL workloads over multiple GPUs
using our framework with Grid Search and PSO w.r.t default NVIDIA
strategy

An essential discovery from our study is the independence of our
methodology’s effectiveness from GPU models as shown in Figure
4. Across four NVIDIA GPU generations, our approach consistently
achieves substantial energy consumption reductions. This energy-
saving capability exceeds 50% compared to the default baseline across
multiple GPU models.

In summation, our comprehensive analysis demonstrates the efficacy
of our approach in mitigating energy consumption without imposing
considerable time penalties. This balanced strategy emerges as a viable
avenue to enhance the training of Machine Learning and Deep Neural
Network models across diverse workloads and GPU architectures.

146



Efficient GPU Power Management …

4 Conclusion

In summation, our approach has showcased its efficacy through notable
reductions in energy consumption, all while maintaining the unim-
paired performance of GPUs. This achievement in diminishing GPU
energy usage is attributed to the framework’s adeptness in delicately
balancing energy preservation and optimization of training time.

The promising outcomes of our technological endeavor underscore its
potential to instigate a paradigm shift in the domain of energy-efficient
Deep Neural Network (DNN) training. The approach’s precision in
quantifying the intricate interplay between training time and energy
consumption has yielded substantial advancements in enhancing GPU
energy efficiency.

Anticipating the future, we envision the widespread adoption of this
methodology across diverse sectors, transcending its current scope. In-
novations such as TinyML [3] open new vistas, wherein the imple-
mentation of our strategy in compact devices like mobile devices and
embedded systems holds immense promise. Foreseeing a consequential
enhancement in the efficiency of such devices through our methodology,
we expect this trend to pave the way toward a technological landscape
characterized by sustainability and heightened energy consciousness.
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Supplementary Information

Figure 5. Energy consumed w.r.t. batch size of training workloads.
The blue shade represents error margins on multiple runs.

150



Efficient GPU Power Management …

Figure 6. Progressive regret of PSO and Grid search on all training
workloads
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