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Degree of favoring in apportionments

Ion Bolun

Abstract

To quantitatively estimate the degree of favoring the bene-
ficiaries in proportional apportionments of entities of the same
kind (seats, PCs, etc.), five quantitative criteria were defined.
By computer simulation, the degree of favoring the large or small
beneficiaries by 6 apportionment methods is identified. Thus, fa-
voring large beneficiaries by the d’Hondt method can overpass
10.7-12.1 entities (entities in excess) and that of small benefi-
ciaries by the Huntington-Hill method – 2.7-11.0 entities, and
by the Adapted Sainte-Laguë method – 1.7-9.7 entities. The
Huntington-Hill method favors small beneficiaries up to 5.70
times stronger than the Adapted Sainte-Laguë one does. Also,
the d’Hondt method favors beneficiaries (the large ones) much
stronger than the Adapted Sainte-Laguë one does (the small
ones) – for very many cases the respective ratio exceeds 10 times.

Keywords: apportionment method, comparative analysis,
computer simulation, criteria, favoring large beneficiaries, favor-
ing small beneficiaries.
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1 Introduction

Often it is necessary to distribute a given number M of discrete enti-
ties of the same kind (a-entities) among n beneficiaries (parties, schools,
hospitals, etc.) in proportion to a numerical characteristic assigned to
each of them Vi, i = 1, n. For example, M may be the total num-
ber of seats in the elective body, n – the total number of parties and
V – the total number of voters (deciders). This is known as propor-
tional apportionment (APP) problem [1-3]. The integer character of
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this problem usually causes a certain disproportion of the apportion-
ment {xi, i = 1, n} [1, 4 - 6], some beneficiaries being favored at the
expense of the others (notations {ci, i = 1, n} and {c1, c2, ..., cn} are
used equivalently to specify the group of elements c1, c2, ..., cn). Such
favoring leads to the increase of disproportionality of the apportion-
ment. Therefore, reducing the favoring in question is one of the basic
requirements (free of bias condition [1, 3]) when the APP method is
chosen to be applied under concrete situations.

As it is well known, the d’Hondt method [7] favors large beneficiaries
(with larger Vi value) [1, 4, 8, 9], and Huntington-Hill method [10]
favors the small ones (with smaller Vi value) [1, 8]. But which of
the two favors beneficiaries to a larger extent? Preferences, in this
sense, between methods, can help. For example, in [8], five divisor
APP methods are placed “in the order as they are known to favor
larger parties over smaller parties: Adams, Dean, Hill, Webster, and
Jefferson” (in the increasing order of favoring). However, the best way
is to estimate this property quantitatively – the degree of favoring the
beneficiaries. Three such approaches are proposed in [12, 13]. These
and other approaches, including new criteria for estimating the degree
of favoring the large or, on the contrary, the small beneficiaries by APP
methods, are explored in this paper by computer simulation.

2 Approaches of favoring in apportionments

The essence of favoring the beneficiaries in apportionments is described
in different papers, including [1, 4, 8, 11]. Four such approaches are
described below in this section.

Approach 1. Let’s consider a-entities as seats, deciders as pop-
ulation and beneficiaries as states. Then, according to [12], “An
apportionment that gives x1 and x2 seats to states having popula-
tions V1 > V2 > 0 favors the larger state over the smaller state if
x1/V1 > x2/V2, and favors the smaller state over the larger state if
x1/V1 < x2/V2”. To compare APP methods with reference to favor-
ing the states, the bias ratio δ/(γ + δ) as criterion is proposed; here
δ is the number of pairs of states in which the small state is favored
and γ is the number of pairs of states in which the large state is fa-
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vored. Using this criteria, the results obtained in [12] for the 19 United
States Congressional apportionments of seats in the period of 1790-
1970 years are (for five APP methods): J.O.Adams – 0.780; J.Dean –
0.583; E.V.Huntington – 0.562; D.Webster – 0.518 and T.Jefferson –
0.199. APP methods are listed in the decreasing order of the bias ratio
of favoring the small states, that is in the increasing order of favoring
the large states.

Approach 2 [12]. Let g be a number satisfying xi > g for at least
⌊n/2⌋ states and xi < g for at least ⌊n/2⌋ states. Define the set of
large states as L = {i, xi > g} and the set of small states as S =
{i, xi < g}; a state with g seats belongs to both L and S. Then, in an
apportionment, the large states are favored if ΣLxi/ΣLVi > ΣSxi/ΣSVi

and the small states are favored if ΣLxi/ΣLVi < ΣSxi/ΣSVi. Applying
this criterion to the mentioned above 19 apportionments of seats, in
[12], the following results are obtained (number of times small states
were favored for each of the five APP methods): J.O.Adams – 19;
J.Dean – 14; E.V.Huntington – 13; D.Webster – 9, and T.Jefferson
– 0. This order of APP methods coincides with the one obtained in
Approach 1.

Approach 3. The same order for the five APP methods, but ap-
plying an analytical not experimental approach, is obtained in [8, 11].
The type of ordering used is called majorization (majorization order-
ing). “It has the advantage of providing a complete characterization,
and has its roots in studies of equality and inequality” [8, p. 886] and
its formal properties [15]. Majorization provides an ordering between
two vectors m = (m1, . . . ,ml) and m’ = (m′

1, . . . ,m
′

l), with ordered
elements m1 ≥ . . . ,≥ ml and m′

1 ≥ ... ≥ m′

l, and with an identical
component sum m1 + . . . ,+ml = m′

1 + ... + m′

l = M . The order-
ing states that all partial sums of the k largest components in m are
dominated by the sum of the k largest components in m’: m1 ≤ m′

1,
m1 +m2 ≤ m′

1 +m′

2, . . . , m1 + ...,+ml ≤ m′

1 + ...+m′

l.

To compare APP methods by majorization ordering, the notion
of majorization from apportionment vectors to apportionment meth-
ods is extended and the signpost sequences that determine the meth-
ods are used. So [1], a divisor method of apportionment is defined
through numbers s(k) in the interval [k; k + 1] such that the sequence
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s(0), s(1), ... is strictly increasing; here a number s(k) is a “signpost”
(“dividing point”) splitting the interval [k; k+1] into a left part, where
numbers are rounded down to k, and a right part, where numbers are
rounded up to k + 1. For s(k) itself, there is the option to round
down to k or to round up to k + 1, thus possibly generating mul-
tiplicities. The numbers rounded this way are the quotients of the
weights (Vi) and a divisor (d), V1/d, . . . , Vl/d, for some choice of di-
visor d > 0 common to all weights. If party i gets mi seats, then
necessarily s(mi–1) ≤ Vi/d ≤ s(mi). The divisor d is adjusted so that
the sum of all seats becomes equal to M .

Taking into account the introduced notions, in [8, 11] it is proved
that divisor method A is majorized by divisor method A’, in sense
of favoring, if and only if the ratio s(k)/s′(k) is strictly increasing
in k, where s(k) and s′(k) are the signposts for methods A and A’,
respectively. Finally, it is proved that the divisor method with power-
mean rounding of order p is majorized by the divisor method with
power-mean rounding of order p′ if and only if p ≤ p′. This statement
puts the mentioned above five divisor methods into the majorization
ordering that coincides with the one obtained in Approaches 1 and 2.

Approach 4. A more strong, than the three described above ap-
proaches, is the one proposed in [1]: an apportionment method favors
large parties if ΣLxi/ΣLVi > ΣSxi/ΣSVi and it favors small parties if
ΣLxi/ΣLVi < ΣSxi/ΣSVi, where L and S are subsets of 1, 2, . . . , n such
that xi > xj whenever i ∈ L and j ∈ S [3].

At the same time, as mentioned in [16], there are no known such
methods that would be used in practice; one and the same APP method
in some apportionments can favor, predominantly, large beneficiaries,
and in other apportionments, predominantly, small beneficiaries. This
is why, as noted in [16], this approach can be used to identify the “total
favoring” or “full favoring” of large or small beneficiaries in particular
apportionments. It is easy to observe that “full favoring” are particular
cases of “favoring” the beneficiaries – large (predominantly) or small
(predominantly).

Resuming, Approaches 1-4 can place APP methods in the decreas-
ing order of favoring the small or, on the contrary, the large benefi-
ciaries. Moreover, Approaches 1 and 2 permit to characterize quan-
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titatively, to some extent, APP methods: Approach 1 – the relative
frequency (probability, on the infinite number of apportionments) of
favoring by pairs large or small beneficiaries; Approach 2 – the rela-
tive frequency (probability, on the infinite number of apportionments)
of favoring the subset of large or the subset of small beneficiaries. In
Section 3, there are discussed other informative approaches regarding
the degree of favoring the large or the small beneficiaries. First, a sys-
temized vision of favoring the beneficiaries in apportionments is done.

3 Criteria for estimating the degree of favoring

Based on [13, 15], one can distinguish four notions of favoring in ap-
portionments:

a) favoring a decider (voter, etc.) in an apportionment;

b) favoring a beneficiary in an apportionment;

c) favoring large or small beneficiaries in an apportionment;

d) favoring large or small beneficiaries overall by an apportionment
method.

Also, as mentioned in [13], each of the specified above four notions can
be characterized by:

A) identifying the fact of favoring the deciders or beneficiaries in
apportionments;

B) quantitatively estimating the favoring of deciders or beneficiaries
in apportionments.

Of course, all quantitative criteria, along with the respective quanti-
tative assessments (aspect B), can be used also to identify the fact of
favoring in apportionments (aspect A) [13]. Combining issues A and
B with notions (a)-(d), further in this paper the following aspects of
favoring in apportionments will be distinguished: Aa, Ab, Ac and Ad
and, respectively, Ba, Bb, Bc and Bd.
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With refer to proportional apportionments, it is considered that a
beneficiary i is favored if a larger number xi of a-entities is distributed
to him than would be due according to the Vi value, that is xi >
MVi/V = Di, where M = x1+x2+ . . . +xn and V = V1+V2+ . . . +Vn.
In [15], Di is defined as the free of bias part (rights, influence power,
etc.) of beneficiary i in the apportionment; also, r = M/V is defined as
the free of bias part (rights, etc.) of a decider in the apportionment, if
to consider that V is the total number of deciders. Of course, the lack
of favoring is possible only if the equalities ⌊MVi/V ⌋ = MVi/V, i = 1, n
take place; here ⌊z⌋ means the integer part of the real number z. In
practice, such equalities rarely occur and that is why some beneficiaries
are favored and others, respectively, are disfavored.

Definition 1. [15] In an apportionment, a beneficiary i is favored, if it
gets an excess number of a-entities (∆Di = xi–Di > 0), is disfavored,
if it obtains a deficit number of a-entities (∆Di < 0), and is neutral
(neither favored nor disfavored), if it gets a number of a-entities equal
to the expected one (∆Di = 0).

So, the essense of aspect Ab is the following:

1) for the favored beneficiary i, occurs xi > ai, where ai = ⌊Di⌋;

2) for the disfavored beneficiary i, occurs xi ≤ ai at Di > ai;

3) for the neutral beneficiary i, occurs xi = ai at Di = ai.

Aspect Bb, the degree of favoring the beneficiary i is characterized by
the number of a-entities in excess in the apportionment: ∆Di = xi–Di;
of course, if ∆Di < 0, then the beneficiary i is disfavored because it
has a deficit of a-entities. Here, it is useful to mention that because
of D1 + D2 + . . . + Dn = M and x1 + x2 + . . . + xn = M , if some
beneficiaries are favored, the other ones are mandatory disfavored at
the same summary extent.

Now, let ri be the power of influence of a decider that supported
the beneficiary i in the apportionment. According to [13], one has
ri = xi/V i, i = 1, n.
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Definition 2. (based on [15]) In an apportionment, a decider that sup-
ported the beneficiary i is favored if it gets an excess value of influence
power (∆ri = ri − r > 0); is disfavored if it obtains a deficit value of
influence power (∆ri < 0); and is neutral (neither favored nor disfa-
vored) if it gets a value of influence power equal to the expected one
(∆ri = 0).

So, the essence of aspect Aa, regarding a decider that supported
the beneficiary i, is the following:

1) for the favored decider, occurs ri > r;

2) for the disfavored decider, occurs ri < r;

3) for the neutral decider, occurs ri = r.

Aspect Ba, the degree of favoring of a decider that supported the ben-
eficiary i is characterized by the value of influence power in excess in
the apportionment, ∆ri = ri−r; of course, if ∆ri < 0, then the decider
is disfavored because it has a deficit of influence power.

Statement 1. In apportionments, favoring the deciders absolutely cor-
relates with favoring the beneficiaries supported by them.

Indeed, one has Di = MVi/V and r = M/V . So, r = Di/Vi. At the
same time, ∆ri = ri− r = xi/Vi−Di/Vi = (xi−Di)/Vi = ∆Di/Vi, i =
1, n. �

According to Statement 1, if in an apportionment, a beneficiary is
favored, then all deciders that supported this beneficiary are favored
as well. This is why, above in this section, both these cases (favoring a
beneficiary and favoring a decider that supported him) are referred to
together as aspect B. However, sometimes it is useful to characterize
quantitatively favoring the deciders apart from the characterization of
favoring the respective beneficiary.

Statement 2. The discrepancy of favoring the deciders that supported
different beneficiaries (i and k 6= i) in apportionments, measured as the
difference ∆ri−∆rk, is equivalent to the one measured as the difference
ri − rk, that is ∆ri −∆rk = ri − rk, k 6= i, i = 1, n.
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Indeed, one has ∆ri − ∆rk = ri − r − (rk − r) = ri − rk, (i, k) =
1, n, k 6= i. �

Consequence 1. Differences ∆ri − ∆rk and ri − rk, which charac-
terize the discrepancy of favoring the deciders that supported different
beneficiaries (i and k 6= i) in apportionments, are interchangeable, but
the last one is simpler.

Thus, in apportionments, the degree of favoring a beneficiary i
(aspect Bb) is characterized by the parameter ∆Di(i = 1, n), mea-
sured in a-entities (aE), and the degree of favoring a decider which
supported the beneficiary i (aspect Ba) is characterized by the param-
eter ∆ri(i = 1, n), measured in a-entities/decider (aE/DM). It remains
to define criteria for the degree of favoring large or small beneficiaries
in an apportionment (aspect Bc), overall by an apportionment method
(aspect Bd) and, optionally, of aspects Ac and Ad.

A criterion (Fa1) for estimating the degree of favoring the large
or small beneficiaries in proportional apportionments (aspect Bc) is
proposed in [13]. Further, without diminishing the universality of the
approach, it is considered that the n beneficiaries are ordered in the
non-ascending order of Vi, i = 1, n values, that is V1 ≥ V2 ≥ V3 ≥
. . . ≥ Vn. Based on these relations, in [12] the L and S subsets of
large and, respectively, small beneficiaries were defined as follows: L =
{1, 2, . . . , ⌊n/2⌋} and S = {⌈n/2⌉+1, ⌈n/2⌉+ 2, . . . , n}, where xi ≥ xj
whenever i ∈ L and j ∈ S. Here, it should be noted that in proportional
apportionments, if Vi > Vk, then xi ≥ xk.

Definition 3. [13] An apportionment favors large beneficiaries if the
summary number of a-entities in excess obtained by large beneficiaries
(L) is greater than that obtained by small beneficiaries (S), and vice
versa; that is, it favors large beneficiaries if Fa1 > 0, it favors the
small ones if Fa1 < 0, and it is neutral if Fa1 = 0, where

Fa1 =
∑

i∈L

∆Di −
∑

i∈S

∆Di. (1)

Criterion Fa1 ensures both, the identification of the fact of favoring
(aspect Ac) and the estimation of the degree of favoring the large or the
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small beneficiaries in an apportionment, measured in a-entities (aspect
Bc). Similarly, for APP methods, as a quantitative criterion in [13],
the average Fa1 of Fa1 on the infinity of apportionments is proposed.

Definition 4. [13] An apportionment method favors large beneficiaries
if the average summary number of a-entities in excess obtained by large
beneficiaries (L) is greater than that obtained by small beneficiaries (S),
and vice versa; that is, it favors large beneficiaries if Fa1 > 0, it favors
the small ones if Fa1 < 0, and it is neutral if Fa1 = 0, where Fa1 is the
average of Fa1 on the infinity of apportionments. So,

Fa1 = lim
K→∞

1

K

K∑

k=1

(
∑

i∈L

∆Dik −
∑

i∈S

∆Dik) =
∑

i∈l

∆Di −
∑

i∈S

∆Di, (2)

where ∆Di is the average of ∆Di on K → ∞ apportionments.

As criterion Fa1, the Fa1 one ensures the identification of the fact
of favoring (aspect Ad) and the quantitative estimation of the degree
of favoring the large or the small beneficiaries by an APP method,
measured in a-entities (aspect Bd). Also, from Definition 4 one can
conclude that if Fa1 6= 0, then the respective APP method is favoring
the beneficiaries (the large ones in case of Fa1 > 0 or the small ones in
case of Fa1 < 0).

Further, the notation Y of the average of parameter Y values on
the infinity of apportionments will be used.

In addition to criteria ∆Di,∆ri, Fa1 and F a1 already defined, such
quantitative criteria for assessing the favoring of beneficiaries by APP
methods may be useful in various situations, especially in research, as:

- The average relative discrepancy between the degree of favoring of
an average (conventional) large beneficiary decider and that of an
average (conventional) small beneficiary decider Fr1 (%decider-
power), where Fr1 = 100(rL − rS)/r, rL =

∑
i∈L xi/

∑
i∈L Vi,

rS=
∑

i∈S xi/
∑

i∈S Vi. Here rL and rS are the influence power
of an average (conventional) large and, respectively, of an average
(conventional) small beneficiary decider;
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- The average largest absolute discrepancy of the degree of favoring
between two beneficiaries Fa0 =

∑n−1

i=1
(∆Di −∆Di+1) = ∆Di −

∆Dn , a-entities;

- The largest discrepancy of the probability of favoring between
two beneficiaries Fp =

∑n−1

i=1
(Fpi −Fp,i+1) = Fp1 −Fpn. Here Fpi

is the probability of favoring the beneficiary i in apportionments,
that is Fpi = limK→∞

1

K

∑K
k=1

Cik , where Cik = 1, if xi > Di,
and Cik = 0, otherwise;

- The average largest relative discrepancy of the degree of favoring
between two deciders which supported different beneficiaries Fr0

(%decider-power - %DP), where Fr0 = 100
∑n−1

i=1
(ri − ri+1) =

100(r1 − rn)/r.

Criterion Fa1 allows the absolute evaluation and that of Fr1 – the rel-
ative evaluation on r of the degree of favoring the large (L) or the
small (S) beneficiaries by the APP method. The next two criteria, Fa0

and Fp, characterize the discrepancy of favoring between the largest
(i = 1) and the smallest (i = n) beneficiaries in the apportionment.
Finally, criterion Fr0 characterizes the discrepancy of favoring between
a decider which supported the largest (i = 1) beneficiary and a decider
which supported the smallest (i = n) beneficiary; it correlates with
Fa0, but is simpler. Anyway, the main criterion, when determining the
degree of favoring the beneficiaries by APP methods, is the Fa1 one.

According to Definitions 3 and 4, there is a clear distinction be-
tween the degree of favoring the beneficiaries in an apportionment and
the degree of favoring the beneficiaries overall by an APP method. For
specific apportionments, an APP method may favor particular bene-
ficiaries, both large and small, but overall, on the infinite number of
apportionments, be neutral. Namely, the degree of favoring the bene-
ficiaries by an APP method overall, on the infinite number of appor-
tionments, will be investigated thereafter in this paper.
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4 Overview of computer simulation of favoring

In total, 6 APP methods are investigated, namely the Hamilton (Hare)
- H, d’Hondt (Jefferson) - d’H, Huntington-Hill (HH), Adapted Sainte-
Laguë (ASL), Variable linear divisor (VLD) and Quota dependent lin-
ear divisor (QDLD) ones. All these methods are described, for example,
in [17].

In order to determine the values of quantitative criteria Fa0, Fr0,
Fa1, Fr1 and Fp, computer simulation using SIMAP application was
performed. Initial data used in calculations are: M = 6, 11, 21, 51,
101, 201, 501; n = 2, 3, 4, 5, 7, 10, 15, 20, 30, 50; n ≤ M–1; V = 108;
uniform distribution of the values Vi, i = 1, n; sample size 106. So, we
have 58 variants of values for the pair {M,n}: 4 + 6 + 8 + 10 = 58.
The use of small values of M is useful, for example, when determining
the M members of a parliamentary committee basing on the number
of deputies (Vi) of each of the n parties in the Parliament. Sometimes,
from the specified above 58 variants, only 50 are used – variants for
which n ≤ M/2. This is because cases in which M/2 < n < M are
rarely encountered in practice, but the apportionment disproportion
when applying the Huntington-Hill and adapted Sainte-Laguë methods
in such cases increases considerably. Some of the obtained results are
described below.

5 Preferenced APP methods by non-favoring

the beneficiaries

Some results of calculations for the average value (on 50 variants of
the pair of sizes for M and n values) of criteria Fa0, Fa1, Fr1 and
Fp at n ≤ M/2 are systemized in Table 1. In more detailes, for the
pair {M,n} at n ≤ M/2 one has 50 variants of values described in
Section 4. For each such pair of values, 1 mil variants of values for
{Vi, i = 1, n} sizes were generated randomly, at uniform distribution,
thus being obtained 1 mil variants of the APP problem initial data; for
each such variant, calculations were done, and after that, there were
obtained the average values of the explored parameters. Finally, there
were also calculated the average values of the explored criteria on 50
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variants of pair {M,n} values. So, for each of the 6 explored methods,
calculi were done on 50× 1000000 = 50 mil apportionments.

Table 1. Results for Fa0, Fa1, Fp and Fr1 at n ≤ M/2

Criterion
APP method and the average value of criterion on 50

variants of the pair {M,n} sizes

Fa1,
VLD ≻ H ≻ ASL≻ HH ≻ QDLD ≻ d’H ≻

a-entities 0.02014 0.04040 -0.71040 -0.92720 -2.18101 2.50428

Fr1,
VLD ≻ H ≻ ASL≻ HH ≻ QDLD ≻ d’H ≻

%DP 0.23809 0.34620 -4.08271 -4.99704 -5.42261 8.99951

Fa0,
VLD ≻ H ≻ ASL≻ HH ≻ QDLD ≻ d’H ≻

a-entities 0.03590 0.03882 -0.26795 -0.31000 -0.42923 0.66386

100Fp, VLD ≻ H ≻ ASL≻ HH ≻ QDLD ≻ d’H ≻

% 9,840 10,125 -20,290 -24,420 -36,681 68,644

In Table 1, the positive values of used criteria correspond to cases of
favoring large beneficiaries, and the negative ones – to cases of favoring
small beneficiaries. The values of criteria for the VLD, H and d’H
methods are positive, and those for the ASL, HH and QDLD (at n > 3)
methods are negative. Of course, there is no doubt about the Hamilton
method neutrality with refer to favoring the beneficiaries overall, on the
infinity of apportionments (see, for example, [17]). Also, the average
value of criterion Fa1 for Hamilton method is of 0.04040 a-entities,
that is 17.6 times smaller than that for Adapted Sainte-Laguë method.
So, taking into account the limited precision of computer simulation,
according to Table 1, one can conclude that:

1) VLD and H (as is well-known) methods are neutral in favoring
the beneficiaries;

2) ASL, HH (as is well-known) and QDLD (at n > 3) methods favor
small beneficiaries;

3) d’H method favors large beneficiaries (as is well-known).

It should be mentioned that in Table 1 the relation A ≻ B of method
A preference to method B is done by the absolute value of used crite-
ria. Also, despite the limited accuracy, the results of calculations are
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obtained for the same initial data sets and can therefore be used in the
comparative analysis for all methods.

From Table 1, one can see that preferences of APP methods by
criteria Fa1, Fr1 and Fp coincide. So, all criteria Fr1, Fa0 and Fp can
be used to identify the fact of favoring by APP methods, but the last
two are simpler than the Fa1 and Fr1 ones. Also, one can say that the
preferences of examined 6 APP methods in non-favoring of beneficiaries
are the following: VLD ≻ H ≻ ASL ≻ HH ≻ QDLD ≻ d’H.

Obtained average values of the explored criteria on the 50 variants of
the pair {M , n} values allow, to some extent, the overall determination
of the APP methods preferences regarding the favoring of beneficiaries.
At the same time, additional information can be obtained using similar
calculations for each of the 58 variants of the pair {M , n} values.

Overall, the degree of favoring of beneficiaries by APP methods is
determined by criterion Fa1 or the Fr1 one. The more specific criteria
Fa0, Fr0, and Fp can also be used for this purpose. Selective results of
calculations according to criteria Fa1, Fr1, Fa0, and Fr0 for the d’Hondt,
Adapted Sainte-Laguë, Huntington-Hill, and QDLD methods are de-
scribed in Section 6.

6 Degree of favoring by some APP methods

The graphs of criteria Fa0, Fa1, and Fr1 dependence on M and n for
d’Hondt method are shown in Figures 1-2a. Characterizing the
largest absolute discrepancy of the degree of favoring between two ben-
eficiaries, the criterion Fa0 (Figure 1) most easily identifies the fact of
favoring the large or the small beneficiaries in case of separate pairs of
values of sizes M and n.

From Figure 1a, it can be seen that out of the 58 variants of the
pair {M , n} values, the largest average absolute discrepancy Fa0(d’H)
between the largest (i = 1) and the smallest (i = n) beneficiary is
obtained for the pair {M = 501, n = 20}, this being equal to approx.
0.9 a-entities. For {6 ≤ M ≤ 501, M ≥ 2n}, this discrepancy is in
the range of 0.32 ÷ 0.39 aE at n = 2, of 0.51 ÷ 0.56 aE at n = 3, of
0.62÷ 0.65 aE at n = 4, of 0.71÷ 0.84 aE at n = 10, of 0.69÷ 0.89 aE
at n = 20, and of 0.55 ÷ 0.79 aE at n = 50, being considerable.
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Figure 1. Criteria Fa0 and Fa1 dependences toM and n for d’H method.

Figure 1b shows that the value Fa1(d’H) is increasing to n and
slightly increasing to M , especially at M ≥ 2n. For {6 ≤ M ≤ 501, 2 ≤
n ≤ 50, n < M}, the Fa1(d’H) value is between 0.32÷ 0.41 aE (at n =
2), and 9.0÷ 12.1 aE (at n = 50), being considerable at relatively high
values of n. Under the same conditions, but n ≤ M/2, the Fa1(d’H)
value at n = 50 is in the range of 10.7 ÷ 12.1 aE.

Criterion Fr1 compares the average influence of a decider be-
longing to the group of large beneficiaries (i = 1, 2, . . . , ⌊n/2⌋) with
that of a decider belonging to the group of small beneficiaries (i =
⌊n/2⌋ + 1, ⌊n/2⌋ + 2, . . . , n). The discrepancy Fr1(d’H) is decreasing
with respect to M and is increasing with respect to n (Figure 2a). At
high values of n and low values of M , this discrepancy is considerable.
Thus, for initial data stated in Section 4, they belong to the range of
0.43 ÷ 35.32 %decider-power at n = 4, of 0.73 ÷ 53.00 %DP at n = 5,
of 1.20÷ 44.77 %DP at n = 10, and of 6.36÷ 46.67 %DP at n = 50. If
n ≤ M/2, the discrepancy Fr1(d’H) is within the range of 0.43÷ 18.50
%DP at n = 4, of 0.73÷ 30.88 %DP at n = 5, of 1.20÷ 26.28 %DP at
n = 10, and of 6.36÷ 27.90 %DP at n = 50.

The graphs of criteria Fa0, Fa1, and Fr1 values dependence on M
and n, using the Huntington-Hill method, are shown in Figures 2b-3.

Figure 2b shows that discrepancy |Fr1(HH)| is decreasing on M and
is increasing on n. For {6 ≤ M ≤ 501, 2 ≤ n ≤ 50, n ≤ M/2}, the
|Fr1(HH)| values belong to the range of 0.0014÷ 10.63 %DP at n = 2,
of 0.0092 ÷ 33.36 %DP at n = 3, of 0.010 ÷ 12.01 %DP at n = 4, of
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Figure 2. Criterion Fr1 dependence to M and n for d’H and HH methods.
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Figure 3. Criteria Fa0 and Fa1 dependences to {M,n} for HH method.
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0.065 ÷ 23.33 %DP at n = 10, and of 1.40 ÷ 28.80 %DP at n = 50.

According to Figure 3a, out of the 58 variants of the pair {M , n}
values, the largest average absolute discrepancy between the largest (i
= 1) and the smallest (i = n) beneficiary, Fa0(HH), is obtained in case
of {M = 21, n = 15} and is equal to approx. -1.28 a-entities. The
discrepancy |Fa0(HH)| is decreasing on M and is increasing on n. At
{6 ≤ M ≤ 501, n ≤ M/2}, the |Fa0(HH)| values belong to the range
of 0.0041 ÷ 0.27 a-entities at n = 2, of 0.011 ÷ 0.42 aE at n = 3, of
0.017÷0.40 aE at n = 4, of 0.078÷0.88 aE at n = 10, and of 0.71÷1.10
aE at n = 50.

As in case of Fa1(d’H), the |Fa1(HH)| value is increasing on n (Fig-
ure 3b). But unlike Fa1(d’H), the |Fa1(HH)| value is pronounced de-
creasing on M . For {6 ≤ M ≤ 501, 2 ≤ n ≤ 50, n < M}, the |Fa1(HH)|
values belong to the range of 0.0041 ÷ 0.27 a-entities at n = 2, of
0.0011÷0.41 aE at n = 3, of 0.020÷0.60 aE at n = 4, of 0.13÷4.17 aE
at n = 10, and of 2.65÷24.18 aE at n = 50, being considerably smaller
compared to those of Fa1(d’H). At high values of M , the |Fa1(HH)|
values are less significant. For example, for M = 501, the |Fa1(HH)|
value is equal to 0.0041 aE at n = 2 and to 2.65 aE at n = 50.

Graphs of criteria Fa0, Fa1 and Fr1 dependences on M and n, when
using the Adapted Sainte-Laguë method, are largely similar to
those for the Huntington-Hill method. Some quantitative differences
can be found in Figures 5a-6b and Tables 2-4.

Graphs of criteria Fa0 and Fa1 dependences on M and n, when
using the QDLD method, are shown ı̂n Figure 4. In these graphs,
it is taken into account that at n = 2 and n = 3 the QDLD method
coincides with the Sainte-Laguë one; that is, it is neutral regarding
favoring the beneficiaries. That is why 4 ≤ n ≤ 50.

From Figure 4a, it can be seen that out of the 58 values of the pair
of sizes M and n, the largest average absolute discrepancy Fa0(QDLD)
between the largest (i = 1) and the smallest (i = n) beneficiary is
obtained in case of {M = 201, n = 50}, this being equal to approx.
-1.15 a-entities. Discrepancy |Fa0(QDLD)| almost does not depend on
M and is decreasing with respect to n except for cases when n = M−1,
in which it also little depends on n. At {n ≤ M/2, 6 ≤ M ≤ 501},
this discrepancy is in the range of 0.16 ÷ 0.21 a-entities at n = 4, of
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Figure 4. Criteria Fa0 and Fa1 dependences to {M,n} for QDLD
method.

0.11÷ 0.35 aE at n = 5, of 0.63÷ 0.67 aE at n = 10, and of 0.55÷ 0.79
aE at n = 50.

Figure 4b shows that the |Fa1(QDLD)| value is ascending to n,
but is slightly decreasing to M ; at the same time, at n ≤ M/2 the
|Fa1(QDLD)| value little depends on M . For {11 ≤ M ≤ 501, 4 ≤
n ≤ 50, n ≤ M/2}, the |Fa1(QDLD)| value belongs to the range of
0.24÷0.29 a-entities at n = 4, of 0.45÷0.52 aE at n = 5, of 1.80÷1.96
aE at n = 10, and of 12.04 ÷ 14.69 aE at n = 50, being considerable,
especially at high values of n.

7 Comparative analyses of favoring the bene-

ficiaries by APP methods

Let’s first examine the Huntington-Hill and Adapted Sainte-Laguë
methods, which guarantee the allocation of at least one a-entity to
each beneficiary. For quantitative comparative estimates, Figures 5a
and 5b show the graphs of the difference Fa1(HH)-Fa1(ASL) and those
of the ratio Fa1(HH)/Fa1(ASL) dependences on M and n.

From Figure 5a, it can be seen that the favoring of small benefi-
ciaries by Huntington-Hill method is stronger than that obtained by
the Adapted Sainte-Laguë one; only at values of n close to those of M
it can be Fa1(HH) = Fa1(ASL). The difference |Fa1(HH)-Fa1(ASL)| is
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Figure 5. Difference Fa1(HH)−Fa1(ASL) and ratio Fa1(HH)/Fa1(ASL)
dependences to {M,n}.

also small at low values of n. Thus, the difference |Fa1(HH)-Fa1(ASL)|
increases, and then it decreases, both with respect to n and with re-
spect toM . The exception is only the case of n = 2, in which, according
to calculations, this difference only decreases on M .

For {6 ≤ M ≤ 501, 2 ≤ n ≤ 50, n < M}, the value |Fa1(HH)-
Fa1(ASL)| is between 0.029 ÷ 0.048 a-entities at n = 2, of 0÷ 1.37 aE
at n = 50 and of 0.96 ÷ 1.37 aE at {n = 50, M = 101 ÷ 501}. The
highest value of the difference |Fa1(HH)-Fa1(ASL)|, equal to 1.37 aE,
is at {M = 201, n = 50}.

If, at low values of n, the difference |Fa1(HH)-Fa1(ASL)| values are
also small, then those of ratio Fa1(HH)/Fa1(ASL), on the contrary, are
relatively high (Figure 5b), reaching 5.70 times at {M = 101, n = 2}.
The ratio Fa1(HH)/Fa1(ASL) value is decreasing on n, and at n > 2 it
is increasing on M . For example, if M = 501, then Fa1(HH)/Fa1(ASL)
value is approx.2.42 times at n = 3 and of approx.2.52 times at n
= 4; also, Fa1(HH)/Fa1(ASL) ≈ 1.57 times at n = 50. For {6 ≤
M ≤ 501, 2 ≤ n ≤ 50, n < M}, the Fa1(HH)/Fa1(ASL) value is
between 1 ÷ 1.57 times at n = 50, of 1.14 ÷ 1.57 times at {n = 50,
M = 101÷501}, and of 1.21÷5.70 times at n = 2. The highest value of
ratio Fa1(HH)/Fa1(ASL), equal to 5.70 times, is at {M = 101, n = 2}.
Undoubtedly, Huntington-Hill method favors the beneficiaries

stronger than the Adapted Sainte-Laguë one does.
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A clear vision of the Adapted Sainte-Laguë method superiority on
non-favoring over the Huntington-Hill one is also done by the com-
parison based on criterion Fr1. Figures 6a and 6b show the graphs
of the difference Fr1(HH)-Fr1(ASL) and, respectively, of the ratio
Fr1(HH)/Fr1(ASL) dependences on M and n.
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Figure 6. Difference Fr1(HH)−Fr1(ASL) and ratio Fr1(HH)/Fr1(ASL)
dependences to {M,n}.

For initial data stated in Section 4, the inequality |Fr1(HH)| >
|Fr1(ASL)| occurs, except the cases of n = M − 1 for which Fr1(HH)
= Fr1(ASL). That is, the Huntington-Hill method favors beneficiaries
stronger than the adapted Sainte-Laguë one does, the difference in
question reaching 3.47 %decider-power at {M = 101, n = 50}. At
{6 ≤ M ≤ 501, n ≤ M/2}, the difference |Fr1(HH)|-|Fr1(ASL)| value
is decreasing on M and is increasing on n (Figure 6a).

If between the case of n = 2 and the other cases of graphs
in Figure 5a there is some discrepancy regarding the value of ratio
Fa1(HH)/Fa1(ASL), then in case of ratio Fr1(HH)/Fr1(ASL) such a
discrepancy is missing (Figure 6b): the increase of M always results
with the increase of the ratio in question. At the same time, the ratio
Fr1(HH)/Fr1(ASL) dependence on n is decreasing.

Although the d’Hondt method does not guarantee the allocation
of at least one a-entity to each beneficiary, such as Huntington-Hill
and Adapted Sainte-Laguë do, for comparison in Figure 7a the ratio
|Fa1(d’H)/Fa1(ASL)| dependence to M and n is given, without the
cases of M = 501 and also those of n = 2.
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It can be seen that the ratio |Fa1(d’H)/Fa1(ASL)| value is decreas-
ing on n, but is increasing on M . For {6 ≤ M ≤ 501, 2 ≤ n ≤ 50, n <
M}, the |Fa1(d’H)/Fa1(ASL)| values belong to the range of 0.37÷ 7.13
times at n = 50, of 1.10 ÷ 7.13 times at {n = 50, M = 101 ÷ 501}, of
0.63÷ 76.7 times at n = 5, and of 1.42÷ 301 times at n = 2. For very
many cases, the value of this ratio exceeds 10 times. Values lower than
1 are obtained only for very specific cases, usually not encountered in
practice: {M = 6, n = 5}, {M = 11, n = 10}, {M = 21, n = 15}, {M =
21, n = 20}, and {M = 51, n = 50}. It can be considered that usually
d’Hondt method favors beneficiaries much stronger than the

Adapted Sainte-Laguë one does.

It should be noted that QDLD method can be used under same
conditions as the d’Hondt method. For comparison, in Figure 7b is
given the ratio |Fa1(d’H)/Fa1(QDLD)| dependence on M and n, with-
out the cases of n = 2 and n = 3, in which the QDLD method does
not favor beneficiaries, and also without the case of M = 6. One can
observe the ratio |Fa1(d’H)/Fa1(QDLD)| decreasing dependence on n
and its weak dependence on M at relatively high values of M and n.
In more detail, according to the results of calculations, compared to
M , the ratio |Fa1(d’H)/Fa1(QDLD)| value is decreasing at n = 4 and
n = 5; is increasing at n = 10, n = 20, n = 30; and n = 50; and is first
decreasing (at {n = 7, 11 ≤ M ≤ 21} and {n = 15, 21 ≤ M ≤ 51}) and
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then is increasing.
In case of M = 6, the value of examined ratio is of 91.2 times at n =

4 and of 2.25 times at n = 5. For {11 ≤ M ≤ 501, 4 ≤ n ≤ 50, n < M},
the |Fa1(d’H)/Fa1(QDLD)| values belong to the range of 0.43 ÷ 1.00
times at n = 50, of 0.73 ÷ 1.00 times at {n = 50, 101 ≤ M ≤ 501},
of 1.45 ÷ 1.62 times at n = 7, and of 3.04 ÷ 3.38 times at n = 4.
Values less than 1 are obtained only for very specific cases, usually
not encountered in practice: {M = 11, n = 10}, {M = 21, n = 20},
{M = 51, n = 30 ÷ 50}, {M = 101, n = 30 ÷ 50}, and {M = 201, n =
50}. Therefore, it can be considered that usually d’Hondt method

favors beneficiaries stronger than the QDLD one does.
The character of dependences Fa1, Fr0, and Fr1 of favoring the

beneficiaries by the four APP methods to M and n at n ≤ M/2 is
shown in Table 2.

Table 2. Character of some dependences to M and n at n ≤ M/2

Dependences Apportionment methods

HH ASL d’H QDLD

Dependence Fr0

and Fr1 on M

strongly
decreasing

strongly
decreasing

strongly
decreasing

strongly
decreasing

Dependence Fa1 on
M

strongly
decreasing

strongly
decreasing

slightly
increasing

slightly
decreasing

Dependence Fr0,
Fr1 and Fa1 on n

increasing increasing increasing increasing

From Table 2, for the four examined methods, it can be seen that:

- the nature of criteria |Fr0| and |Fr1| dependences on M and n
and also of the |Fa1| one on n is the same in all methods. Re-
garding the nature of the |Fa1| dependence on M , it coincides for
the Huntington-Hill and Adapted Sainte-Laguë methods, being
strongly decreasing; it slightly differs for the QDLD method, this
being only slightly decreasing, and is completely different for the
d’Hondt method, this being slightly increasing;

- the limits of the value ranges of |Fr0| and those of |Fa1| and
|Fr1| for the Adapted Sainte-Laguë method are smaller than those
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Table 3. Some features of APP methods regarding favoring at n ≤ M/2

Criteria n Apportionment methods

HH ASL d’H QDLD

|Fr0|,

2 0.0014÷10.63 0.0000 ÷ 8.72 0.18÷ 12.34 0

3 0.0092÷33.36 0.0037÷30.20 0.46÷ 35.10 0

4 0.027 ÷ 28.56 0.012 ÷ 25.35 0.84÷ 35.49 0.28 ÷ 9.02

%DP 7 0.21 ÷ 60.21 0.12 ÷ 57.15 2.57÷ 52.04 1.71÷ 41.02

10 0.73 ÷ 181.58 0.47 ÷ 180.11 5.14÷ 86.25 4.06 ÷ 108.93

|Fa1|,

2 0.0041 ÷ 0.27 0.0013 ÷ 0.22 0.32÷ 0.41 0

3 0.011 ÷ 0.42 0.0044 ÷ 0.36 0.51÷ 0.56 0

4 0.020 ÷ 0.54 0.0078 ÷ 0.44 0.83÷ 0.87 0.0094 ÷ 0.29

aE 10 0.13 ÷ 1.91 0.062 ÷ 1.67 2.15÷ 2.34 1.80 ÷ 1.96

50 2.65 ÷ 11.00 1.69 ÷ 9.68 10.65 ÷ 12.06 12.04 ÷ 14.69

|Fr1|,

2 0.0014÷10.63 0.0000 ÷ 8.72 0.18÷ 12.34 0

3 0.0092÷33.36 0.0037÷30.20 0.46÷ 35.10 0

4 0.010 ÷ 12.01 0.0043 ÷ 9.81 0.43÷ 18.50 0.14 ÷ 5.46

%DP 10 0.065 ÷ 23.33 0.032 ÷ 20.41 1.20÷ 26.28 0.92÷ 23.91

50 1.40 ÷ 28.80 0.89 ÷ 25.33 6.36÷ 27.90 6.36÷ 38.46

for the Huntington-Hill method. In turn, the latter are usually
smaller than those for the d’Hondt method; some exceptions oc-
cur for relatively high values of n, when the requirement to allo-
cate at least one a-entity to each beneficiary strongly influences
apportionments;

- the limits of the value ranges of |Fr0| and those of |Fa1| and |Fr1|
for the QDLD method in most cases are smaller than those for
d’Hondt method.

The absolute degree (Fa1) and those relative to r (Fr0 and Fr1)
of favoring by the four APP methods are systematized in Table 3.
Also, the character of dependencies |Fa1(HH)/Fa1(ASL)|, |Fa1(HH) −
Fa1(ASL)|, |Fa1(d’H)/Fa1(ASL)|, and |Fa1(d’H)/Fa1(QDLD)| of favor-
ing the beneficiaries by the four APP methods to M and n at n ≤ M/2
is systematized in Table 4. The absolute comparative degree of favoring
the beneficiaries by examined APP methods is systematized in Table
5. If at n ≤ M–1 the value of the difference |Fa1(HH)−Fa1(ASL)| is

208



Degree of favoring in apportionments

Table 4. Character of some comparative dependencies at n ≤ M/2

Dependencies Comparison criteria
|Fa1(HH)-
Fa1(ASL)|,
a-entities

|Fa1(HH)/
Fa1(ASL)|,

times

|Fa1(d’H)/
Fa1(ASL)|,

times

|Fa1(d’H)/
Fa1(QDLD)|,

times

Dependence
on M

increasing at
n-10, then
decreasing

increasing at
n = 2, then
decreasing

decreasing

decreasiong at
n = 4-5, slightly
increasing at

n ≥ 7
Dependence
on n

increasing increasing increasing increasing

first increasing and then decreasing both on M and n (see Figure 5a),
then at n ≤ M/2 it is only increasing to n (see Table 3).

Regarding the dependence on M at n ≤ M/2 according to the
results of calculations, the difference |Fa1(HH)−Fa1(ASL)| is first in-
creasing only in two cases, namely at {n = 3, 6 ≤ M ≤ 11} and at
{n = 10, 21 ≤ M ≤ 51}, in the other cases being only decreasing.

If the value of Fa1(HH)/Fa1(ASL) ratio is significantly greater
than 1, obtaining values in the range of 1.14 ÷ 5.70 times, then the
|Fa1(d’H)/Fa1(ASL)| one can be, depending on the case, considerably
higher than 1, obtaining values from 1.10 times to 301 times. That
is, in terms of favoring the beneficiaries, Huntington-Hill method

yields significantly, and the d’Hondt method - considerably

to the Adapted Sainte-Laguë method. Also, d’Hondt method

yields absolutely to the QDLD one, at n = 2 and n = 3, and

- significantly, in the other cases of practical interest (only in
cases of {M = 101, 30 ≤ n ≤ 50} and of {M = 101, n = 50} occurs
|Fa1(d’H)/Fa1(ASL)| < 1). Some details on the largest and the lowest
value of the difference Fa1(HH)−Fa1(ASL) are systematized in Table
6. According to Table 6, the lowest values of |Fa1(HH)−Fa1(ASL)|
are obtained at M = 501, regardless of the value of n. At the same
time, the value of M , at which the highest values of the difference
|Fa1(HH)−Fa1(ASL)| are obtained, increases on n, the difference in
question reaching 1.37 times at {n = 50,M = 201} and M/n ≈ 3÷ 4.
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Table 5. The value range of comparison criteria at n ≤ M/2

n Comparison criteria
|Fa1(HH)-
Fa1(ASL)|,
a-entities

|Fa1(HH)/
Fa1(ASL)|,

times

|Fa1(d’H)/
Fa1(ASL)|,

times

|Fa1(d’H)/
Fa1(QDLD)|,

times
2 0.0029÷ 0.048 1.21÷ 5.70 1.42÷ 301 ∞

3 0.0063÷ 0.060 1.50÷ 2.42 1.42÷ 126 ∞

4 0.012÷ 0.097 1.22÷ 2.52 1.88÷ 111 3.04÷ 3.38

5 0.018÷ 0.12 1.15÷ 2.29 1.51÷ 76.7 2.03÷ 2.23

7 0.033÷ 0.18 1.24÷ 2.14 2.05÷ 53.5 1.45÷ 1.52

10 0.065÷ 0.25 1.14÷ 2.06 1.29÷ 38.0 1.10÷ 1.30

15 0.13÷ 0.40 1.28÷ 1.91 2.32÷ 24.5 1.07÷ 1.17

20 0.22÷ 0.52 1.20÷ 1.82 1.74÷ 18.1 1.01÷ 1.11

30 0.43÷ 0.83 1.28÷ 1.71 2.31÷ 12.0 0.97÷ 1.05

50 0.96÷ 1.37 1.14÷ 1.57 1.10÷ 7.13 0.73÷ 1.001

Table 6. The |Fa1(HH)−Fa1(ASL)| largest and the lowest values at
n ≤ M/2, a-entities

Number of beneficiaries (n)
2 3 4 5 7 10 20 50

M 6 11 11 21 21 51 51 201

max|Fa1(HH)-
Fa1(ASL)|

0.048 0.060 0.097 0.12 0.18 0.25 0.83 1.37

M 501 501 501 501 501 501 501 501

min|Fa1(HH)-
Fa1(ASL)|

0.003 0.006 0.012 0.012 0.033 0.065 0.22 0.96
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8 Conclusions

Based on four notions and two issues (the fact and the quantitative
estimate), there are distinguished eight aspects of favoring in appor-
tionments. Mainly, the four quantitative aspects were explored. In
this aim, five criteria were defined: the degree of favoring of large
or of small beneficiaries by apportionment methods (Fa1), the aver-
age largest absolute discrepancy of the degree of favoring between two
beneficiaries (Fa0), the average relative discrepancy between the degree
of favoring of an average large beneficiary decision-maker and that of
an average small beneficiary decision-maker (Fr1), the average largest
relative discrepancy of the degree of favoring between two deciders
which supported different beneficiaries (Fr0), and the largest discrep-
ancy of the probability of favoring between two beneficiaries (Fp). The
degree of favoring is measured in apportioned entities, percentage of
decider-power or percentage of apportioned entities. A total of 6 APP
methods are being researched, namely, Hamilton (Hare), d’Hondt (Jef-
ferson), Huntington-Hill, Adapted Sainte-Laguë, Variable linear divi-
sor and Quota dependent linear divisor. Hamilton method, neutral in
terms of favoring, is investigated only for the purpose of comparative
analysis of characteristics of other APP methods considered almost
neutral on favoring.

In order to determine the values of quantitative criteria, computer
simulation by SIMAP application was used for 58 variants of values for
the pair {M,n}, uniform distribution of values Vi, i = 1, n and sample
size of 106. Done calculations not only confirmed some known prefer-
ences with refer to non-favoring the beneficiaries, but also permitted to
estimate quantitatively the degree of favoring the beneficiaries by the
6 APP methods. For example, it was identified that:

- preferences among 6 APP methods, with refer to non-favoring of
beneficiaries by criteria Fa1, Fa0, Fr1 and Fp, coincide;

- the degree of favoring of beneficiaries depends both, on APP
method used and on the value of initial data, and can be con-
siderable. For example, the Fa1(d’H) value is increasing to n and
slightly increasing to M , and 9.0 ≤ Fa1(d’H) ≤ 12.1 (a-entities)
at {n = 50, 51 ≤ M ≤ 501};
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- Huntington-Hill method favors small beneficiaries stronger than
the Adapted Sainte-Laguë one does. The highest value of the
difference |Fa1(HH)−Fa1(ASL)|, equal to 1.37 a-entities, is at M
= 201 and n = 50. The highest value of ratio Fa1(HH)/Fa1(ASL),
equal to 5.70 times, is at {M = 101, n = 2};

- usually d’Hondt method favors beneficiaries much stronger than
the Adapted Sainte-Laguë one does. For very many cases the
value of ratio |Fa1(d’H)/Fa1(ASL)| exceeds 10 times;

- usually d’Hondt method favors large beneficiaries stronger than
the QDLD method favors the small ones. In case of M = 6, the
value of ratio |Fa1(d’H)/Fa1(QDLD)| is of 91.2 times at n = 4
and of 2.25 times at n = 5.
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