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Abstract

A new form of the hidden discrete logarithm problem, called
split logarithm problem, is introduced as primitive of practical
post-quantum digital signature schemes, which is characterized
in using two non-permutable elements A and B of a finite non-
commutative associative algebra, which are used to compute gen-
erators Q = AB and G = BQ of two finite cyclic groups of
prime order ¢q. The public key is calculated as a triple of vectors
(Y,Z,T): Y =Q% Z=G"Y, and T = Q*B~'G’, where =z, w,
a, and b are random integers. Security of the signature scheme
is defined by the computational difficulty of finding the pair of
integers (x,w), although, using a quantum computer, one can
easily find the ratio z/w mod q.
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cryptosystem.
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1 Introduction

In the current field of development of post-quantum cryptographic al-
gorithms and protocols [I], considerable attention of the world crypto-
graphic community is paid to the development of two-key cryptographic
schemes on algebras [2], [3], on Boolean functions [4], [5], and on linear
codes [6], [7]. To develop a public-key cryptoscheme that is resistant to
an attack including computations on a hypothetic quantum computer
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(quantum attack), one should use the computationally complex prob-
lems different from the factoring problem and the discrete logarithm
problem (DLP), since each of them can be solved in polynomial time
on a quantum computer [8]—[10].

The hidden discrete logarithm problem (HDLP) defined in the fi-
nite non-commutative associative algebras (FNAAs) is very attrac-
tive as a primitive of practical post-quantum digital signature (DS)
schemes [II]-[I3]. Several different forms of the HDLP and design
criteria of the HDLP-bases DS schemes are considered in the pa-
pers [14], [15].

For a more complete understanding of the potential of the HDLP as
a post-quantum cryptographic primitive, it is interesting to expand the
set of forms of defining the HDLP. This article offers a new form called
split logarithm problem (SLP). Next Section 2 considers the notions of
DLP and HDLP and used notations. Section 3 introduces a novel form
of the HDLP and a SLP-based signature scheme. Section 4 presents
discussion and Section 5 concludes the paper.

2 Preliminaries

2.1 Use of the exponentiation as a base operation of
public-key cryptoschemes

In the finite associative algebraic structures, the exponentiation can be
performed sufficiently fastly and allows one to define a computation-
ally complex problem, called DLP, well suitable for designing public-
key cryptoschemes of different types (public key-agreement protocols,
public encryption algarithms, signature schemes) and commutative en-
cryption algorithms. The DLP is defined in a finite cyclic group as
problem of finding an integer value z satisfying the equality

Y = Q" (1)

where @ is the group generator; Y/ and ) are known elements of the
group. Formula () is used to generate a public key in different DLP-
based cryptoschemes. To set a required security of cryptoschemes, i. e.,
fairly high difficulty of the DLP, the group order should be prime and
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have large size (256 to 2048 bits and more, depending on the type of the
used cyclic group). In the known DLP-based DS schemes, the values @
and Y’ are used as parameters of signature verification equations, i. e.,
usually they are public parameters of cryptoschemes. Since the Shor
quantum algorithm [8] allows one to find effectively the logarithm value
in any explicitly given cyclic group, the DLP-based cryptoschemes are
not resistant to quantum attacks.

The idea of the HDLP consists in using the exponentiation as the
base operation introducing the main contribution to the security of
the public-key cryptoschemes and masking the parameters of the base
cyclic group (the group in which the exponentiation operation is per-
formed to calculate a public key). Thus, in the HDLP-based cryp-
toschemes the base cyclic group is hidden. Obviously, the HDLP must
be set in some finite algebraic support, which includes a sufficiently
large number of different cyclic groups, forming an environment in
which some fixed cyclic group can be securely hidden. In addition,
masking operations must have some special properties that ensure the
correct operation of the cryptoscheme.

Different types of the FNAAs of different even dimensions have
been proposed for their use as algebraic support of the HDLP-based
cryptoschemes [3], [I6]. The non-commutativity of the multiplication
operation is a principal property of the FNAAs for defining the HDLP,
which allows one to set the masking operations possessing the required
properties, one of which is mutual commutativity with the exponenti-
ation operation. The latter is provided when using the automorphism-
map ¢4 and homomorphism-map 1y operations for masking the base
cyclic group. Masking operations are secret, therefore they should be
dependent on selection of some random values.

The ¢4 operation, parameterized by an invertible algebra element
A, is defined in an FNAA containing a two-sided global unit £ by the
formula

pa(X) = AXA, (2)

where X takes on all values in the algebra. The ¢ g operation, pa-
rameterized by a left-sided unit L and a locally invertible element H,
can be defined in an FNAA containing a large set of left-sided global
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units [I7] by the formula
Yo (X)=HXH', (3)

where X takes on all values in the algebra and the algebra element
H’ is such that HH' = H'H = L. It is easy to see that each of
the masking operations set by the formulas ([2) and @) is mutually
commutative with the exponentiation operation: pa (X*) = (¢a (X )k
and Y g (Xk) = (Yr.H (X))k Some other types of masking operations
are considered in [11], [I3].

When using masking operation set by the formula ([2), in the DS
scheme [I2] on a 4-dimensional FNAA the public key is formed as
follows:

1. Select at random a non-invertible vector B generating a cyclic
group of prime order ¢ having fairly large size and a random non-
negative integer x < q.

2. Select at random an invertible element G such that GB # BG
and calculate the first element Y of the public key: Y = GB*G~!.

3. Select at random an invertible element H such that HB # BH
and GH # HG and calculate the second element Z of the public key:
Z=HBH™ '

4. Calculate the third element 7" of the public key: T'= GRH ™!,
where R is an invertible vector representing a local right-sided unit of
the vector B (formulas describing sets of local right-sided anf left-sided
units are presented in [12]).

The elements of the public key (Y,Z,T) are contained in three
different cyclic groups and no element of the hidden group generated
by the non-invertible vector B is known. To generate a signature only
one secret parameter (the integer x) can be used, although many other
secret values are used to calculate the public key. Therefore, one can
define this form of the HDLP as finding the private key x that is discrete
logarithm in a hidden group.

A certain disadvantage of the signature scheme [12] is the use of a
hidden group generated by a non-invertible element of the FNAA used
as algebraic support. However, in the signature scheme [I2] based
on this form of the HDLP, the said flaw seems to be unavoidable. In
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section 3 of this paper, a new form of the HDLP, called SLP, is pro-
posed, the application of which makes it possible to avoid using the
signature scheme parameters that are non-invertible elements of the
algebra. This possibility is due to the used new masking mechanism
that consists in performing two exponentiation operations in two dif-
ferent cyclic groups of the same prime order, which are set by some
two fixed secret elements of the FNAA.

2.2 The used algebraic support

To be used as algebraic support of the HDLP form proposed in the
present paper, an FNAA should i) contain a two-sided global unit and
ii) contain a sufficiently large set of cyclic groups of prime order ¢ having
a sufficiently large size (256 bits or more). Many FNAAs satisfying the
first requirement are described in the literature, for example, see [11],
[12], [16]. To satisfy the second criterion, an FNAA can be set over the
finite ground field GF(p), the characteristic of which has the structure
p = eq+1, where ¢ is a 256-bit prime; e is a small even number (usually
e=2).

As the used algebraic support, we have chosen the 4-dimensional
FNAA defined over GF(p) and described in [18]. We also use notations
of [I8]: ep, e1, €2, and e3 are formal basis vectors; ag, a1, as, a3 € GF(p)
are coordinates of a vector A = aqgeg + aje] + ases + azes that can be
alternatively written as A = (ap, a1, as,as). The vector multiplication
operation of two vectors A and B = byeg + bie1 + boes + bzes is defined
by the following formula

3 3 3 3
AB = <Z aiei> Z bjej = Z Z aibj (eiej) )
i=0 =0 =0 i

where the product e;e; for all possible pairs of the integers i and j is
to be replaced by some single-component vector Aej indicated in the
cell at intersection of the ith row and the jth column of so called basis
vector multiplication table (BVMT) shown as Table 1, where A\ # 0.
The value A # 1 is called structural constant.

Our choice is due to the fact that the vector multiplication operation
in this algebra is given by a sparse BVMT, which reduces the compu-
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Table 1. Setting the multiplication operation in the used FNAA [I§].

: ‘ € €1 e €3
€y | € 0 0 €3
e 0 e €9 0
€9 €9 0 0 )\el
€3 0 €3 )\eo 0

tational complexity of multiplication and exponentiation operations by
two times. The latter leads to a twofold increase in the performance of
the developed signature scheme. In addition, the structure of the said
FNAA is investigated in detail, and results of [I8] show the algebra
includes only three types of commutative subalgebras having the same
order equal to p*:

i) multiplicative group of which is generated by a minimum genera-
tor system containing two vectors of order p — 1, the group order being
equal to (p — 1)%; number of such subalgebras is equal to p(p + 1)/2;

ii) multiplicative group of which is cyclic and has order p(p — 1);
number of these subalgebras is equal to p + 1;

iii) multiplicative group of which is cyclic and has order p? — 1;
number of these subalgebras is equal to p(p — 1)/2.

In this paper, we consider the case of defining the FNAA over the
finite ground field GF(p) characteristic of which has the structure p =
2q+ 1, where q is a 512-bit prime, and of using the cyclic groups of the
order ¢ that is a divisor of p — 1, which are contained in the set of the
commutative subalgebras of the first type. The vector £ = (1,1,0,0)
is the global two-sided unit of the algebra. A vector G satisfying the
condition ggg1 # Agags is invertible.
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3 The split logarithm problem and a SLP-
based signature scheme

3.1 Proposed form of the HDLP

Proposition 1. Suppose invertible vectors A and B are not per-
mutable, and the vector () = AB has prime order equal to ¢q. Then the
vector G = BA also has order equal to g.

Proof. By the condition, Q9 = E = A(BA)Y'B = E =
ABA)1™! = B! = (BA)"! = A7'B7 = (BA) ™ = g = G
and G? = FE. Proposition 1 is proven. O

Proposition 2. Suppose invertible vectors A and B are not per-
mutable; Q = AB and G = BA. Then the equality Q¥ = AG*~'B
holds true.

Proof. Q% = (AB)F = A(BA)*~'B = AG*~1'B. Proposition 2 is
proven. O

Using the algorithm [I8] for the generation of a group having 2-
dimensional cyclicity, one can easily generate at random a vector @’
of order p — 1, which is not a scalar vector, and compute the vector
Q = Q'? having order equal to q. Then, fixing a vector A that is
not permutable with Q, one can compute the vectors B = A~1Q and
G = BA. The proposed new form of the HDLP follows from the next
procedure for generating a public key that will be used in the signature
scheme described in the Subsection 3.2 of the article:

1. Generate two random vectors A and B such that both of the
vectors () = AB and G = BA # @ have the same order ¢ and the
vector GG is not a scalar vector.

2. Select at random non-negative integer x < ¢ and a primitive
element « (modulo p). Then compute the first public key element
Y = (AB)*a = Q%a.

3. Select at random non-negative integer w < ¢ and compute the
second public-key element Z = (BA)" = G".

4. Generate two random integers a < g and b < ¢ and calculate the
third signature element 7' = Q*B~'GY.

Note that each of the vectors () and G together with a scalar vector
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N = (n,n,0,0), where n € GF(p) is an element of order ¢, compose
a minimum generator system of a 2-dimensional cyclicity group (con-
tained in a commutative subalgebra of the first type).

The calculated public key (Y, Z,T) is intended for use in a DS
scheme in which the known parameters are the parameters for setting
the algebraic support and the public key elements, i. e., the vectors
Y, Z, and T. The values x and w represent logarithms of the values
Y and Z contained in two different cyclic groups (in the case, when
the basis of logarithm is hidden, i. e., unknown). All other values used
while calculating the public key are secret. The known value T con-
nects the said cyclic groups. The logarithms z and w are connected
via the public-key element 7" and one can propose a method for gen-
erating a signature, when using the values of the ratio /w mod ¢ and
a (see alternative signature generation algorithm in the next Subsec-
tion 3.2). Therefore, the introduced form of the HDLP can be called
split logarithm problem (SLP).

3.2 Candidate for a practical post-quantum DS scheme

To generate a signature to some electronic document M, the owner of
public key (Y, Z,T') (a person that had supposedly generated this key)
should use some secret parameters, the set of which is called a private
key. In the proposed SLP-based signature scheme it is sufficient to use
only three secret values, namely, integers x, w, and «. However, in this
case, an alternative signature generation procedure is to be applied,
in which two exponentiation operations are executed; whereas, when
using the private key, including the values A, G, z, w, a, and d (d =
a + bmod ¢q), the following signature generation procedure, including
only two exponentiation operations, outputs a genuine signature.

Algorithm for generating a signature.

1. Generate at random an integer k£ < ¢ and an integer p < p. Then
calculate the vector R = AGFp.

2. Compute the first 512-bit signature element e from the document
M to which the vector R is concatenated: e = fy (M, R), where fp is
a pre-agreed collision-resistant 512-bit hash-function.
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3. Compute the second 512-bit signature element s:

k—d—exr+1
s = —— mod gq.
T + we

4. Compute the third 512-bit signature element o: o = pa_(e+5).

On the average, computation of a 1024-bit signature (e, s, o) re-
quires performing one exponentiation operation in the FNAA (6144
multiplications modulo p) which makes a major contribution to the
computational complexity of the signature generation procedure and
one exponentiation operation in GF(p) (768 multiplications modulo
p). The verification of the signature (e, s,o) to the document M is
performed using the public key (Y, Z,T') and the following algorithm.

Signature verification algorithm.

1. Using the public key, compute the vector R':
R =Y*“t*TZ%0.

2. Compute the hash-function value ¢’ = fi (M, R’).
3. If ¢ = e, then the signature is accepted as a genuine one. Oth-
erwise, the signature is rejected.

The computational complexity of the signature verification proce-
dure is roughly equal to two exponentiation operations in the FNAA
used as algebraic support and one exponentiation operation in GF'(p)
(totally, ~ 13056 multiplications modulo p).

Correctness proof of the developed SLP-based signature scheme im-
plies demonstrating that the correctly computed signature (e, s) passes
the verification procedure as a genuine one. Due to Propositions 1 and
2, we have the following:

R/ — Ye—i—sTZseJ — Qace—l—acsae-l—SQaB—leGwsepa—(e-l—s) —
_ Nzetzstap—1ywse+b __ retxs+a—1 -1, ywse+b __
—Q BlGusett = AG BBTlGusett =
_ AGS(:Eere)ereerflp — Ao ka —R = R =R = ¢ —=e¢.
Alternative signature generation algorithm.
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1. Generate at random integers ¢t (0 < t < ¢), u (0 < u < q),
and p (0 < p < p). Then calculate the vector R = Y'T'Z"p (note:
R = AG*p, where k =tz — 1 + a + b + wu mod q).

2. Compute the value e = fr (M, R).

3. Compute the value s:

(t—e)r+wu

e ——— d g
’ (x4 we) ot (zw=! +e)

4. Compute the third signature element o: o = pa™(¢7%) mod p

4 Discussion

One of the features of the proposed signature scheme is the use of the
scalar multiplication operation when calculating the first element Y of
the public key and vectors R (in the signature generation algorithm)
and R’ (in the signature verification algorithm). Without introduc-
ing scalar multiplication operations, the signature scheme is somewhat
simplified, but the rationale for using multiplications by scalars is that
they make it computationally feasible to construct a periodic function
with a period length that depends on the values of x and w. Consider
a simplified version of the proposed signature scheme with the signa-
ture (e,s), when calculation of the first public-key element and the
said vectors is executed by the following formulas: Yy = (AB)* = Q7,
R = AG*, and R = Y*tsT 7%,

Proposition 3. The private key elements A and G satisfy the
inequality AG # GA, i. e. they are not permutable.

Proof. Assume the opposite: AG = GA. Taking into account
that G = BA, we have: ABA = BA? = ABAA™! = BA’A™! =
AB = BA. The latter equality contradicts the fact that in the proposed
signature scheme, the vectors A and B are not permutable. Proposi-
tion 3 is proven. O

Proposition 4. For integer variable £k = 0,1,...q — 1, the func-
tion F(k) = AGF, where A and G are elements of the private key of
the introduced signature scheme, takes on values in ¢ different cyclic
groups.
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Proof. Assume the opposite: for some two integes k and ¢, satisfying
the conditions 0 < k < g and 0 <t < k, the vectors F'(k) and F(t) are
contained in the same cyclic group I' of some order w. The latter means
that for some two integers i and j (suppose for the sake of certainty
that i > j) we have F(k) = V' and F(t) = V7, where V is a generator
of the cyclic group T, i. e., AGF = V'’ and AG* = V7. Therefore,
AGF = VI = VIViTI = AGHV=I = GFt = Vi, Since k —t and ¢
are mutually prime numbers, one can write G = Vi = V%, where z
is an integer number.

Thus, AGF = VI = AV = Vi = Ayks—imodw — p — 4 =
y—(kz—i)modw = The Jatter equality means that A € T; therefore, A
and V are permutable: AV = VA = AGF = AV =V? A = GFA,
i. e. AGF = G¥A. Taking into account that G = (Gk)zl, where the
integer 2/ = k7! mod ¢, one gets: A(GF) = (G¥) A = AG = GA,
i. e. the vectors A and G are permutable. However, this contradics
Proposition 3. The resulting contradiction proves Proposition 4. O

According to the public parameters of the simplified signature
scheme, you can directly set a periodic function containing a period
with a length that depends on the values of x and w, namely, the
function Fy(i,j) = Y{TZ7 in two integer variables i and j. Proposi-
tion 4 shows the values of this function are distributed evenly across ¢
different cyclic groups (note: Fy(i,j) = AGIT).

However, one can specify a periodic function, the use of which makes
it possible to calculate the ratio of secret values x and w on a hypothetic
quantum computer. Indeed, it is easy to show: Z* = TZT~1 = Q"
and the periodic function Fy(i,j) = Y3Z* in two integer variables i
and j contains a period with the length (—1, zw™1):

Foli— 1,5+ aw™b) = yi-lz=tow! = grli-hguli—aw™) —
= QUQTQYQ™" = Y{ 77 = Fy(i, j).

This function takes on the values in an explicitly specified cyclic
group (that is generated by the vector Z*). Therefore, using the Shor
quantum algorithm, one can easily find the period length (—1, zw™!)
and, using the value of the ratio 7, compute signatures, using the

alternative signature generation algorithm.
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Using an additional scalar multiplication, when computing the Y =
Q% element of the public key, constructon of the periodic functions
taking on the values in a fixed cyclic group and containing a period
depending on the value x or/and w becomes computationally infeasible.
Indeed, it is easy to see that the vectors Y and Z* compose a minimum
generator system of a commutative 2-dimensional cyclicity group of
order ¢? (since the vectors Yy and Z* are elements of the same cyclic
group of order q). Therefore, the function F(i,7) = Y*Z*/ takes on all
values in the said group and has a period with the length (¢, ¢). Thus,
the criterion of post-quantum resistance [14] is satisfied in the proposed
SDL-based signature scheme. This explains why the proposed signature
scheme uses vectors ) and G belonging to commutative subalgebras of
the first type.

The reductionist security-proof method [19] that was applied to the
Schnorr DLP-based signature scheme [20] can also be applied to the
developed SLP-based DS scheme. Like in the Schnorr DS scheme, in
the developed one, during the signature generation process the base
exponentiation operation G* is performed before calculating the first
signature element e = fz (M, R), where R = AG*.

In the model [19] of reductionist security-proof, it is assumed a
signature forger is able to calculate the second signature element s
equally well for two different hash functions fg and f}; (it is supposed
that the hash function fr is collision-resistant and free of properties
that can be used to forge a signature [21]). Using the same input data,
the forger executes two computer programs, each of which uses the same
value of k, but different hash functions. The forger obtains two different
signatures (e, s) and (€/, s’) for fixed value k and different values e and
¢’. Thus, the forger gets two linear equations with the unknown value
of k and the unknown value of the discrete logarithm z. In the Schnorr
signature scheme [20], the discrete logarithm represents one integer x
and the second signature element s = k + ex mod ¢, therefore, the
forger, using the obtained two equations, can calculate the private key
T.

In the case of the proposed SLP-based DS scheme, the second signa-
ture element can be calculated by the formula ({]) with three unknowns
x/w mod g, t, and u, where the ratio 2 /w represents the split logarithm.
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Therefore, the security-proof method [19] is to be extended to the case
of forger’s computing three different signatures (e, s1,01), (e2, s2,02),
and (es, s3,03), when using three different hash functions and fixed
values of ¢, u, and p (the latter fixes the vector R in the alternative
signature generation algorithm). As a result, the forger composes a
system of three linear equations with three unknowns: x/w mod g, t,
and u. Then, solving this system, the forger gets the values of every
of the indicated unknowns. The unknown value of « is computed as

follows:
o1 (624’82761781)_1 mod q
o = — .
02

Thus, an assumption of the existence of an algorithm for breaking
the proposed signature scheme leads to the conclusion that there is
an effective algorithm for calculating the values of z/w mod ¢ and «a.
This means that the analysis of the security of the proposed signature
scheme is reduced to the analysis of the computational complexity of
solving the SLP. The latter is the task of independent research.

A rough comparison of the proposed DS scheme with some known
candidates for post-quantum signature schemes is presented in Table 2
(in the case of setting the used FNAAs over GF'(p) with 512-bit prime
p) which demonstrates the introduced SLP-based DS scheme has ad-
vantages in the size of parameters and peformance (lower execution
time; *estimated in multiplications modulo p), which are significant
from a practical point of view.

5 Conclusion

A new form of the HDLP, called SLP, has been proposed as a primitive
for developing post-quantum cryptoschemes. A comparison of the de-
veloped SLP-based DS scheme with other candidates for post-quantum
signature algorithms shows the former is more attractive from a prac-
tical point of view due to its smaller size of public key and signature.
However, more detailed security analysis is to be performed as indepen-
dent research work. Developing new forms of the SLP and combining
the current version of the SLP with a known form of the HDLP in
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Table 2. A rough comparison of some DS schemes.

Signature signature | public-key | sign. gener. | sign. verific.
scheme size, bytes | size, bytes time* time*
[14] 256 1536 ~ 37,000 ~ 49,000
5] 320 2316 ~ 83,000 | ~ 110,600
[11] 256 1536 ~ 61,400 =~ 49,200
2] 128 768 ~12,300 | =~ 24,600
Falcon [22] 1280 1793 - —
Dilithium [23] 2701 1472 — —
Proposed 128 768 ~ 6,000 ~ 12,300

framework a single signature scheme also represent interest for further
research.
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