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Abstract

The main reason for this research is the worldwide existence
of a large number of prostate cancers. This article underlines
how necessary medical imaging is, in association with artificial
intelligence, in early detection of this medical condition. The di-
agnosis of a patient with prostate cancer is conventionally made
based on multiple biopsies, histopathologic tests and other pro-
cedures that are time consuming and directly dependent on the
experience level of the radiologist. The deep learning algorithms
reduce the investigation time and could help medical staff. This
work proposes a binary classification algorithm which uses con-
volutional neural networks to predict whether a 3D MRI scan
contains a malignant lesion or not. The provided result can be a
starting point in the diagnosis phase. The investigation, however,
should be finalized by a human expert.
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1 Introduction

Prostate cancer is the second most diagnosed type of cancer in men,
after lung cancer [1], with 1 of 5 cancer cases in most of the coun-
tries [2], [3]. The diagnosis is based on biopsy [4], histopathology [1]
or measurement of PSA (Prostate Specific Antigen) and DRE (Digital
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Rectal Examination) in the incipient stages of the disease [3]. Never-
theless, the physicians encounter difficulties because of too many biop-
sies [4], with low accuracy [5] and specificity [3] in diagnosis. Another
problem is the limited medical staff [1].

An MRI (Magnetic Resonance Imaging) scan creates detailed im-
ages of organs and tissue based on a magnetic field and radio waves [6].
The use of prostate MRI scans reduces the number of biopsies. Further,
convolutional neural networks (CNN) can be trained for automatic pro-
cessing and interpretation of MRI scans, improving the diagnosis of
prostate cancer.

These images contain anatomic and functional parameters (multi-
parameters MRI, or simple mp-MRI). The use of mp-MRI together
with the structured reporting scheme PI-RADS (Prostate Imaging Re-
porting and Data System) is not quite simple, being strongly dependent
on the experience of the radiologist. Therefore, the Computer-aided di-
agnosis (CAD) systems are a necessity in order to minimize the human
effort in the diagnosis procedures [4]. Using deep learning algorithms,
the radiologists might obtain an estimation of the severity of this dis-
ease, in a shorter time. This would give them the opportunity to focus
on treatment and patient support rather than the diagnosis process.

The proposed solution is an algorithm for prostate cancer classifi-
cation using 3D multi-parameter MRI. Generally, the examination of
such an image is made in 30-45 minutes by a human expert. However,
using a classification algorithm, the examination is done automatically.
The algorithm will classify the prostate lesions as being either benign
or malignant.

This work uses PyCharm, Anaconda Development Environment
and Jupyter Notebook platform. The algorithm is implemented in
Python language, using PyTorch library and MONAI open-source
framework for deep learning and healthcare imaging. The classifica-
tion is made based on DICOM (Digital Imaging and Communications
in Medicine) files, which are used to train and test multiple architec-
tures of neural networks. The most performant architecture is included
further in the application. The pre-trained neural models were not con-
sidered.
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2 The context of this research
From a clinical point of view, prostate cancer can be classified as be-
ing significant or not significant, according to the aggressivity level of
the lesion [2]. The Gleason grade system is generally used to grade
prostate cancer lesions. Each investigated tissue receives a Gleason
score, which represents the diagnosis of tumor malignancy. This can
be low, moderate, or high [1].

Medical images and artificial intelligence mechanisms are frequently
used in diagnosis, with undeniable success. This naturally led to the
idea of using them in prostate cancer detection [7]. Therefore, two
challenges called PROSTATEx have been initiated to speed up the re-
search in this medical field (PROSTATEx Challenge and PROSTATEx-
2 Challenge) [8], [9]. A database of 3D MRI scans for prostate cancer
has become available, and different algorithms for classification or grad-
ing of prostate cancer lesions have been developed. The ground truth
set has been defined by physicians with over 20 years of experience,
who annotated the images [3].

2.1 Related work

There are multiple studies that explored deep learning algorithms used
for prostate cancer detection. For instance, [2], [3], and [7] propose
diferent deep learning algorithms that classify prostate lesions. An-
other study [5] developed an architecture of deep CNN trained on 3D
mp-MRI to diagnose prostate cancer. This architecture was inspired by
VGG (Visual Geometry Group) networks [5], which use small convolu-
tions (3x3) in order to have a better recognition of the models [2]. The
aim of this study was to demonstrate the applicability of deep learn-
ing methods in medical imaging for cancer. It was observed that deep
learning algorithms perform better than conventional models based on
feature engineering [5]. There are also studies that proposed automatic
methods for grading the lesions from mp-MRI, using Gleason system
(GGG – Gleason Grade Group) [3].

All these studies started based on PROSTATEx challenges (PROST-
ATEx Challenge and PROSTATEx-2 Challenge) provided by American
Association of Physicists in Medicine (AAPM) together with Society of
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Photo-Optical Instrumentation Engineers (SPIE) and National Cancer
Institute (NCI) [8], [9].

The PROSTATEx-2 challenge aimed to classify prostate cancer us-
ing the available image set mp-MRI. One of the solutions used the
Ordinal Classification (or Ordinal Regression) technique, which per-
forms a multi-class classification [10]. This solution sorted the lesions
according to their aggressivity level G1 < G2 < G3 < G4 < G5.

The algorithms developed proved that CNN (VGG-16, for instance)
are more efficient when they are used together with other methods, such
as Ordinal Classifier. Nevertheless, the solutions have not been tested
on other data sets in order to validate their efficiency [2].

Regarding the deep learning algorithms, the easiest way of evalu-
ating them is to analyze the multitude of similar research articles and
to run the provided prototypes in the field of interest. Therefore, two
public repositories that analyze prostate lesions using the data sets
provided by PROSTATEx challenges have been considered.

2.1.1 Lesion classification algorithm using TensorFlow li-
brary

Piotr Sobecki proposed a deep learning algorithm for prostate cancer
classification based on the MRI data set provided by the first edition
of PROSTATEx [11]. The algorithm analyzes the images and classifies
the lesions according to their malignity level (the lesions are clinically
significant or not). The training data set contains 330 lesions (76 ma-
lignant and 254 benign).

The classification algorithm is based on VGG architecture. The
repository provides three distinct architectures to analyze the lesions:

• CNN_VGG_SIMPLE – performs a binary classification based
on clinical signification of the lesion, using three sub-networks;

• CNN_VGG_MODALITIES – uses a mix of expert architectures,
where each modality is able to make predictions;

• CNN_VGG_PIRADS – uses PI-RADS system, together with
other expert architectures.
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The architectures developed by Piotr Sobecki have the advantage
of diversity for each one. On the other hand, there are necessary ex-
cessive computations, which lead to a training process that needs too
many resources (software, hardware, separated drivers, long time for
an epoch, etc.).These architectures have been locally run and some
Key Performance Indicators (KPI) have been analyzed. The AUC
(Area Under the Curve) values for all three architectures are in the
range (0.3, 0.75), with the best results obtained for the architecture
CNN_VGG_MODALITIES. These values demonstrate that the algo-
rithm training is slow. In order to improve it, it is necessary to run
more than 200 epochs per fold (it is not visible a significant improve-
ment of the KPIs at 100 epochs). Another disadvantage is the old and
limited technology (the first version of TensorFlow library was used,
which is no longer supported).

2.1.2 Lesion detection and segmentation algorithm using Py-
Torch framework

This architecture proposes a completely automated system, which takes
the mp-MRI prostate scans of a patient suspected of prostate cancer
and localizes the lesions using the detection model Retina U-Net. It
then performs a segmentation of these lesions and provides the most
appropriate Gleason grade (GGG) [12]. This architecture has been de-
veloped using the data set provided by the second edition of PROSTA-
TEx challenge. The training set contains 142 lesions (54 of them with
GGG 1, 45 with GGG 2, 25 with GGG 3, 10 with GGG 4 and 8 with
GGG 5).

The advantages of this architecture are the AUC value of 0.87 [12]
and the technologies that were used. On the other hand, it has a limi-
tation because of the Medical Detection Toolkit [13], which is dedicated
to Linux operating system only.

2.2 Limitations of the prostate cancer classification

Firstly, the limitation in prostate cancer diagnosis is introduced by
MRI scans themselves. The image evaluation is subjectively performed
based on PI-RADS criteria or on Gleason system [2]. PI-RADS is a
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structured reporting scheme for prostate mp-MRI used to evaluate a
patient who is suspected of cancer [14]. But the results are strongly
dependent on the human expert who makes the evaluation. This also
happens with the Gleason system [2]. Therefore, the deep learning
algorithms did not succeed in adequately classify the lesions. In most
cases, the tumors were considered low malignant (grade 1) or high
malignant (grade 5) [3].

Computer-aided diagnosis (CAD) requires large data sets for train-
ing, validation, and testing. The data sets available for prostate cancer
are limited because the annotation of MRI scans is tiring and time
consuming for human experts. Also, even if multiple patches can be
extracted from a single scan, in many cases these are similar, even if
the cancer tissues are variate.

Another factor that restricts the use of deep learning in prostate tu-
mors classification is the data imbalance – the observations that belong
to individual classes are disproportionate. These observations could not
be enough for successfully learning the features of that class [1].

3 Materials and methods

3.1 Available datasets

3.1.1 PROSTATEx Challenge (“SPIE-AAPM-NCI Prostate
MR Classification Challenge”)

This challenge took place from 21.11.2016 to 15.01.2017 and aimed to
determine methods for image analysis in order to diagnose prostate
cancer and to classify it from clinical point of view [8], [9], [15], [16].
The data set contains mp-MRI scans of 330 prostate lesions, as well as
spatial coordinates, atomic coordinates, and the clinical significance.
The testing data set contains 208 prostate lesions.

3.1.2 PROSTATEx-2 Challenge (“SPIE-AAPM-NCI Prostate
MR Gleason Grade Group Challenge”)

The second challenge took place from 15.05.2017 to 23.06.2017 and fo-
cused on some biomarkers for mp-MRI scans, which are useful when

27



A.M. Minda, A. Albu

Gleason grade of prostate cancer is determined [8], [9], [15], [16]. Glea-
son Grade Group (GGG) is a standard for the measurement of the
aggressiveness of prostate cancer, which makes possible the prediction
of the pathological state and of the oncological result. A GGG grade
is assigned to a possible lesion using histopathological analysis of biop-
sies. The GGG grades are natural numbers between 1 and 5, where
1 is a lesion that doesn’t require treatment and 5 is the most severe
prostate cancer lesion [1], [3].

The training set contains 112 prostate lesions, the spatial and
atomic coordinates, as well as the GGG grade of each lesion. The
testing set contains 70 lesions.

3.1.3 DiagSet

Besides the data sets provided by PROSTATEx challenges, there are
also other data sets available that can be used to train deep learning
algorithms. DiagSet is a histopathologic data set, which contains re-
gions of prostate tissue, annotated in WSI (Whole Slide Image) scans.
These regions have been marked with GGG grade, in order to specify
the severity level of the disease. The annotation was made by human
experts in histopathology [1].

This data set was used to train several CNN architectures such
as AlexNet, VGG16, VGG19, ResNet50, and InceptionV3 in different
configurations or different dimensions of the images. The best con-
figurations have been used to create an ensemble of classifiers. The
obtained results have been validated by physicians [1].

3.2 Image types

The solution presented in this work used the data set provided by
PROSTATEx challenge (“SPIE-AAPM-NCI Prostate MR Classifica-
tion Challenge”) [8], [9], [15], [16]. The main reason for this is that
at least five 3D MRI sequence types are provided for each patient.
The ground truth is available, and it is used in both the training and
evaluation processes.

There are three anatomic planes that compound a 3D MRI: trans-
verse plane (is perpendicular to the spine and divides the body into
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superior and inferior parts), sagittal plane (divides the body into left
and right parts), and coronal plane (divides the body in vertical plane
into dorsal and ventral parts) [17]. Fig. 1 [8], [9] presents the scans for
the three anatomic planes of a patient from training data set PROSTA-
TEx.

Figure 1. (a) transverse plane, (b) sagittal plane, and (c) coronal plane

The five sequence types [7] that are present in 3D MRI of all patients
are:

• Transverse sequences T2W (T2-wieghted);

• Sagittal sequences T2W;

• Transverse sequences ADC (Apparent Diffusion Coefficient);

• Transverse sequences DWI (Diffusion-Weighted Imaging);

• Transverse sequences Ktrans (a measure for capillary permeabil-
ity).

The four types of transverse images (T2W, ADC, DWI, and Ktrans)
are presented in Fig. 2 [8], [9] (they were also selected from training
data set PROSTATEx).

All sequences have been compressed in DICOM files, and then pro-
vided as a public data set in PROSTATEx challenge. DICOM (Digital
Imaging and Communications in Medicine) is an international standard
that defines medical image formats, being one of the most frequently
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Figure 2. (a) a T2W slice, (b) an ADC slice, (c) a DWI slice, and (d)
a Ktrans slice
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used standards for medical information transfer. DICOM is imple-
mented in almost all equipment from radiology, radiotherapy, cardio-
logic imaging, and other medical domains such as ophthalmology or
stomatology [18]. DICOM standard is recognized by the International
Organization for Standardization as standard ISO 12052 [18].

The current project also uses NIfTI (Neuroimaging Informatics
Technology Initiative) files. This format is dedicated to neural imag-
ing, having two versions: NIfTI-1 and NIfTi-2 (which is an update of
NIfTI-1 that allows storing a larger quantity of data) [19].

3.3 Development environments

The following technologies were used throughout the development pro-
cess:

• Anaconda.org - service for packages management;

• Pip and Conda - systems for packages management;

• PyCharm - development environment;

• Jupyter Notebook - application used for a visual perspective of
the data and the proposed solution.

The programming language used for the entire project is Python, in
addition to a couple of frameworks for training, validation, and testing
the model (PyTorch and MONAI) and several libraries for data reading
and visualization (Pandas, Matplotlib, Nibabel).

3.4 System’s architecture

The proposed solution has a simple architecture (Fig. 3). The MRI
scans (DICOM format) of the data set provided by PROSTATEx chal-
lenge are locally processed. The operating system of the workstation
is Windows. Once the images are transformed into NIfTI format, they
are processed using a DenseNet-121 classification algorithm. The out-
put data of the training phase are the parameters of the model (the
best results of the training). Then, the model can be evaluated (testing
phase).
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Figure 3. The architecture of the proposed solution

The main steps that were followed in the development of this solu-
tion are:

• Analysis of the existing repositories;

• Virtual environment setup for the Python packages and libraries;

• Available data (images and labels) visualization and analysis;

• Data processing;

• Training of the classification algorithm;

• Evaluation of the classification algorithm.

The classification algorithm uses a DenseNet-121 network, with the
following features: one convolution 7x7, 58 convolutions 3x3, 61 convo-
lutions 1x1, 4 average pooling layers and one fully connected layer [20].
In a DenseNet network, each layer is directly connected to the next
layer (Densely Connected Convolutional Network). Therefore, for n
layers, there will be n(n + 1)/2 direct connections [20]. According to
the MONAI documentation, because the data set images are three-
dimensional, the DenseNet-121 is not pre-trained.
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3.5 Model training and evaluation

The model was trained, validated, and tested using the PyTorch frame-
work. In order to perform this procedure (specific to deep learning
algorithms), the data set provided by PROSTATEx challenge has been
randomly divided into sub-sets for training, validation, and testing.
The data set contains 204 patients. Training and validation phases are
performed using 80% of the patients (80% of them for training and
20% for validation). The rest of the patients (20% of the initial set)
remain for testing phase. Therefore, 163 patients are used for training
and validation (80% of 204) and 41 for testing (20% of 204).

Each image of these sub-sets has a label that specifies whether a
lesion is malignant (clinically significant) or not. The labels were set
by experienced radiologists.

Once the dataset is split and labeled, Transforms objects are de-
fined. These objects scale the intensity of the images, re-dimension
them and rotate them by 90◦. The data type will also be verified, in
order to ensure that these are PyTorch tensors [21]. Each sub-set has a
DataLoader which contains an object of type ImageDataset and hard-
ware specifications to parallelize the training, validation, and testing
processes [22]. The ImageDataset objects contain a single-dimensional
matrix for the images of the sub-set, a 1D matrix for the labels and a
Transforms object.

After the DataLoader objects are created, the model can be trained,
validated, and tested. Several parameters such as the number of par-
allel processed images (batch_size), the number of parallel threads
(num_workers), or number of epochs for training phase can be set
in a Python configuration file.

The training phase uses a simple PyTorch loop, which evaluates
in each iteration the internal performance of the model using the val-
idation sub-set. The epochs’ parameters that improve the metrics are
saved, being used in the final model, which is the best model produced.

At the end, the model is evaluated comparing the predictions with
the labels. This will determine key performance indicators (KPI) based
on the elements of the confusion matrix:

• TP (true positive) – both algorithm and label indicate a malig-
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nant lesion;

• TN (true negative) – both algorithm and label indicate a benign
lesion;

• FP (false positive) – the algorithm predicts a malignant lesion,
but the label indicates a benign lesion;

• FN (false negative) – the algorithm predicts a benign lesion, but
the label indicates a malignant lesion.

The KPIs that are considered in model evaluation are [23]:

• Accuracy – the most frequently used metric when an algorithm is
evaluated, indicating the number of correct predictions reported
to the total predictions (Eq. (1)):

Accuracy =
TP + TN

TP + TN + FP + FN
; (1)

• Precision – the report between correct positive predictions and
all positive predictions (Eq. (2)):

Precision =
TP

TP + FP
; (2)

• Recall (sensibility) – measures how many positive cases have been
correctly predicted reported to all positive cases of the data set
(Eq. (3)):

Recall =
TP

TP + FN
; (3)

• F1-Score – the harmonic average of precision and recall (Eq. (4)):

F1-Score = 2 ∗ Precision ∗Recall

Precision+Recall
. (4)
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4 Experimental results and discussions
Fig. 4 represents a DataFrame object which contains information and
results from the training and testing phases of the classification al-
gorithm. The “color”, “loss_function”, “optimizer”, “learning_rate”,
and “epochs” columns define the color code of the graphical represen-
tation, the loss function type, the optimizer type, and the learning
rate, as well as the number of the epochs assigned to the classification
algorithm. The “best_accuracy” column represents the best value ob-
tained in the training phase. The last 8 columns are the KPI values
obtained in the testing phase.

Figure 4. Information obtained during the training and testing process

Figs. 5, 6, and 7 present a visual representation of the internal
results during the training process. The values of the loss function are
directly related to the type of the function, to the number of epochs,
to the optimizer type, and to the learning rate value. For instance, the
larger the number of epochs, the smaller the value of the loss function
– in Fig. 5, the loss function is around 0.2, while in Figs. 6 and 7, the
values are less than 0.1.

Another aspect that can be observed in Figs. 5, 6, and 7 is that the
internal accuracy of the algorithm in the validation stage reaches the
highest values in the first 50 training epochs. Therefore, the classifica-
tion algorithm doesn’t need a larger number of iterations to determine
the optimal values of the parameters.

The best values of the evaluated models are represented in Fig.
8. During the training process, the model with the best results is the
orange one (i=6, with an accuracy of over 80%) with the following fea-
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Figure 5. Loss function values (left), accuracy values (right), and the
best accuracies of the models (middle) in the training phase – 50 epochs

Figure 6. Loss function values (left), accuracy values (right), and the
best accuracies of the models (middle) in the training phase – 100
epochs

Figure 7. Loss function values (left), accuracy values (right), and the
best accuracies of the models (middle) in the training phase – 200
epochs
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tures: 50 epochs, Binary Cross Entropy loss function, Adam optimizer,
and 1e-4 learning rate. Figs. 9 and 10 represent the KPI values ob-

Figure 8. The best accuracy results in the training phase

tained in the testing phase. According to these results, the models that
successfully identified malignant lesions are the blue one (i=2) and the
yellow one (i=3). Nevertheless, the yellow model is in top of the models
with the most FP values. Therefore, the blue model can be considered
the most suitable for prostate lesions classification, according to the
KPI values.

Looking at the representation of the metrics, the best accuracy is
provided by the blue model (i=2), with over 70% correct predictions.
Other models that correctly classified over 65% of the lesions are red
(i=0), yellow (i=3), light grey (i=4), and pink (i=5). Regarding the
recall and F1-score, the models blue and yellow have the best results.
The precision has the highest values for the models light grey and blue.
Nevertheless, the recall and F1-score values of the light grey mode are
much smaller than those of the blue model. Therefore, the blue model
(i=2) is the best model once the testing phase of the classification
algorithm is completed.
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Figure 9. The elements of the confusion matrix in the testing phase
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Figure 10. The performance metrics in the testing phase

4.1 Special aspects observed

During the evaluation of the classification algorithm, different values
and trends of the KPI and of the loss function have been compared.
The aim of the analysis of these values is to set the correct values and
to determine the best parameters of the model.

The oscillations in the loss function indicate that learning rate is
either too small or too large, even if it decreases exponentially during
the epochs. The solution for such a problem is to train the classifica-
tion algorithm with different optimizers, architectures, loss functions,
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and learning rates. The process of finding the best parameters is an
experimental one. Through the metrics analysis in the testing phase,
the following can be observed:

• Precision – missing positive predictions (TP+FP=0). The preci-
sion in the red and light green models resulted in negative values.
These negative values have been assigned to avoid and to mark
a division by zero (during the testing process, no lesion was clas-
sified as malignant).

• Recall – missing correct positive predictions (TP=0). The recall
was zero in the red and light green models. This means that
no malignant lesion was correctly classified during the testing
process.

• F1-score – irrelevant. This is directly dependent on precision
and recall; as a result, for the previous two cases, the F1-score
becomes irrelevant.

Therefore, all these three metrics (precision, recall and F1-score) are
directly dependent on the number of positive predictions in the testing
phase. The number of malignant lesions of the prostate in the data
set is small. The solution in this direction is to increase the number of
malignant lesions in the training sub-set by an oversampling process (a
technique for the adjustment of a class distribution in a data set [24]).

5 Conclusion
This work proposes a binary classification algorithm for prostate le-
sions. It predicts whether an MRI scan contains a malignant lesion or
not. The images and labels provided by PROSTATEx challenge have
been analyzed. A new architecture, which uses current technologies
(such as PyTorch and MONAI frameworks) has been created. Several
models have been evaluated and the most performant architecture has
been selected to present the performances of the classification algo-
rithm.

The advantages of the proposed solution are given by the current
technologies (which have constant technical support) and by the opti-
mizations in the training and evaluation phases. The PyTorch frame-
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work does not require the installation of additional drivers in order
to use GPU. The analysis and the processing of the MRI sequences is
faster using GPU. Unlike TensorFlow, this framework does not over-
charge the hardware resources. Thus, models can be obtained with
minimum degradation of the physical resources that are used.

Another advantage is the compatibility of the MONAI framework
with multiple operating systems. The solution is easily configurable
and accessible to the developers that lead research projects in this area.
The source code is available on GitHub [25].

The solution provided by this research is the first step in develop-
ment of a deep learning application for prostate lesions classification.
The next steps involve the integration of this model into an application
that provides a graphical user interface. The physicians might upload a
3D MRI into the application, obtaining a classification into “malignant
lesion” or “benign lesion”. More than this, classification algorithms are
the simplest method of analyzing 3D medical images. The develop-
ment of algorithms for detection and segmentation of the lesions would
improve the application.
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