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Abstract

Correcting logical errors in a program is not simple even with
the availability of an error locating tool. In this article, we in-
troduce GenExp, a genetic programming approach to automate
the task of repairing instruction expressions from logical errors.
Starting from an error location specified by the programmer, we
search for a replacement instruction that passes all test cases.
Specifically, we generate expressions that will substitute the se-
lected instruction expression until we obtain one that corrects the
input program. The search space is exponentially large, making
exhaustive methods inefficient. Therefore, we utilize a genetic
programming meta-heuristic that organizes the search process
into stages, with each stage producing a group of individuals.
The results showed that our approach can find at least one plau-
sible patch for almost all cases considered in experiments and
outperforms a notable state-of-the-art error repair approach like
ASTOR. Although our tool is slower than ASTOR, it provides
greater precision in detecting plausible repairs, making it a suit-
able option for users who prioritize accuracy over speed.

Keywords: error correction, instruction expression, plausi-
ble patch, crossover, mutation.
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1 Introduction
Developers spend a significant amount of their engineering time and
effort in finding and fixing bugs in their code [1]. Even after locating
errors, program debugging remains a challenging task. Logical errors
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are among the most common bugs in programming. The programmer,
by correcting these errors, in a totally manual way, can insert others
which make matters worse. For this, we need to use an automatic or at
least a semi-automatic approach for error correction. Many researchers
have dealt with this recent subject in view of its importance in the pro-
cess of software development. Among the early proposed approaches,
we can cite [2] and [3], which were the pioneers in utilizing the genetic
programming (GP) technique to evolve the erroneous program until
finding an individual that resolves the errors. The problem which can
oppose the use of this technique in the context of error correction is
that the number of individuals of generated programs can become im-
portant before arriving at a solution. To address this, we propose an
approach called GenExp in this paper. GenExp leverages knowledge
about the program being repaired to find plausible patches for faulty
instruction expressions.

The automatic phase of this approach follows a series of steps that
form the structure of the genetic algorithm:

1. create the initial population,

2. evaluate each candidate using a fitness function,

3. evolve new generation,

4. evaluate candidates,

5. if a candidate that corrects the program, according to the test
cases considered as input, is found, the process ends. Otherwise,
we need to repeat steps 3 and 4.

The goal is to select the best individuals and form other individuals
that combine elements from the previous stage. The process starts with
a set of individuals randomly generated and enriched with expressions
from the program under repair. To create the initial population, our
basic algorithm proposes randomly generating expressions (candidates
or patches) from a set of variables, constants, and operators chosen by
the user. We propose that these sets be defined automatically based
on the program to be repaired and the erroneous instruction. The pro-
cess of GP from this initial population can lead to an explosion in the
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number of generated individuals before reaching a plausible patch. To
reduce the effect of this problem, we adopt the idea presented by the
GenProg approach [3] which suggests that most defects can be repaired
by adopting existing code from elsewhere in the program. This is re-
ferred to as ”repair ingredients” or ”patch ingredients”. In GenProg, a
candidate patch is synthesized from instructions taken as is elsewhere
in the application. Our idea which is close to that of CARDUMEN [4] is
to reuse code instruction expressions as ingredients rather than reusing
raw, unmodified code elements (such as raw instructions in GenProg).
For this, we add to the initial population the expressions of instructions
of the program which allow it, by replacing the erroneous expression,
to compile correctly. We calculate the degree of correctness of the can-
didates according to the input test cases and this will be our fitness
function. To evolve the current generation into a new generation, we
first select the best individuals in terms of their fitness function value
to survive in the new population. Then, we apply a set of mutations
and crossovers to individuals in the current population to generate the
other individuals of the new generation. The goal is to improve the
expressions. We continue evolving new generations until we obtain a
plausible patch, that is to say a patch that produces correct outputs
for all inputs in the test suite [5].

We evaluated the capacity of GenExp to discover plausible patches
(test-suite adequate patches). Our tool was implemented in Java to
repair Java programs. To do the experiments, we constructed a set
of erroneous academic programs. Each of these programs contains a
single error to be corrected. We compared our implementation with
three approaches from the ASTOR tool [6], an open-source framework
for repairing buggy Java program. The results showed that our tool
successfully found a plausible patch for nearly all the programs under
repair and outperformed the ASTOR approaches, even when united1.
However, our tool is slower than other tools. Nonetheless, thanks to
its higher precision in detecting plausible repairs, GenExp can be a

1To harness the collective power of ASTOR’s approaches, it is sufficient for at
least one of them to discover a plausible patch in order to claim that ASTOR has
fixed the program.
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suitable option for users who prioritize accuracy2 over speed.
This article is structured as follows. We illustrate our approach

on an example in Section 2. Section 3 deals with the presentation
of relevant works that have a strong interest in the context of error
correction. The details of the approach proposed and results are ex-
posed respectively in Sections 4 and 5. The conclusion is presented in
Section 6.

2 Illustrative example
We consider an erroneous version of SquareRoot program (Listing 1).
The SquareRoot correct program finds the square root integer part of
an integer value greater than or equal to 0. If we assume that the
locating errors phase is complete and so on we get a set of suspicious
instructions. We obtain this set thanks to an error localization tool.
Now comes the role of the programmer to analyse the produced set
and choose the instruction that should be corrected using GP. In fact,
we aim to modify the expression of this instruction until the program
becomes correct. The programmer after checking realizes that the in-
struction in the line 10 (res = i + 1) should be corrected. The error
correction tool then evolves the program by just changing the expres-
sion of this instruction until the correct program is obtained. The tool
changes the expression of the selected instruction, whether it is an as-
signment or a branching. A timeout is specified to indicate that the
tool has not found solutions. In such cases, the programmer will review
the selected instruction and choose another one.

Listing 1. The SquareRoot program with an error
1 public class SquareRoot {
2 public static int squareRoot (int val) {
3 int i = 1;
4 int v = 0;
5 int res;
6 while (v < val){
7 v = v + 2*i + 1;

2One program repair tool can be considered more accurate than another when it
consistently achieves a higher success rate in finding plausible patches when bench-
marking erroneous programs.
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8 i = i + 1;
9 }

10 res = i+1; //error: should be res = i-1
11 return res;
12 }
13 }

Here we will explain how to automatically search for a plausible
patch for a specific suspicious instruction. First, the programmer de-
termines which operators, variables, and constants to take, these sets
allow to build expressions that replace ”i+1” in ”res = i+1”. This
stage is very important, wrong selection may result in making the cor-
rect expression inaccessible. We suppose that these sets are {+,−, ∗}
(for operators) and {val, i, v} (for variables) and integers in the interval
[0, 10] (for constants). Here, these sets are defined manually. However,
in the subsequent Subsection 4.1, we will explore improvements that
enable the automatic construction of these sets from the program under
repair. So the algorithm continues by applying the following genetic
processes from an initial population of individuals: selection, crossover,
and mutation. To establish a preference order among individuals, a
fitness function is utilized, which calculates the number of successful
executions in the modified program (of course test cases should be used
with at least one counterexample). An expression that passes all test
cases is considered a potential correction (plausible patch). Table 1
prints the output expected for each test case input used.

To illustrate how the selection of individuals works, we display the
computed outputs for the same inputs while considering the expression
”(v-val)” instead of ”i+1” in the statement at line 10 (Table 1, column
3). The executed program is depicted in Listing 2.

Listing 2. SquareRoot program, considering the expression ”(v-val)”
in the statment at line 10.

1 public class SquareRootv2 {
2 public static int squareRoot (int val) {
3 int i = 1;
4 int v = 0;
5 int res;
6 while (v < val){
7 v = v + 2*i + 1;
8 i = i + 1;
9 }
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10 res = (v-val);
11 }
12 }

Table 1. Computed and expected outputs for SquareRoot and Square-
Rootv2

Input Output for Output for Expected
(val) SquareRoot SquareRootv2 output
16 6 8 4
20 6 4 4
25 7 10 5
30 7 5 5
36 8 12 6
40 8 8 6
49 9 14 7
60 9 3 7
64 10 16 8
80 10 0 8
81 11 18 9
90 11 9 9
100 12 20 10

This result shows that there are only two successful test cases (input
= {20, 90}), while the others do not produce the expected output.
Based on this, we can conclude that ”(v-val)” is not a plausible patch.

The initial population consists of a set of candidates (expressions)
that were randomly generated (6, 8, 1, v, v + 2, 2 ∗ val, i ∗ v, i ∗ val, ...).
Each candidate in this set will be evaluated using the same method as
illustrated previously. In order to generate a new generation, we apply
genetic operators to candidates. For example:

• i*val and 1 crossover to i*1

• i*1 mutates to i-1

The iterative process of generating new generations continues until a
termination condition is met:

1. An expression that successfully executes all test cases (a plausible
patch) has been found;

2. The specified timeout has elapsed.
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In our case, the first condition is checked because the expression ”i-
1” permits obtaining all expected outputs. The programmer analyses
this result to decide if it should be considered definitive (a patch is
considered definitive when the programmer finds it to be correct). This
patch is a correction because it achieves not only the test cases used
but also all the functionalities of SquareRoot program. The erroneous
instruction will become ”res = i - 1”.

3 State of the art

3.1 Categories of patch generation techniques

Patch generation techniques can be categorized into four main classes [7]:
heuristic-based, template-based, constraint-based, and learning-based
repair techniques.

3.1.1 Heuristic-based repair techniques

Heuristic search methods use a generation-and-test methodology, build-
ing and iterating over a search space of syntactic program modifica-
tions [8]. Among these methods, GenProg [9] is regarded as a seminal
work in this field. It utilizes GP to evolve variants of the program until
one is found that both retains the required functionality and also avoids
the defect in question. The technique takes as input a program, a set
of successful positive test cases that encode the required behaviour of
the program, and a failed negative test case that demonstrates a defect.
GenProg defines a fitness function that measures the quality of each
program variant based on the number of passing and failing test cases.
The search is restricted to only produce changes based on structures in
other parts of the program. Mutation and crossover genetic operations
only operate on the region of the program that is relevant to the error,
i.e., the parts of the program that were on the path of execution that
produced the error. Arcuri and Yao [2] are the ones who proposed the
idea of using GP to co-evolve programs and unit tests in order to au-
tomate the task of fixing bugs. Subsequently, Arcuri [10] developed a
research prototype called JAFF, which models bug fixing as a research
problem. RSRepair (Random-Search-based Repair) [11] is a tool that
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repairs program defects using the same mutation operations as Gen-
Prog, but it employs random search instead of GP. Unlike GP, which
requires an evaluation of the fitness of a candidate patch even if Gen-
Prog has been aware that the patch is invalid, random search has no
such constraint. Furthermore, RSRepair can speed up the process of
early identification of invalid patches using traditional test case prioriti-
zation techniques. SCRepair (Similar Code-based Repair) [12] uses the
same mutation operators as RSRepair to modify the faulty program.
Note that the insertion operator needs code from other places, which
is the main difference between SCRepair and RSRepair. To select a
new code to replace the existing code during the mutation process,
SCRepair introduces a metric that calculates the similarity between
two code fragments based on their Abstract Syntax Tree (AST). The
most suitable instruction is chosen to replace the faulty location, and
test cases are used to verify the elimination of the bug. In order to
improve the efficiency of research via GP for program repair, Yuan
and Banzhaf [13] present a new repair system based on this technique
for automated repair of Java programs, called ARJA. ARJA is mainly
characterized by a new patch representation, a multi-objective search,
a test filtering procedure, and several strategies to reduce the search
space.

3.1.2 Template-based repair Techniques

An automated program repair strategy involves generating concrete
patches based on remediation templates, also known as program trans-
formation patterns. This strategy is widely used in the literature
and has been implemented in several automated program repair sys-
tems [14]. Techniques like GenProg, which rely on heuristics, can gen-
erate nonsensical patches due to the randomness of their mutation op-
erations. To address this limitation, a new patch generation approach
called Pattern-based Automatic program Repair (PAR) [15] has been
proposed. PAR utilizes patch templates learned from existing human-
written patches. Durieux, Cornu, Seinturier, and Monperrus [16] pro-
posed NPEfix, a new technique to explore the search space of poten-
tial fixes for null pointer exceptions using meta-programming. NPEfix
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is based on nine predefined fix templates specifically tailored for null
pointer exceptions. Long, Amidon, and Rinard designed Genesis [17] to
infer remediation patterns from successful human fixes for three types
of defects: null pointer, out-of-bounds, and class cast. Genesis leverages
the expertise and patching strategies of developers around the world
to automatically fix bugs in new applications. Stack Overflow has mil-
lions of posts that could potentially be useful for fixing numerous bugs.
This observation motivates Liu and Zhong [18]’s work on extracting
repair patterns from Stack Overflow for automatic program repair. To
find as many adequate fixes as possible for a test suite for a given bug,
Martinez and Monperrus [4] created CARDUMEN, an automated re-
pair approach based on extracted patterns that has ultra-large search
space. CARDUMEN extracts code patterns from code being repaired.
Liu, Koyuncu, Kim, and Bissyandé [14] implemented TBar, an auto-
mated patch generation system that incorporates a superset of patch
patterns collected, summarized, organized, and labelled from literature
data.

3.1.3 Constraint-based repair techniques

Typically, these approaches infer semantic constraints from the pro-
vided test cases and then generate the appropriate test suite fix by
solving the resulting constraint satisfaction problem, in particular, the
SMT problem [13]. Nguyen, Roychoudhury, and Chandra [19] proposed
SemFix, a pioneering tool for constraint-based program repair. Given a
program location to be fixed, constraints on the expression to appear in
the program location are derived so that the modified program passes
all the given tests. The repair constraints are generated by symbolic
execution and the expression to be repaired is obtained by program syn-
thesis. Ke, Stolee, Le Goues, and Brun [20] developed a repair method
based on semantic code search called SearchRepair. The idea is to
utilize semantic code search [21] on existing open-source code to find
correct implementations of buggy components and methods and use
the results to automatically generate fixes for defective software. This
method encodes a database of human-written code fragments as SMT
constraints on input/output behaviour and searches the database for
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potential fixes with an input/output specification. Mechtaev, Yi, and
Roychoudhury [22] present a new semantic-based repair method called
DirectFix that generates the simplest fix to maximize the preservation
of the program structure of the buggy program. To take into account
repair simplicity in an efficient way, their method merges fault local-
ization and repair generation into a single step. They achieve this by
leveraging partial MaxSAT constraint solving and component-based
program synthesis. The same authors proposed Angelix [23], a new
semantic-based repair method that is adaptable to programs of similar
size as heuristic-based repair tools like GenProg. They demonstrate
that Angelix is more scalable than previously proposed semantic-based
repair methods such as SemFix and DirectFix. The scalability of An-
gelix is attributed to the new lightweight repair constraint called angelic
forest, which is independent of the size of the program being repaired.
Furthermore, this repair method can repair multiple buggy locations
that depend on each other. In [24], the authors investigate automated
error repair using a reference implementation. They propose deriving
a correct specification from the reference implementation and using it
to guide the repair of the program to solve the test overfitting problem.

3.1.4 Learning-based repair techniques

Machine learning techniques can enhance the efficiency of automatic
bug-fixing systems. Unlike the techniques in the aforementioned three
categories, learning-based techniques typically require additional train-
ing data (i.e., the tuples of buggy, context, and fixed lines of code) to
capture the intricate relationships between buggy and fixed code [7].
For example, [25] presents an algorithm that learns model parame-
ters through a training set of successful human patches collected from
open-source project repositories. It generates a candidate patch space,
utilizes the model to rank the candidate patches in order of likely cor-
rectness, and validates the ranked patches against a suite of test cases
to discover the correct patches. Tufano, Watson, Bavota, Di Penta,
White, and Poshyvanyk [26] extensively evaluate the ability of adopt-
ing neural machine translation (NMT) techniques to learn code fixes
from real bug fixes. Furthermore, Lutellier, Pham, Pang, Li, Wei,
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and Tan [27] employ ensemble learning on the combination of convo-
lutional neural networks and a new context-aware NMT architecture
to automatically fix bugs in multiple programming languages. This
architecture separately represents buggy source code and its surround-
ing context. SequenceR [28] utilizes sequence-to-sequence learning on
source code to generate one-line patches. This approach employs the
copy mechanism to address the challenge of unlimited vocabulary in the
source code. In [29], the authors aim to advance deep learning-based
automated program repair by introducing DEAR, a deep learning-
based model that facilitates fixing general bugs with changes depen-
dent on one or more buggy statements belonging to one or multiple
buggy hunks of code.

3.2 The ASTOR tool

The ASTOR tool, also known as Automatic Software Transformations
for Program Repair (ASTOR) [6], automatically repairs Java programs.
We utilized this tool in our experiments. It takes a buggy program, its
test suite with at least one failed test case as input, and generates a
patch, if possible, that fixes the bug (i.e., all test cases pass after the
repair). The change point is driven by an existing spectrum-based fault
localization technique called Ochiai [30]. ASTOR offers various modes,
each corresponding to a different repair algorithm (their original im-
plementations were for other programming languages). The modes we
employed in our experiments are the following: JGenProg, MutRepair,
and CARDUMEN.

JGenProg JGenProg is a Java implementation of GenProg [3]. It
operates at the statement level, meaning it deletes, replaces, and in-
serts statements. The inserted code fragments through addition or re-
placement always originate from the same program. The replacement
operator replaces one statement with another of the same type (e.g.,
an assignment is only replaced by another assignment). There is a risk
that this Java implementation may not reflect the actual performance
of the original GenProg system for C [31].
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MutRepair MutRepair implements the approach of Debroy and
Wong [32], which is a repair approach that applies operators from mu-
tation testing to repair C code. MutRepair applies mutation operators
to suspicious ”if” condition statements and performs a single change to
the condition. There are three types of mutation operators: relational
(there are six interchangeable operators: >, >=, <, =<, == and ! =);
logic (there are two: OR, AND); unary (there are two mutations:
negation and positivation3).

CARDUMEN CARDUMEN is a repair approach based on mined
templates that has an ultra-large search space [4]. It extracts code tem-
plates from the application being repaired to create a template-based
search space. The repair always consists of replacing the suspected
code element with an instance of the code template.

Note that MutRepair and CARDUMEN are template-based ap-
proaches, while JGenProg is heuristic-based.

4 Approach

The automatic stage of our approach (see Algorithm 1) takes as input
the following: an erroneous program (prog), error provided from an
error location tool (such as LocFaults [33], [34] or BugAssist [35], [36])
and examined by the programmer (error), failing and successful test
cases (tests) with expected output for each one, and a timeout for pro-
cess execution (timeOut). It automatically generates a set of potential
corrections for error in prog that passes all tests in tests. We perform,
for this, the GP algorithm in five steps: Initial population, Fitness
function, Selection, Mutation, and Crossover.

The process begins with a set of individuals called population
(Alg. 1, line 2). Each individual (expression) represents a possi-
ble correction randomly generated from sets that contain variables,
constants, and operators provided from the programmer. For ex-
ample, i ∗ val is an expression that can be generated for this con-
figuration: variables = {..., i, ..., val, ...}, operators = {..., ∗, ...}, and

3Removal of the negation operator.
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constants = {...}.
In the next step, we compute a fitness score for each expression

in population to measure how these expressions correct the instruc-
tion error in prog (Alg. 1, line 3). If population contains at least one
individual that succeeds all test cases, the error correction algorithm
ends and returns all individuals with higher fitness function (Alg. 1,
lines 10–11). In the opposite case, we need to build new generations
of populations using crossover and mutation genetic operators until we
find one or more individuals that satisfy the above condition, and then
return them to the programmer (Alg. 1, lines 4–9). Algorithm 1 can
terminate with no correction found in case that the execution exceeds
the specified timeout (Alg. 1, lines 12–14).

Algorithm 1 Algorithm for error correction from a suspected instruction.
Inputs: prog: the erroneous program; error: the error to correct; tests : a map that stores
the expected output for each test case input; timeOut: the maximum allowed execution
time.
Output: a set of potential corrections for error to be checked by the program-
mer.
1: (variables, constants, operators) ← read(); {Read variables, constants, and operators

from the user or programmer.}
2: population ← create(variables, constants, operators, size) {Build the initial popula-

tion.}
3: individualsF itness ← fitnessFunction(population, prog, error, tests); {Compute the

fitness score for each individual in population.}
4: while (! existSolution(individualsF itness) and ! exceed(timeOut)) do
5: newPopulation← selectBestIndividuals(population, individualsF itness, ratio1);
6: newPopulation← newPopulation ∪ mutation(population,ratio2);
7: newPopulation← newPopulation ∪ crossover(population,ratio3);
8: individualsF itness← fitnessFunction(newPopulation, prog, error, tests);
9: end while
10: if existSolution(individualsF itness) then
11: return bestIndividuals(population, individualsF itness);
12: else
13: print(”No plausible patch found, the timeout indicated is elapsed.”);
14: return null;
15: end if
existSolution(individualsF itness): tests if it exists an element in individualsF itness equal
to the number of test cases in tests, this means that the current generation includes at least
one potential correction.
exceed(timeOut) : tests if the timeOut is exceeded.
bestIndividuals(population) : selects individuals with highest fitness score in population.

The idea behind the composition of a new generation is to develop
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new expressions that may contain a plausible patch or, at the very least,
improve the fitness score of individuals from the previous generation
(Alg. 1, lines 4–9). To achieve this, we apply a set of crossovers and
mutations to the individuals in the current population. However, before
doing so, we select the fittest individuals and include them in the next
generation. A mutation modifies an individual to generate a new one.
We perform mutations at a specific point, which means that a random
element in the expression to be mutated will be replaced with a new
element from the same category (variables, operators, or constants). A
crossover combines individuals to produce a new expression which may
improve their fitness score. To accomplish this, we replace a randomly
selected sub-expression in the first individual with a randomly selected
sub-expression from the other individual. Figure 1 [37] illustrates an
example of how subtree crossover can be used to combine two tree
structures to create a new one. To specify how many times these genetic
operations (selection, mutation, crossover) are activated, we use ratio
values for each one (ratio1, ratio2, and ratio3).

+
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−

y 1

∗

−

2 y

+

9 x

+
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∗
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Figure 1. Example of subtree crossover operation

To calculate the fitness score for each expression in the population
(population), we generate a program for each individual by putting it
in the place of the error expression in prog, prog′ is used to denote the
modified program (Alg. 2, line 2). prog′ will be compiled (Alg. 2, line 3)
to obtain compiledProg. Next, we execute compiledProg on each test
case input in tests, comparing the obtained results with the expected
outputs to determine the number of successful executions (Alg. 2, lines
8–11). This count represents the fitness score for the current individ-
ual’s expression and is stored in a list. Once the fitness scores for
all individuals have been computed, this list, denoted by the variable
individualsF itness in Algorithm1, will be returned (Alg. 2, line 15).
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Algorithm 2 fitnessFunction: Function to compute fitness score for individuals.
Inputs: population : individuals ; prog : program to be corrected; error: instruction to
be corrected in prog; tests: test cases.
Output : a list of fitness values.
1: for all individual ∈ population do
2: prog′ ← replaceError(prog, individual, error); {Replace the error expression in prog

with individual, and let prog be the modified program.}
3: compiledProg ← compile(prog′); {Compile prog′.}
4: testCases ← getTestCases(tests); {Get test cases from tests.}
5: cpt← 0;
6: for all testCase ∈ testCases do
7: output ← run(compiledProg,testCase); {Execute compiledProg by using

testCase as input.}
8: expectedOutput ← getExpectedOutput(testcase, tests); {Retrieve the expected

output of testCase from tests.}
9: if Equal(output,expectedOutput) then
10: increment(cpt);
11: end if
12: end for
13: add(cpt,result);
14: end for
15: return result;
Equal(output,expectedOutput) : tests if data in output is equal to that in expectedOutput.
increment(cpt) : increments cpt.

4.1 Improvements

Our error repair algorithm can be improved. The improvements we
propose are related to the calculation of the fitness function and the
initial population.

Fitness function To repair an instruction expression of a program
that produces a numeric value as output, we can consider the following
improvement related to the calculation of the fitness function, aiming to
better assess the plausibility of a replacement expression. Specifically,
we calculate the difference between the computed value of the modified
program and the expected output for each test case, taking the absolute
value of this result. The objective is to measure the extent to which the
program variant (the replacement expression or patch) deviates from
correctness for each test case. By performing the same calculation for
all utilized test cases and summing the results, we obtain the fitness
function value for the patch. The patch is considered plausible when the
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value of its fitness function is zero. This method of fitness calculating
is different from that in the basic algorithm. Indeed, we do not count
the number of test cases that succeed to evaluate the correction of the
program to be repaired, but we calculate how much all the test cases
deviate from the expected results. Following this improvement, several
functions of our algorithm (Alg. 1) need to be modified. The first one
is ”fitnessFunction”, which should calculate the list of fitness values
of individuals in order according to the method explained above. The
second one is ”selectBestIndividuals”, which should return the list of
the best individuals in population. An individual is considered more fit
than another if its fitness value is lower (instead of higher), by flipping
the fitness function, lower fitness values correspond to better individ-
uals in terms of their proximity to the expected results. Finally, the
”existSolution” and ”bestIndividuals” functions should, respectively,
test if there is one or more individuals with a fitness value equal to
zero and, if so, return this list of individuals.

Initial population This improvement is limited to programs that
need to be repaired, where assignment and return statement expres-
sions always yield an integer, and all variables are integers. The only
Boolean expressions with arithmetic are those within conditional state-
ments. Currently, the process of defining the variables required to con-
struct the expressions (individuals) of the initial population is manual.
We aim to automate this process by collecting them from the program
to be repaired, specifically from the instruction path leading to the
instruction that requires repair. Variables should be either local to
the function (or procedure) containing the expression to be repaired or
global. Local variables should be modified after declaration. There is
no requirement to modify global variables in order to utilize them. The
parameters of the function (or procedure) containing the expression to
be repaired are also included in the set of variables used to construct
the initial population. Let’s consider the example of the AbsMinus
program4 (Listing 3). The set of variables to be used for correcting the
expression in line 9 is {i, j, k}. Although result is declared along the

4The AbsMinus correct program returns the absolute value of i minus j (i and j
are the inputs).
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path leading to the instruction that requires repair, it is only modified
at this instruction or in line 12, which is on a different path. If we had
global variables, we could include them in the set of variables without
any issue.

Listing 3. The AbsMinus program with an error
1 public class AbsMinus {
2 public static int absM (int i, int j) {
3 int result;
4 int k = 0;
5 if (i <= j) {
6 k = k+1;
7 }
8 if (k == 1 && i != j) {
9 result = i-j; //error: should be

result = j-i
10 }
11 else {
12 result = i-j;
13 }
14 return result;
15 }
16 }

After the variables, the process of defining the set of constants
should be automated. However, before explaining how we proceed with
that, let us discuss an improvement that could accelerate the search for
a plausible patch. This improvement involves adding instruction ex-
pressions from the program to be repaired to the initial population,
provided they compile successfully5. We have two scenarios: either the
error is in an assignment statement, in which case we only consider
the expressions from assignment statements, or it is in a branching
instruction, which means that only the expressions from conditional
instructions are added. Applying this principle to the AbsMinus pro-
gram shown in Listing 3, we would add the expressions ”0”, ”k + 1”,
and ”i− j” to the initial population (the error was in an assignment).
If the error was in a branching instruction, we would add the expres-
sions ”(i <= j)” and ”(k == 1 && i! = j)”. We construct the set
of constants from the expressions added to the initial population: we
parse each expression and whenever we encounter a constant, we add

5This means that if we replace the instruction expression to be repaired with
each of these expressions, the program compiles without errors.
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it to this set. In the case of the AbsMinus program example, the set of
constants would be {0, 1} (for an error in an assignment). If the error
was in a condition, then the set would be {1}. The set of operators to
be determined depends on the instruction to be repaired: if the error is
in an assignment, it will contain the usual arithmetic operators; other-
wise, it will consist of arithmetic operators, comparison operators, and
Boolean operators.

5 Results

We used Java programming language to develop our approach and to
test it in practice. This implementation, called GenExp, is an exten-
sion on OakGP, an open-source GP framework written in Java6. This
initial implementation can only correct integer expressions, and the op-
erators considered are: multiplication (∗), division (/), addition (+),
subtraction (−), logical OR (||), logical AND (&&), NOT (!), is equal
to (==), is not equal to (! =), is less than (<), is greater than (>),
is greater than or equal (>=), and is less than or equal (<=). Our
implementation includes the improvements explained in the previous
section. We have also conducted a series of experiments on a number
of toy programs that we built ourselves, which require a correction in
a single location. The considered error can be either in an assignment
or in a conditional statement.

Table 2. Programs used the experiments
Programs class Nbr programs Nbr tests

AbsMinus 10 9
BSearch 6 9

BubbleSort 7 5
Gcd 7 25

Heron 5 9261
Maxmin6var (M6var) 3 4096

Mid 10 36
Minimum (Min) 2 7

SquareRoot 6 15
Tritype 7 125
Total 63

6OakGP is available at this link : http://www.oakgp.org/.
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Table 2 shows the programs used in the experiments7. To explore
the capabilities of our implementation on a program (column ”Pro-
grams class”), we introduce an error in one of its instruction expres-
sions and run the tool to determine if a correction can be found (i.e.,
a replacement expression that passes all test cases considered). The
number of test cases employed is indicated in the ”Nbr tests” column.
This process is repeated multiple times by injecting a different error
each time (see ”Nbr programs” column). All developed repair pro-
grams meet the prerequisites described in Subsection 4.1.

We conducted a performance comparison between our implemen-
tation and ASTOR [6], an Automatic Software Transformations for
Program Repair tool (refer to Subsection 3.2). The modes of this tool
utilized in our experiments included JGenProg, MutRepair, and CAR-
DUMEN.

Our tool repairs erroneous programs by focusing on a single in-
struction expression that is responsible for the error. In other words,
we assume that we have achieved perfect error localization. JGenProg,
MutRepair, and CARDUMEN repair the input program by initially
identifying a set of suspicious instructions through their first phase
of error localization. To ensure a fair comparison with ASTOR’s ap-
proaches, we not only start with the same erroneous program and utilize
the same test cases, but also narrow down the set of suspicious instruc-
tions generated during the error localization step to include only the
injected erroneous instruction. The repair process concludes once a
plausible patch is found for all tools. Additionally, there is a timeout
of 5 minutes, after which the process may terminate without a solution.
Testing a variant of the program to be fixed is limited to a maximum
20 milliseconds to address cases involving infinite loops.

All experiments were conducted using an Intel Core i7-3720QM
processor, clocked at 2.6 GHz and equipped with 8 GB of memory.
The experiments were performed on a 64-bit Linux operating system.

In our experiments, we measure the running times by running the
tools multiple times on the same input. We record the time taken
for each run and select the best time obtained as our metric for per-

7Experimental programs are available at https://sites.google.com/prod/
esi-sba.dz/error-correction-experiments.
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formance comparison. This approach allows us to capture the most
efficient performance achieved by the tools.

The results of our experiments are summarized in Table 3. The
”B” column lists the benchmark programs used, which correspond to
the ”Programms class” column in Table 2. The ”Versions” column
shows the erroneous versions created for each of these programs. The
third, fourth, fifth, and sixth columns indicate whether CARDUMEN,
JGenProg, MutRepair, and our implementation were able to find a
plausible patch (3) or not (7) for each erroneous program considered.
If a tool finds a plausible patch, we also display the time elapsed during
the repair process. The ”G” column displays the number of generations
reached by our GP-based algorithm.

The results8 showed that our approach successfully finds a plausible
patch for almost all cases and outperforms ASTOR’s tools, even when
combined. Figure 2 presents a side-by-side bar chart that compares
the CARDUMEN, JGenProg, MutRepair, and GenExp tools in terms
of the number of times a plausible patch is found, allowing to compare
for each benchmark program.

The low number of generations observed in the majority of cases
presented in Table 3 can be attributed to several factors that con-
tribute to the efficiency of our approach. One important factor is the
inclusion of interesting expressions from the program being corrected
in the initial population. These expressions serve as potential building
blocks for constructing plausible patches. Additionally, it is important
to note that the program itself may already contain an expression that
represents the plausible patch. Moreover, the construction of initial
sets of variables and constants specifically derived from the program
being corrected helps reduce the search space effectively. This reduc-
tion enables the genetic algorithm to focus its exploration on the most
relevant and promising areas. The fitness function further enhances
the convergence process by favoring the selection of superior expres-
sions. As a result, the convergence process is accelerated, leading to
the discovery of plausible patches in a shorter number of generations.

Before each new generation, GenExp calculates the fitness value for
8Experimental results are also available at https://sites.google.com/prod/

esi-sba.dz/error-correction-experiments.
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Table 3: Summary of the results of our experiments

B Versions CARDUMEN JGenProg MutRepair GenExp G

A
bs

M
in

us

1 3(0,86s) 7 7 3(2,435s) 3
2 7 7 7 3(1,435s) 1
3 7 7 7 7 \
4 3(0,739s) 7 7 3(1,286s) 1
5 7 7 7 3(1,531s) 1
6 3(0,778s) 7 7 3(2,113s) 2
7 3(0,769s) 7 7 3(2,356s) 3
8 3(0,751s) 7 7 3(1,747s) 1

WrongIf1 3(2,395s) 3(2,454s) 3(1,436s) 3(1,289s) 1
WrongIf2 3(0,793s) 7 3(0,713) 3(1,129s) 1

B
Se

ar
ch

1 7 7 7 3(2,705s) 1
2 3(2,657s) 7 7 3(2,267s) 1
3 7 7 7 3(5,552s) 2

WrongIf1 7 7 3(1,166s) 3(3,7s) 3
WrongIf2 7 7 3(0,795s) 7 \

WrongWhile 7 7 7 3(129,586s) 70

B
ub

bl
eS

or
t 1 7 7 7 3(2,826s) 1

2 7 7 7 3(107,059s) 112
3 3(0,855s) 7 7 3(2,338s) 2
4 3(0,877s) 3(0,784s) 7 3(0,605s) 1

WrongIf 3(4,035s) 7 3(1,43s) 3(1,399s) 2
WrongWhile1 7 7 7 3(2,084s) 3
WrongWhile2 3(9,428s) 7 7 3(1,015s) 1

G
cd

1 3(1,074s) 7 7 3(33,423s) 6
2 3(0,802s) 7 7 3(13,07s) 2

WrongIf1 3(0,861s) 7 3(2,808s) 3(3,262s) 1
WrongI2 7 7 7 3(2,929s) 1
WrongIf3 3(0,912s) 7 3(2,729s) 3(36,293s) 4
WrongIf4 3(1,137s) 7 7 3(3,176s) 1

WrongWhile 7 7 7 3(8,489s) 1

H
er

on

1 7 3(5,669s) 7 3(37,474s) 1
2 7 7 7 7 \

WrongIf1 3(23,469s) 7 3(0,766s) 3(279,383s) 6
WrongI2 7 7 7 7 \
WrongIf3 7 7 3(7,67s) 7 \

M
6v

ar WrongIf1 3(7,33s) 3(1,15s) 3(1,577s) 3(26,138s) 1
WrongIf2 7 7 7 7 \
WrongIf3 7 3(7,405s) 7 3(257,766s) 12

M
id

1 7 3(1,184s) 7 3(1,699s) 1
2 7 3(1,151s) 7 3(1,16s) 1
3 7 7 7 3(0,829s) 1
4 7 3(2,008s) 7 3(0,902s) 1
5 7 3(1,191s) 7 3(0,805s) 1

WrongIf1 3(3,245s) 7 3(1,305s) 3(1,291s) 1
WrongIf2 3(2,613s) 7 3(1,402s) 3(3,318s) 3
WrongIf3 3(2,766s) 7 3(1,23s) 3(2,347s) 2
WrongIf4 3(2,322s) 7 3(1,399s) 3(1,245s) 1
WrongIf5 3(1,397s) 7 3(1,154s) 3(1,175s) 1

M
in WrongIf1 7 7 3(1,491s) 3(2,369s) 1

WrongWhile 7 3(2,466s) 7 3(2,068s) 2

Sq
ua

re
R

oo
t 1 7 7 7 3(2,862s) 5

2 7 7 7 3(0,625s) 1
3 7 7 7 3(1,349s) 7
4 7 7 7 3(2,495s) 4
5 7 7 7 3(30,085s) 13

WrongWhile 3(1,6s) 7 7 3(4,518s) 1

T
ri

ty
pe

1 7 3(0,76s) 7 3(1,305s) 1
WrongIf1 3(6,452s) 3(13,711s) 7 3(3,569s) 1
WrongIf2 7 3(2,711s) 7 3(41,755s) 27

MultPerimetre 3(4,121s) 3(1,378s) 7 3(3,13s) 1
MultPerimetreWrongIf 3(4,282s) 3(4,386s) 7 3(30,621s) 19

Perimetre 3(12,084s) 3(1,333s) 7 3(2,962s) 1
Perimetre2 3(3,95s) 3(3,482s) 7 3(2,145s) 1

237



M. Bekkouche

Ab
sM

inu
s

BS
ea

rch

Bu
bb

leS
ort Gc

d

He
ron

Ma
xm

in6
va

r

Mi
d

Mi
nim

um

Sq
ua

reR
oo

t

Tri
typ

e

Benchmark program

0

2

4

6

8

10

Th
e n

um
be

r o
f ti

me
s a

 pl
au

sib
le 

pa
tch

 is
 fo

un
d

CARDUMEN
JGenProg
MutRepair
GenExp

Figure 2. The number of times a plausible patch is found by CARDU-
MEN, JGenProg, MutRepair, and GenExp for each benchmark pro-
gram

every replacement expression in the current population. This involves
executing each variant of the program under repair, which corresponds
to a replacement expression, on all the test cases used as input for that
program. It’s important to note that the running time in Table 3
does not always correlate directly with the number of generations.
For instance, the WrongIf1 version of the Heron program completes
6 generations in 279.383 seconds, while the WrongIf3 version of the
Maxmin6var program takes 12 generations in 257.766 seconds. On the
other hand, the WrongWhile version of BSearch requires 70 generations
in 129.586 seconds, and the version 2 of BubbleSort completes 122 gen-
erations in 107.059 seconds. These discrepancies can be attributed to
the number of test cases used for each benchmark. The Heron and
Maxmin6var benchmarks use 9261 and 4096 test cases, respectively,
while the BSearch and BubbleSort benchmarks use only 9 and 5 test
cases, respectively (refer to Table 2).
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5.1 Limitation

To summarize and analyse the repair times of each tool used in our
experiments, we have presented basic statistics such as the mean, me-
dian, standard deviation, as well as the minimum and maximum values
in Table 4. We only consider the times corresponding to cases where
the tools have identified a plausible patch.

Table 4. The basic statistics on the execution times obtained in Table 3
CARDUMEN JGenProg MutRepair GenExp

Mean 3, 602s 3, 131s 1, 818s 19, 728s

Median 2, 359s 2, 008s 1, 401s 2, 369s

Standard deviation 4, 656 3, 293s 1, 669s 53, 313s

Minimum 0, 739s 0, 76s 0, 731s 0, 605s

Maximum 23, 469s 13, 711s 7, 67s 279, 383s

The results suggest that GenExp takes much longer on average
than the other tools to produce repair results, with an average of 19.7
seconds and a large variation in time, ranging from 0.6 to 279.4 seconds.
However, it is interesting to note that the median time of GenExp is
similar to that of the other tools, indicating that it most often finds a
plausible repair within a reasonable time.

Tools CARDUMEN, JGenProg, and MutRepair have much faster
average times to produce repair results, with averages ranging from 1.8
to 3.6 seconds and minimum times under 1 second. These tools may be
more convenient for users who need quick results, but their accuracy
may be lower than that of GenExp.

Figure 3 depicts a line plot with each tool represented by a line. The
various statistics (mean, median, standard deviation, minimum, and
maximum) are plotted based on the tool. This enables the visualization
of the evolution of execution times for each tool.

The significant difference in the range of running times, where the
range of GenExp is approximately 10 times greater than that of CAR-
DUMEN and about 30 times greater than that of MutRepair, can be
attributed to two factors.

Firstly, the success rate of GenExp is much higher than that of other
tools, meaning that there are many more values (times) to consider
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Figure 3. Evolution of execution times by tool

for calculating the standard deviation and other statistics. Specifically,
there are 57 values for GenExp, 30 for CARDUMEN, 17 for JGenProg,
and 16 for MutRepair. Assuming that GenExp failed to repair the fol-
lowing versions: BSearch (WrongWhile), BubbleSort (version 2), Gcd
(version 1 and WrongIf3), Heron (WrongIf1), Maxmin6var (WrongIf3),
SquareRoot (version 5), and Tritype (WrongIf2). Consequently, the
standard deviation for GenExp decreases from 53,313s to 7,392s, and
the success rate is now 49 out of 63. It should be noted that the success
rates are 30/63 for CARDUMEN, 17/63 for JGenProg, and 16/63 for
MutRepair.

Secondly, the difference can also be attributed to the search space
utilized by each tool. JGenProg’s search space is limited to the pro-
gram instructions to be repaired and cannot correct the error using
code that is not part of the program. The MutRepair algorithm focuses
on mutating the operators within ”if” conditions (see Subsection 3.2).
CARDUMEN, as a template-based approach, has a wide search space
but not as extensive as our approach since it is limited to templates
extracted from the code to be repaired. GenExp has a broader search
space compared to the ASTOR tools. While we do utilize the code un-
der repair to construct the sets of variables, operators, and constants
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necessary for building replacement expressions, we also leverage the
repair program to enhance the initial population with expressions ex-
tracted from it. However, our algorithm is capable of generating new
expressions that cannot be derived from the code being repaired. This
explains the high success rate achieved by our tool, which in turn ac-
counts for the difference in the range of running times observed in all
experiments.

The large variation in GenExp’s times may be problematic for users
who need consistent, fast results. It may be preferable to use GenExp
when increased accuracy is needed, even if it takes longer.

Although GenExp has the capability to repair the expression of a
single instruction, it should be noted that programs containing two
or more different erroneous instructions cannot be repaired using this
tool. This limitation is also present in CARDUMEN, JGenProg, and
MutRepair, as they too are designed to repair input programs from a
single suspect instruction. Another constraint of GenExp is its inabil-
ity to repair programs that require the addition or removal of instruc-
tions. Similar limitations exist in CARDUMEN and MutRepair, but
JGenProg has the potential to address such errors. Additionally, JGen-
Prog can also correct the left-hand side of an assignment, a capability
not available in our tool, CARDUMEN, or MutRepair. Another no-
table limitation of GenExp is its inability to generate expressions where
numbers and variables are not integers. In contrast, CARDUMEN,
JGenProg, and MutRepair have the capability to handle variables or
constants of any kind.

6 Conclusion

To correct a program, our approach is based on using GP to construct
a new program without errors. We utilize the suspected instructions
generated by an error locating tool. The error correction process is
applied to a selected instruction, chosen by the programmer, which is
potentially the source of the problem in the input program. Genetic op-
erators are employed to evolve the expression of this instruction, aiming
to generate an individual that produces the expected outputs for the
given test cases. The results demonstrate the effectiveness of our ap-
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proach in program correction, as our implementation successfully fixed
nearly all cases used in the experiments. GenExp has outperformed AS-
TOR’s three approaches (JGenProg, MutRepair, and CARDUMEN) in
finding plausible fixes for the set of academic repair programs we have
developed.

Based on the results, it seems that GenExp is a slower option com-
pared to the other tools used in the experiments, but it is also more
accurate in finding plausible repairs. This makes it a good choice for
users who prioritize accuracy over speed. However, the large variation
in time and the longer average time may be a concern for users who
need consistent, fast results. Therefore, it is important to consider the
specific needs of the user when deciding whether to use our tool or one
of the faster tools.

In most cases, the programmer corrects only one instruction in the
set obtained during the error locating step. However, a challenge arises
when the program requires corrections in multiple instructions. Our
current approach is unable to find a plausible patch in such scenarios
since it focuses on a single instruction. As part of future work, we aim
to address this limitation by extending our approach to handle multiple
suspected instructions. One possible solution could involve running the
GP process evolution on multiple suspected instructions.

Currently, GenExp possesses the ability to generate instruction ex-
pressions, encompassing both algebraic and boolean expressions with
arithmetic operations. Moreover, GenExp generates integer-based ex-
pressions where numbers and variables are restricted to the integer
domain. Our benchmark is carefully designed to showcase GenExp’s
capabilities, emphasizing that the correct expressions obtained should
exclusively involve integer values for numbers and variables. Moving
forward, our objective is to enhance our implementation to accommo-
date various expression types, enabling comprehensive testing and com-
parison with ASTOR tools across a wider range of expression classes.
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