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Wiener Index of Some Brooms

Julian D. Allagan

Abstract

In the field of chemical graph theory, a Wiener (topological)
index is a type of a molecular descriptor that is calculated based
on the molecular graph of alkanes. It gives the sum of geodesic
distances (or shortest paths) between all pairs of vertices of the
graph. We found and prove the Wiener indices of some Brooms,
which are Caterpillars, giving several unknown sequences that are
now added to the collection of the largest Online Encyclopedia
of Integer Sequences.
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1 Introduction

Suppose G is a simple graph and v ∈ V (G). The distance between two
vertices u, v ∈ V (G), often denoted by dG(u, v), is the length (number
of edges) of their shortest path in G; this is also known as a geodesic
distance. The eccentricity of a vertex v, written as ǫ(v), is the max-
imum of the distance between v and any other vertex u ∈ V , i.e.,
ǫ(v) = max

u∈V
{dG(v, u)}. Further, the diameter d of a graph is the maxi-

mum eccentricity of any vertex in the graph, i.e., d = max
v∈V

ǫ(v). These

parameters are often useful in classifying acyclic (tree-like) graphs. A
topological index, a numerical value, is often used to describe chemi-
cal structures in the areas of chemical graph theory, molecular topol-
ogy, and mathematical chemistry. One of the well-studied indices
is the Wiener topological index (W ), introduced in 1947 by Harry
Wiener [12]. In graph theory, the Wiener index of a graph G, de-
noted by W (G), is the sum of the distances between all unordered
pairs of vertices of G. This index is used to describe and even predict
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several physical and chemical properties of molecules such as density,
viscosity and velocity. Details of some of these reviews can be found
in [4], [6], [8], [9], [11], for instance.

Throughout this article, we denote the nth triangular number by

Tn =
n(n+ 1)

2
= 1 + 2 + 3 + 4 + 5 + 6 + . . .+ n. Moreover, we denote

the kth tetrahedral number by T k
n =

∑

k

Tn, the sum of the first k nth

triangular numbers.

Suppose Pn := v1 − v2 − . . . − vn−1 − vn, denotes a path on n ≥ 3
vertices. By sequentially connecting k leaves to some vertex vi, with
2 ≤ i ≤ n−1, we obtain a Caterpillar. We denote a Caterpillar on n+k
vertices by P k

n , where Pn is referred to as stem or backbone; observe
that the diameter of P k

n is the length of Pn. If every internal vertex is
adjacent to at least one of the k new pendant vertices, then P k

n is said
to be complete. Caterpillars have been used in chemical graph theory
to represent the structure of benzenoid hydrocarbon molecules, eg., [3]
and [5]. Due to their importance, we present the formulae of several
Wiener values for some Caterpillars. In particular, we found that the
Wiener values, as sequences, of these Caterpillars which contain exactly
one vertex of degree greater than 2 do not currently exist in the largest
Online Encyclopedia of Integer Sequences (OEIS) [10]. We hope to
submit these values and their formulae for the record.

It is easy to see that, for any complete graph Kn, W (Kn) =
(

n
2

)

.
Further, it is well-known that the Wiener indices of a star graph Sn

and a path graph Pn are (n − 1)2 and
(n− 1)n(n + 1)

6
, respectively.

See [1] and [5], for instance. Further, it is shown [4] that, for any tree
T on n vertices, W (Sn) < W (T ) < W (Pn).

As an example for finding Wiener indices, we present a proof for
the Wiener index of a path, after the next proposition.

Proposition 1.

n
∑

j=2

(

j

2

)

=

(

n+ 1

3

)

holds for all n ≥ 2

Proof. The case when n = 2 is trivial. Let’s assume for all k ≥ 2,
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k
∑

j=2

(

j

2

)

=

(

k + 1

3

)

. It follows that

k+1
∑

j=2

(

j

2

)

=

k
∑

j =2

(

j

2

)

+

(

k + 1

2

)

=

(

k + 1

3

)

+

(

k + 1

2

)

=

(

k + 2

3

)

.

Hence the result by induction.

Corollary 1. The Wiener index of a path Pn is W (Pn) =
(

n+1
3

)

, n ≥ 2.

Proof. Suppose the vertices of the path are v1, v2, . . . , vn. We proceed
to add the distances between vi, vj , for each i 6= j. As such, we compute
n
∑

j>i

d(vi, vj) which is equal to

(

n− i+ 1

2

)

, for each i, with 1 ≤ i ≤ n.

Now,

W (Pn) =
n−1
∑

i=1

n
∑

j>i

d(vi, vj)

=

n−1
∑

i=1

(

n− i+ 1

2

)

=

n
∑

j=2

(

j

2

)

,

for all n ≥ 2. The result follows from Proposition 1.
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Alternatively, given the nth triangular number Tn, we have

W (Pn) =
n−1
∑

j=1

Tj =
n−1
∑

j=1

j(j + 1)

2

=
1

2

(

n−1
∑

i=1

j2 +
n−1
∑

i=1

j

)

=
1

2

(

n(n− 1)[2(n − 1) + 1]

6
+

n(n− 1)

2

)

=
(n− 1)n(n+ 1)

6

=

(

n+ 1

3

)

.

Remark 1.

Recall that, the nth rising factorial and the nth falling factorial
denoted respectively by xn and xn, are xn = x(x + 1)(x + 2) · · · (x +

n− 1) =
n
∏

k=1

(x+ k− 1) =
n−1
∏

k=0

(x+ k) and xn = x(x− 1)(x− 2) · · · (x−

n + 1) =
n
∏

k=1

(x − k + 1) =
n−1
∏

k=0

(x + k). Although the previous result

(and upcoming ones) can be written in either format, i.e., W (Pn) =

(n− 1)3

3!
=

(n+ 1)3

3!
, it is beyond the interest of this article.

2 Wiener index of Comb graphs

Suppose Pn := v1 − v2 − . . . − vn−1 − vn denotes a path on n ≥ 3
vertices. By sequentially connecting a single leaf to each vertex vi,
with 2 ≤ i ≤ n − 1, we obtain a Complete Caterpillar Pn−2

n which is
commonly known as a Comb or a Centipede. Figure 2 is an example.

For the next result, we define the following: Suppose G = (V,E)
denotes a graph with an ordered list of vertices (v1, v2, . . . , vn). We
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Figure 1. Comb graph on 2n vertices

denote and define the sth partial Wiener (index) of G by W s(G) and

W s(G) =
∑

j>s

d(vs, vj), respectively. Thus, the 1st Partial Wiener (in-

dex) of G is the sum of the distances between v1 and any other vertex
vj ∈ V , j > 1. The special case when G = K2, W

1(G) = 1 = W (G).

Lemma 1. Suppose G is any graph with an ordered list of vertices

(v1, v2, . . . , vn). It follows that W (G) =

n−1
∑

k=1

∑

j>s

d(vs, vj).

Proof. From the definitions of sth partial Wiener and the (full) Wiener

index of G, it follows that W (G) =
n−1
∑

s=1

W s(G), giving the result.

Theorem 2. Suppose Gn denotes a Comb on 2n vertices. Then

W (Gn) =
n(2n2 + 6n − 5)

3
for all n ≥ 1.

Proof. Let G1 := u1 − v1, a path on 2 vertices. We add two pendant
vertices u2, v2, such that u2 is adjacent to v2 and v2 is adjacent to
v1. The resulting graph is a Comb, denoted by G2, which is isomor-
phic to P4. Thus, W 1(G1) = d(u1, v1) = T1 and W 2(G1) = T0 since

W 2(G1) = W 1(G1 \ {u1}). Further, W 1(G2) =
∑

w∈V (G2)

d(u2, w) = T3

and W 2(G2) =
∑

w∈V (G2)

d(u2, w) = T2. So, when G = P4, by definition
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of partial Wieners,

W (G) = W 1(G1) +W 2(G1) +W 1(G2) +W 2(G2)

= T0 + T1 + T2 + T3

= 10.

Iteratively, for each k ≥ 1, we form Gk from a previously formed Comb
Gk−1, by adding the pair of vertices (uk, vk) such that uk is adjacent
to vk and vk is adjacent to vk−1 ∈ V (Gk−1). Thus, the vertices of Gk

can be seen as the ordered list (u1, v1, u2, v2, . . . , uk, vk). With each
such pair (uk, vk) /∈ V (Gk−1) we compute and add the first and second

partial Wieners ofGk, k ≥ 3. So, given uk, W
1(Gk) =

∑

w∈V (Gk)

d(uk, w).

Because d(uk, uk−1) = T3 and d(uk, u1) = Tk+1, for all k ≥ 2, it follows
that

W 1(Gk) = T3 +

k−2
∑

j=1

(T3+j − T1+j)

= (Tk+1 − Tk−1) + (Tk − Tk−2) + . . .+ (T5 − T3) +

+(T4 − T2) + T3

= Tk+1 + Tk − T2, k ≥ 3.

Similarly, given (uk, vk), we compute the second partial Wieners of

Gk, i.e., W 2(Gk) =
∑

w∈V (Gk)

d(vk, w). Because d(vk, uk−1) = T2 and

d(vk, u1) = Tk, for all k ≥ 3, it follows that

W 2(Gk) = T2 +

k−2
∑

j=1

(T2+j − Tj)

= (Tk − Tk−2) + (Tk−1 − Tk−3) + . . .+ (T4 − T2) +

+(T3 − T1) + T2

= Tk + Tk−1 − T1, k ≥ 3.
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Therefore, for all n ≥ 1,

W (G) =
n
∑

k=1

W 1(Gk) +
n
∑

k=1

W 2(Gk)

=
2
∑

k=1

W 1(Gk) +
2
∑

k=1

W 2(Gk) +
n
∑

k=3

W 1(Gk) +
n
∑

k=3

W 2(Gk)

= T1 + T2 + T3 +
n
∑

k=3

W 1(Gk) +
n
∑

k=3

W 2(Gk)

= T1 + T2 + T3 +

n
∑

k=3

(Tk+1 + 2Tk + Tk−1 − T2 − T1)

= T1 + T2 + T3 +

n
∑

k=3

(Tk+1 + 2Tk + Tk−1)−

n
∑

k=3

(T2 + T1) .

Thus, we have

W (G) = T1 + T2 + T3 +

n+1
∑

k=1

Tk + 2

n
∑

k=1

Tk

+

n−1
∑

k=1

Tk −

(

3
∑

k=1

Tk + 2

2
∑

k=1

Tk + T1

)

− (n− 2) (T2 + T1)

= 3Tn + Tn+1 + 4
n−1
∑

k=1

Tk − (4n+ 1)

=
3n(n+ 1)

2
+

(n+ 1)(n + 2)

2
+ 2n(n − 1)− 4n − 1

=
2n3

3
+ 2n2 −

5n

3
,

giving the result for all n ≥ 1.

Here, in Table 2, we present the first ten values of the Wiener of
Combs. We note that Emeric Deutsch had submitted (in 2011) this
formula to OEIS as A192023 [10] and yet, we have no record of the
proof of the result.
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Table 1. The first ten values of the Wiener of a Comb graph on 2n
vertices

n 1 2 3 4 5 6 7 8
2n3

3
+ 2n2 −

5n

3
1 10 31 68 125 206 315 456

3 Wiener Index of Brooms

A Caterpillar that is obtained by adding k ≥ 1 pendant vertices to the
first (or last) internal vertex of Pn is called a Broom. We denote it as
Bk

n. The graphs generated in the special cases when k = 1 and k = 2
are called, respectively, Sling and Tridon. Figure 2 shows a Tridon.

Figure 2. A Tridon B2
n on n+ 2 vertices

Theorem 3. Suppose Bk
n denotes a Broom on n + k vertices. Then

W (Bk
n) = 2Tk + kTn−1 +W (Pn) for all n ≥ 3, k ≥ 1.

Proof. Let Tn denote the nth triangular number and ui, i = 1 . . . , k, the
pendant vertices. Consider a main path Pn, for n ≥ 3, giving W (Pn).
With each additional pendant vertex ui connected to v2 ∈ Pn, we have

d(ui, v) = Tn−1, for each v ∈ Pn and v 6= v1. This gives

k
∑

j=1

Tn−1 for

each ui, i = 1, . . . , k. Finally d(ui, v1) = 2 = d(ui, uj) with i 6= j,
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giving

k
∑

j=1

2j. Together, we have

W (Bk
n) =

k
∑

j=1

2j +
k
∑

j=1

Tn−1 +W (Pn)

= 2
k
∑

j=1

j +
k
∑

j=1

Tn−1 +W (Pn)

= 2Tk + kTn−1 +W (Pn),

giving the result.

Corollary 2. If Bn
n denotes a Broom on 2n vertices of which n+2 are

pendant, then W (Bn
n) =

2n3

3
+

n2

2
+

5n

6
, for all n ≥ 3 vertices.

Proof. From Theorem 3 when k = n, there are exactly n + 2 pendant
vertices and we have

W (B1
n) = 2Tn + nTn−1 +W (Pn)

= n(n+ 1) +
n2(n− 1)

2
+

(n+ 1)n(n− 1)

6

=
2n3

3
+

n2

2
+

5n

6
.

This formula and several of its values are submitted and they are
approved in OEIS [10] as A349416. In Table 3, we list the first ten
values.

Corollary 3. If B1
n denotes a Sling graph, then W (B1

n) =
n3

6
+

n2

2
−

2n

3
+ 2, for all n ≥ 3 vertices.
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Table 2. The first eight values of the Wiener of a Broom graph on 2n
vertices (of which n+ 2 are pendant)

n 3 4 5 6 7 8 9 10
2n3

3
+

n2

2
+

5n

6
25 54 100 167 259 380 534 725

Proof. By definition, a Sling is a Broom on k = 1 pendant vertex. So,
when k = 1, the result in Theorem 3 becomes

W (B1
n) = 2T1 + Tn−1 +W (Pn)

= 2 +
(n− 1)n

2
+W (Pn)

= 2 +
n(n− 1)

2
+

(n+ 1)n(n− 1)

6

=
n3

6
+

n2

2
−

2n

3
+ 2.

This formula is now approved in OIES as A349417. We found
later that such values are also equivalent to the sequence A005581+2
which carries many combinatorics and algebraic meanings. For in-
stance, A005581 gives the number of inscribable triangles within a
(n + 4)-gon sharing with them its vertices but not its sides, according
to Lekraj Beedassy [10].

In Table 3, we present the first ten values of the Wiener index of a
Sling.

Table 3. The first eight values of the Wiener of a Sling graph on n+1
vertices

n 3 4 5 6 7 8 9 10
n3

6
+

n2

2
−

2n

3
+ 2 9 18 32 52 79 114 158 212
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Corollary 4. If B2
n is a Tridon graph, then W (B2

n) =
n3

6
+n2−

7n

6
+6

for all n ≥ 3.

Proof. By definition, we obtain the Wiener value of a Tridon from
Theorem 3, when k = 2, in which we have

W (B2
n) = 2T2 + 2Tn−1 +W (Pn)

= 6 + 2
(n − 1)n

2
+W (Pn)

= 6 + n(n− 1) +
(n+ 1)n(n− 1)

6

=
n3

6
+ n2 −

7n

6
+ 6

after an expansion.

This formula and several of its values are submitted and they are
approved in OEIS [10] as A349418 .Table 3 shows the first ten values.

Table 4. The first eight values of the Wiener of a Tridon graph on n+2
vertices

n 3 4 5 6 7 8 9 10
n3

6
+ n2 −

7n

6
+ 6 16 28 46 71 104 146 198 261

4 Wiener index of 2-Extended Brooms

Here, we present a generalization of Brooms, by extending the origi-
nal definition from adding pendant vertices to adding paths. Suppose
Pn := v1 − v2 − . . . − vn−1 − vn denotes a path on n ≥ 3 vertices. By
sequentially adding some path graph P ′

m, on m ≥ 1 vertices to some
vi, 2 ≤ i ≤ n − 1, we obtain an m-Extended Broom which we denote
by Bk

n(m). The special case when m = 1 is a (regular) Broom, i.e.,
Bk

n(1) = Bk
n. Here, we present the case when m = 2.
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For the upcoming result, for simplicity, let Gk = Bk
n(2) denote a 2-

Extended Broom obtained by adding k ≥ 1 P ′

k := u1k−u2k to v2 ∈ Pn,
for k ≥ 1. See Figure 3 for the case when k = 2.

Figure 3. A 2-Extended Broom

Theorem 4. The Wiener index of a 2-Extended Broom Gk is given by

W (Gk) =
1

6
n3 −

1

6
n+ n2k + 6k2 − k with n ≥ 3 and k ≥ 1.

Proof. Consider the main path, Pn. Now, we sequentially add P ′

k :=
u1k − u2k to v2 ∈ Pn, for k ≥ 1. Knowing W (Pn), we proceed to add
the values of d(u1k, v) and d(u2k, v), for each v ∈ Pn and k ≥ 1.

Observe that
∑

xk

d(u1k, xk) = Tn and
∑

y

d(u2k, y) = Tn−1 for every

xk ∈ {u2k, v2, v3, . . . , vn} and y ∈ {v2, v3, . . . , vn}. Further, d(u1k, v1) =
3 and d(u2k, v1) = 2.

Thus, when k = 1, we have

W (G1) = W (Pn)+

+
∑

x1

d(u11, x1) +
∑

y

d(u21, y) + d(u11, v1) + d(u21, v1)

= W (Pn) + Tn + Tn−1 + 2(1) + 3(1).
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When k = 2. We have d(u12, v1) = 3 = d(u12, u21), d(u22, v1) =
2 = d(u22, u21), and d(u12, u11) = 4, d(u22, u11) = 3. Together, with
∑

x2

d(u12, x2) +
∑

y

d(u22, y) for every x2 ∈ {u22, v2, v3, . . . , vn} and

y ∈ {v2, v3, . . . , vn}, we have

W (G2) = W (G1)+

+
∑

x2

d(u12, x2) +
∑

y

d(u22, y) + 2(2) + 3(2) + (3 + 4).

Similarly, when k = 3, we obtain

W (G3) = W (G1) +W (G2) +
∑

x3

d(u13, x3) +
∑

y

d(u23, y) + 2(3)+

+ 3(3) + 7(2).

Thus, for all k ≥ 1, we obtain recursively that,

W (Gk) =

k−1
∑

i=1

W (Gi) +
∑

xk

d(u1k, xk) +
∑

y

d(u2k, y) + 2

(

k
∑

i=1

i

)

+ 3

(

k
∑

i=1

i

)

+ 7

(

k−1
∑

i=1

i

)

= W (Pn) + kTn + kTn−1 + 2Tk + 3Tk + 7Tk−1

= W (Pn) + k(Tn + Tn−1) + 5Tk + 7Tk−1.

Since W (Pn) =
(n+ 1)n(n− 1)

6
and Tj =

j(j + 1)

2
, the result follows

after expansion.

In the next two corollaries, we present two extremal cases; when
k = n and when k = 1. Both cases follow directly from the previous
theorem. We present the first ten values for each case and we point
out that neither sequence currently exists in OEIS [10].

Corollary 5. The Wiener index of a 2-Extended Broom Gn on 3n

vertices is given by W (Gn) =
7

6
n3 + 6n2 −

7n

6
with n ≥ 3.
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Table 5. The first eight values of a 2-Extended BroomGn on 3n vertices

n 3 4 5 6 7 8 9 10
7

6
n3 + 6n2 −

7n

6
82 166 290 461 686 972 1326 1755

Table 5 shows some of the values of W (Gn).

Corollary 6. The Wiener index of a 2-Extended Broom G1 on n+ 2

vertices is given by W (G1) =
1

6
n3 + n2 −

1

6
n+ 5 with n ≥ 3.

Table 6 shows some of the values of W (G1).

Table 6. The first eight values of a 2-Extended Broom G1 on n + 2
vertices

n 3 4 5 6 7 8 9 10
1

6
n3 + n2 −

1

6
n+ 5 18 31 50 76 110 153 206 270
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