
Computer Science Journal of Moldova, vol.30, no.2(89), 2022

On Elimination of Erasing Rules from E0S

Grammars

Alexander Meduna, Martin Havel

Abstract

The present paper describes an alternative algorithm for the re-

moval of erasing rules from E0S grammars. As opposed to the standard

way of eliminating erasing rules in most E0S-like grammars, such as

context-free grammars, this method requires no predetermination of

symbols that derive the empty string. The proposed algorithm is for-

mally verified. In the conclusion of the paper, the applicability of the

algorithm to E0S grammars that work in a semi-parallel way is demon-

strated. Furthermore, two open problems are formulated.

Keywords: Formal languages, E0S grammars, elimination of eras-

ing rules.

MSC 2020: 68Q45, 03D05, 68Q70.

1 Introduction

In the theory of formal languages, E0S grammars represent, in essence, or-

dinary context-free grammars generalized so they can rewrite both terminal

and nonterminal symbols. Recall that these grammars underlie some impor-

tant general frameworks of context-free rewriting systems, such as selective

substitution grammars (see [2] and [3]).

The standard method of eliminating erasing rules from E0S grammars

and their special cases, such as context-free grammars, requires a prede-

termination of symbols that derive the empty string (see, for instance, Sec-

tion 5.1.3.2 in [9]). Of course, the theory of formal languages would highly

appreciate obtaining an alternative method that performs this elimination

without any predetermination like this. The present paper achieves such a

method. Indeed, it presents and verifies an alternative algorithm that performs

©2022 by CSJM; A. Meduna, M. Havel

doi:10.56415/csjm.v30.08

135

https://doi.org/10.56415/csjm.v30.08

A. Meduna, M. Havel

the elimination of erasing rules from E0S grammars without this predetermi-

nation. In addition, it is demonstrated that this algorithm is straightforwardly

applicable to E0S grammars working in a semi-parallel way, too. Several

other derivation modes are also discussed.

The paper is organized as follows. First, Section 2 gives all the necessary

terminology. Then, Section 3 presents the main result of the paper—that is, it

describes and verifies an alternative algorithm for the elimination of erasing

rules from E0S grammars. Finally, Section 4 discusses the applicability of our

algorithm to other derivation modes used in E0S grammars, and formulates

two open problems.

2 Preliminaries and Definitions

This paper assumes that the reader is familiar with formal language theory

(see [11]). For an alphabet (finite nonempty set) V , V ∗ represents the free

monoid generated by V . The unit of V ∗ is denoted by ε . Set V+ =V ∗−{ε};

algebraically, V+ is thus the free semigroup generated by V . For w ∈V ∗, |w|
denotes the length of w, and alph(w) denotes the set of symbols occurring

in w. As usual, we consider two languages L1, L2 to be equal if and only if

L1−{ε}= L2−{ε}, and we simply write L1 = L2 in this case. The inclusion

relation of languages is interpreted similarly.

An E0S grammar (see [2] and [3]) is a quadruple, G = (V , T , P, S),
where V is an alphabet, T ⊂V , S ∈V −T , and P ⊆V ×V ∗ is a finite relation.

The components V , T , P, and S are called the total alphabet, the alphabet of

terminal symbols, the set of rules, and the start symbol, respectively. Each

(X ,y) ∈ P is written as X → y throughout this paper. G is said to be prop-

agating if and only if every X → y ∈ P satisfies y ∈ V+. Rules of the form

X → ε are called erasing rules. The direct derivation relation over V ∗, de-

noted by ⇒G, is defined as follows: uXv ⇒G uyv if and only if X → y ∈ P

and u,v ∈V ∗. Let ⇒n
G and ⇒∗

G denote the nth power of ⇒G, for some n ≥ 0,

and the reflexive-transitive closure of ⇒G, respectively. The language of G

is denoted by L(G) and defined as L(G) = {w ∈ T ∗ | S ⇒∗
G w}. Observe that

the language family generated by E0S grammars coincides with the family of

context-free languages.

Let G = (V , T , P, S) be an E0S grammar. For any X ⇒∗
G y, where X ∈V

and y ∈V ∗, ∆(X ⇒∗
G y) denotes its corresponding derivation tree. Regarding

136

On Elimination of Erasing Rules from E0S Grammars

derivation trees and related notions, we use the terminology of Section 5.1.1

in [9]. We straightforwardly extend these notions from context-free grammars

to E0S grammars. A derivation subtree whose frontier is ε is called an ε-

subtree. Let S ⇒∗
G w be of the form S ⇒∗

G yxz ⇒∗
G w, where x,y,z ∈ V ∗ and

w ∈ T ∗. We write S ⇒∗
G y εxz ⇒∗

G w to express that either (1) x = ε or (2) all

subtrees in ∆(S ⇒∗
G w) rooted at the symbols in x are ε-subtrees; informally,

it means that x is erased in the rest of the derivation.

3 Main Result

In this section, we present and verify an alternative algorithm that performs

the elimination of erasing rules from E0S grammars. To give a more detailed

insight into this algorithm, consider an arbitrary E0S grammar, G = (V , T , P,

S), and Y ∈V . If Y derives ε in G, then a derivation like this can be expressed

in the following step-by-step way:

Y ⇒G y1 ⇒G y2 ⇒G · · · ⇒G yn ⇒G ε ,

where yi ∈V ∗ for all i= 1, . . . ,n, for some n≥ 1. If a sentential form contains

several occurrences of Y , each of them can be erased in this way although

there may exist many alternative ways of erasing Y . Based upon these obser-

vations, the next algorithm introduces compound nonterminals of the form

〈X ,U〉, in which X is a symbol that is not erased during the derivation, and

U is a set of symbols that are erased. Within the compound nonterminal, the

algorithm simulates the erasure of symbols in U in the way sketched above.

Observe that since U is a set, U contains no more than one occurrence of any

symbol because there is no need to record several occurrences of the same

symbol; indeed, as already pointed out, all these occurrences can be erased in

the same way.

Algorithm 1. An alternative elimination of erasing rules in E0S grammars

without any predetermination of symbols that derive the empty string.

Input: An E0S grammar, G = (V , T , P, S).

Output: A propagating E0S grammar, H = (V ′, T , P′, S′), such that

L(G) = L(H).

137

A. Meduna, M. Havel

Method: Initially, set V ′ = T ∪{〈X ,U〉 | X ∈V,U ⊆V}, S′ = 〈S, /0〉, and

P′ =
{

〈a, /0〉 → a | a ∈ T
}

.

Repeat (1) and (2), given next, until P′ cannot be extended.

(1) If Y → y0Y1y1Y2y2 · · ·Ynyn ∈ P, where yi ∈ V ∗, Yj ∈ V , for all i

and j, 0 ≤ i ≤ n, 1 ≤ j ≤ n, for some n ≥ 1,

then for every U ⊆V , extend P′ by adding

〈Y,U〉 → 〈Y1,U ∪ alph(y0y1 · · ·yn)〉〈Y2, /0〉 · · · 〈Yn, /0〉.

(2) If 〈X ,U〉 ∈V ′ and Y → y ∈ P, where Y ∈U and y ∈V ∗,

then extend P′ by adding

〈X ,U〉→ 〈X ,(U −{Y})∪ alph(y)〉.

Let us point out that the algorithm makes no predetermination of sym-

bols from which ε can be derived as opposed to most standard methods

of removing erasing rules, including the standard removal of erasing rules

from context-free grammars (see, for instance, Section 5.1.3.2 in [9]). In-

deed, if the output grammar improperly extends the second component of a

two-component nonterminal by a symbol that is not erased throughout the

rest of the derivation, then this occurrence of the symbol never disappears in

this component, so a terminal string cannot be generated under this improper

selection. It is also worth pointing out that the cardinality of V ′ and P′ expo-

nentially increases with respect to the cardinality of V and P, respectively.

Before we verify the correctness of the presented algorithm, we illustrate

it by an example.

Example 1. Consider the E0S grammar

G =
(

{S,a,b},{a,b},{S → aSb,S → ε},S
)

.

Clearly, L(G) = {anbn | n ≥ 0}. With G as its input, Algorithm 1 produces

a propagating E0S grammar H whose fully detailed definition is left to the

reader. We only describe the derivations of aabb in G and in H . That is,

S ⇒G aSb ⇒G aaSbb ⇒G aabb

138

On Elimination of Erasing Rules from E0S Grammars

and

〈S, /0〉 ⇒H 〈a, /0〉〈S, /0〉〈b, /0〉 ⇒H 〈a, /0〉〈a,{S}〉〈b, /0〉〈b, /0〉

⇒H 〈a, /0〉〈a, /0〉〈b, /0〉〈b, /0〉 ⇒4
H aabb.

We proceed to a formal verification of Algorithm 1.

Theorem 1. Let G be an E0S grammar. Algorithm 1 halts and correctly

converts G to a propagating E0S grammar H satisfying L(G) = L(H).

Proof. Clearly, the algorithm always halts. Since P′ does not contain any

erasing rules, H is propagating. To establish L(H) = L(G), we prove three

claims.

The first claim shows how derivations of G are simulated by H . It is used

to prove that L(G)⊆ L(H) later in the proof. Recall that the meaning of εx is

defined in Section 2.

Claim 1. If S ⇒m
G

εx0X1
εx1X2

εx2 · · ·Xh
εxh ⇒

∗
G z, where z ∈ L(G), |z| ≥ 1, xi ∈

V ∗, X j ∈V , for all i and j, 0≤ i≤ h, 1≤ j ≤ h, for some m≥ 0 and h≥ 1, then

〈S, /0〉 ⇒∗
H 〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉, where

⋃

1≤i≤hUi ⊆
⋃

0≤i≤h alph(xi).

Proof. This claim is established by induction on m ≥ 0.

Basis. The basis for m = 0 is clear.

Induction Hypothesis. Suppose that the claim holds for all derivations of

length ℓ, where 0 ≤ ℓ≤ m, for some m ≥ 0.

Induction Step. Consider any derivation of the form

S ⇒m+1
G w ⇒∗

G z,

where w ∈V+, z ∈ L(G), and |z| ≥ 1. Since m+1 ≥ 1, this derivation can be

expressed as

S ⇒m
G x ⇒G w ⇒∗

G z,

where x ∈ V+. Let x = εx0X1
εx1X2

εx2 · · ·Xh
εxh, where xi ∈ V ∗, X j ∈ V , for

all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some h ≥ 1. Then, by the induction

hypothesis,

〈S, /0〉 ⇒∗
H 〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉,

139

A. Meduna, M. Havel

where
⋃

1≤i≤hUi ⊆
⋃

0≤i≤h alph(xi), for some n ≥ 0.

Next, we consider all possible forms of x ⇒G w, covered by the next two

cases—(i) and (ii).

(i) Let X j → y0Y1y1 · · ·Yqyq ∈ P, where yi ∈ V ∗, for all i, 0 ≤ i ≤ q,

Yi ∈V , for all i, 1 ≤ i ≤ q, for some j, 1 ≤ j ≤ h, and q ≥ 1, so

εx0X1
εx1 · · ·X j

εx j · · ·Xh
εxh ⇒G

εx0X1
εx1 · · ·X j−1

εx j−1
εy0Y1

εy1 · · ·Yq
εyq

εx jX j+1
εx j+1 · · ·Xh

εxh.

By (1) in the algorithm,

〈X j,U j〉 → 〈Y1,U j ∪ alph(y0y1 · · ·yq)〉〈Y2, /0〉 · · · 〈Yq, /0〉 ∈ P′

so

〈X1,U1〉〈X2,U2〉 · · · 〈X j,U j〉 · · · 〈Xh,Uh〉 ⇒H

〈X1,U1〉〈X2,U2〉 · · · 〈X j−1,U j−1〉〈Y1,U j ∪ alph(y0y1 · · ·yq)〉
〈Y2, /0〉 · · · 〈Yq, /0〉〈X j+1,U j+1〉 · · · 〈Xh,Uh〉.

Clearly,

(

⋃

1≤i≤hUi

)

∪
(

⋃

0≤i≤q alph(yi)
)

⊆
(

⋃

0≤i≤h alph(xi)
)

∪
(

⋃

0≤i≤q alph(yi)
)

which completes the induction step for (i).

(ii) Let x j = x′jY x′′j and Y → y ∈ P, where y ∈V ∗ and x′j,x
′′
j ∈V ∗, so

εx0X1
εx1 · · ·X j

εx j · · ·Xh
εxh ⇒G

εx0X1
εx1 · · ·X j

εx′j
εyεx′′j · · ·Xh

εxh.

If Y /∈
⋃

1≤i≤hUi, then

〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉 ⇒
0
H 〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉

and clearly

⋃

1≤i≤hUi ⊆
(

⋃

0≤i≤h,i6= j alph(xi)
)

∪ alph
(

x′jyx′′j
)

140

On Elimination of Erasing Rules from E0S Grammars

so assume that Y ∈
⋃

1≤i≤hUi. By (2) in the algorithm,

〈Xk,Uk〉 → 〈Xk,(Uk −{Y})∪ alph(y)〉 ∈ P′,

where Uk =U ′
k ∪{Y}, U ′

k ⊆V , for some k, 1 ≤ k ≤ h, so

〈X1,U1〉〈X2,U2〉 · · · 〈Xk,Uk〉 · · · 〈Xh,Uh〉 ⇒H

〈X1,U1〉〈X2,U2〉 · · · 〈Xk,(Uk −{Y})∪ alph(y)〉 · · · 〈Xh,Uh〉.

Clearly,

(

⋃

1≤i≤h,i6=k Ui

)

∪
(

U ′
k ∪ alph(y)

)

⊆
(

⋃

0≤i≤h,i6= j alph(xi)
)

∪ alph
(

x′jyx′′j
)

which completes the induction step for (ii).

Observe that these two cases cover all possible derivations of the form

x ⇒G w. Thus, the claim holds.

The second claim shows that in H , every derivation of any z ∈ L(H) can

be expressed as a two-part derivation. In the first part, every occurring symbol

is a two-component nonterminal. In the second part, only the rules of the form

〈a, /0〉 → a, where a ∈ T , are used.

Claim 2. For every z ∈ L(H), there exists a derivation 〈S, /0〉 ⇒∗
H x ⇒∗

H z,

where x ∈V ′+, and during x ⇒∗
H z, only rules of the form 〈a, /0〉 → a, where

a ∈ T , are used.

Proof. Since H is an E0S grammar, we can always rearrange all the applica-

tions of rules so the claim holds.

The third claim shows how derivations of H are simulated by G. It is used

to prove that L(H)⊆ L(G) later in the proof.

Claim 3. If 〈S, /0〉 ⇒n
H 〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉, where Xi ∈V and Ui ⊆V ,

for all i, 1 ≤ i ≤ h, for some n ≥ 0 and h ≥ 1, then S ⇒∗
G x0X1x1X2x2 · · ·Xhxh,

where xi ∈V ∗, for all i, 0 ≤ i ≤ h, and
⋃

1≤i≤hUi ⊆
⋃

0≤i≤h alph(xi).

141

A. Meduna, M. Havel

Proof. This claim is established by induction on n ≥ 0.

Basis. The basis for n = 0 is clear.

Induction Hypothesis. Suppose that the claim holds for all derivations of

length ℓ, where 0 ≤ ℓ≤ n, for some n ≥ 0.

Induction Step. Consider any derivation of the form

〈S, /0〉 ⇒n+1
H w,

where w ∈V ′+. Since n+1 ≥ 1, this derivation can be expressed as

〈S, /0〉 ⇒n
H x ⇒H w,

where x ∈ V ′+. Let x = 〈X1,U1〉〈X2,U2〉 · · · 〈Xh,Uh〉, where Xi ∈V , Ui ∈ V ∗,

for all i, 1 ≤ i ≤ h, for some h ≥ 1. By the induction hypothesis,

S ⇒∗
G x0X1x1X2x2 · · ·Xhxh,

where xi ∈V ∗, for all i, 1 ≤ i ≤ h, such that
⋃

1≤i≤hUi ⊆
⋃

0≤i≤h alph(xi).
Next, we consider all possible forms of x ⇒H w, covered by the next two

cases—(i) and (ii).

(i) Let 〈X j,U j〉 → 〈Y1,W 〉〈Y2, /0〉 · · · 〈Yq, /0〉 ∈ P′ be a rule introduced

in (1) in the algorithm, where W ⊆ V and Yi ∈ V , for all i, 1 ≤ i ≤ q,

for some q ≥ 1, so

〈X1,U1〉〈X2,U2〉 · · · 〈X j,U j〉 · · · 〈Xh,Uh〉 ⇒H

〈X1,U1〉 · · · 〈X j−1,U j−1〉〈Y1,W 〉〈Y2, /0〉 · · · 〈Yq, /0〉〈X j+1,U j+1〉 · · · 〈Xh,Uh〉.

By (1) in the algorithm, W is of the form W = U j ∪ alph(y0y1 · · ·yq),
where yi ∈V ∗, for all i, 1 ≤ i ≤ q, and X j → y0Y1y1 · · ·Yqyq ∈ P. There-

fore,

x0X1x1 · · ·X jx j · · ·Xhxh ⇒G

x0X1x1 · · ·X j−1x j−1y0Y1y1 · · ·Yqyqx jX j+1x j+1 · · ·Xhxh.

Clearly,

(

⋃

1≤i≤hUi

)

∪
(

⋃

0≤i≤q alph(yi)
)

⊆
(

⋃

0≤i≤h alph(xi)
)

∪
(

⋃

0≤i≤q alph(yi)
)

.

142

On Elimination of Erasing Rules from E0S Grammars

(ii) Let 〈X j,U j〉 → 〈X j,W 〉 ∈ P′ be a rule introduced in (2) in the algo-

rithm, for some j, 1 ≤ j ≤ h, where W ⊆V , so

〈X1,U1〉〈X2,U2〉 · · · 〈X j,U j〉 · · · 〈Xh,Uh〉 ⇒H

〈X1,U1〉〈X2,U2〉 · · · 〈X j,W 〉 · · · 〈Xh,Uh〉.

By (2) in the algorithm, W is of the form W =
(

U j −{Y}
)

∪ alph(y),
where Y ∈ V , y ∈ V ∗, and Y → y ∈ P. Recall that

⋃

1≤i≤hUi ⊆
⋃

0≤i≤h alph(xi) by the induction hypothesis. Since Y ∈
⋃

1≤i≤hUi,

some xk has to be of the form xk = x′kY x′′k , where x′k,x
′′
k ∈V ∗, so

x0X1x1 · · ·Xkxk · · ·Xhxh ⇒G x0X1x1 · · ·Xkx′kyx′′k · · ·Xhxh.

Clearly,

(

⋃

1≤i≤h,i6= j Ui

)

∪
(

U j −{Y}
)

∪ alph(y)⊆
(

⋃

1≤i≤h,i6=k alph(xi)
)

∪
(

alph(xk)−{Y}
)

∪ alph(y).

Observe that these two cases cover all possible derivations of the form

x ⇒H w. Therefore, the claim holds.

Next, we establish the identity L(H) = L(G). Consider a special case of

Claim 1 when xi = ε , X j ∈ T , for all i and j, 0 ≤ i ≤ h, 1 ≤ j ≤ h, for some

h≥ 1. Then, S⇒∗
G X1X2 · · ·Xh implies that 〈S, /0〉⇒∗

H 〈X1, /0〉〈X2, /0〉 · · · 〈Xh, /0〉.
By the initialization part of the algorithm, 〈X j, /0〉→ X j ∈ P′, for all j, 1≤ j ≤
h, so

〈S, /0〉 ⇒H X1〈X2, /0〉 · · · 〈Xh, /0〉
⇒H X1X2 · · · 〈Xh, /0〉

...

⇒H X1X2 · · ·Xh.

Hence, L(G) ⊆ L(H). Let z ∈ L(H). By Claim 2, 〈S, /0〉 ⇒∗
H x ⇒∗

H z, where

x ∈ V ′+. By Claim 3, S ⇒∗
G z. Therefore, L(H) ⊆ L(G), and the theorem

holds.

143

A. Meduna, M. Havel

4 Concluding Remarks

In this final section, we discuss the applicability of our algorithm to other

derivation modes in E0S grammars. Then, we propose two open problems to

consider in the future investigation related to the subject of this paper.

4.1 Semi-Parallel and Parallel Derivation Modes

During every derivation step in an E0S grammar, a single symbol is rewritten.

Hence, these grammars work under a sequential derivation mode. We next

define a generalization of this mode, where some symbols are simultaneously

rewritten while others remain unrewritten (like in scattered context grammars,

see [1]).

Let G = (V , T , P, S) be an E0S grammar. G makes a semi-parallel

derivation step from u0v1u1 · · ·vnun to u0w1u1 · · ·wnun, denoted by

u0v1u1 · · ·vnun s-par⇒G u0w1u1 · · ·wnun

if and only if ui ∈V ∗ for all i = 1, . . . ,n, v j,w j ∈V ∗, and v j ⇒G w j for all j =
1, . . . ,n, for some n ≥ 1. Let s-par⇒

∗
G denote the reflexive-transitive closure

of s-par⇒G. The language generated by G under the semi-parallel mode is

denoted by L(G, s-par⇒G) and defined as

L
(

G, s-par⇒G

)

=
{

w ∈ T ∗ | S s-par⇒
∗
G w

}

.

The following theorem says that Algorithm 1 is applicable to E0S gram-

mars working under this mode. Let us note that the standard algorithm also

works for this mode.

Theorem 2. Let G be an E0S grammar. Algorithm 1 halts and correctly

converts G to a propagating E0S grammar H satisfying L(G, s-par⇒G) = L(H ,

s-par⇒H).

Proof. This theorem can be established by analogy with the proof of Theo-

rem 1, so we leave its proof to the reader.

By analogy with the definition of the semi-parallel mode, we may de-

fine a parallel mode, where during a single derivation step, all occurrences

144

On Elimination of Erasing Rules from E0S Grammars

of symbols in the current sentential form have to be rewritten. However, ob-

serve that neither Algorithm 1 nor the standard algorithm are applicable to

E0S grammars working under this mode. To remove erasing rules from E0S

grammars working under the parallel mode, we may use the algorithm for the

elimination of erasing rules in E0L systems (see pages 63–65 in [10]).

4.2 Open problems

We close this paper by proposing two open problems.

I. Observe that there exist other derivation modes under which the al-

gorithm achieved in the previous section does not work properly. For

instance, the algorithm is inapplicable to the Indian derivation mode

(see [7], [8], or Section 2.4 in [12]). Recall that an Indian derivation

step is performed so a rule is selected, and all symbols coinciding with

the left-hand side of this rule are rewritten by it in the current senten-

tial form. Consider the Indian parallel grammar having the three rules

S → SS, S → a, and S → ε , where S is a nonterminal and a is a terminal.

Obviously, its language equals
{

a2n

| n ≥ 0
}

∪{ε} .

If we convert this grammar to another Indian parallel grammar by

Algorithm 1, the resulting Indian grammar generates {an | n ≥ 1},

which differs from {a2n

| n ≥ 0}. As a result, the algorithm is inap-

plicable to derivation modes that involve the Indian derivation mode,

such as the mode of Russian parallel grammars (see [4] or Section 2.4

in [12]). Also, note that our algorithm is not applicable to the mode of

k-grammars, where at every derivation step, exactly k occurrences of

symbols have to be simultaneously rewritten (see [5], [6] and page 126

in the second volume of [11]). Can we modify Algorithm 1 so it works

under these derivation modes as well? Recall that it is an open problem

whether we can always eliminate all erasing rules from any Russian

parallel grammar or from any k-grammar.

II. Compared to its input grammar, the output grammar produced by Al-

gorithm 1 has many more symbols and rules. To be precise, the car-

dinality of symbols and rules of output grammar has an exponential

145

A. Meduna, M. Havel

increase from the cardinality of symbols and rules of input grammar.

Can we improve this algorithm so it works in a more economical way?

5 Funding

This work was supported by The Ministry of Education, Youth and Sports of

the Czech Republic from the National Programme of Sustainability (NPU II),

from the project IT4Innovations excellence in science—LQ1602.

6 Acknowledgement

We are grateful for comments made by Petr Zemek and the anonymous ref-

eree of this paper.

References

[1] S. A. Greibach and J. E. Hopcroft, “Scattered context grammars,” Jour-

nal of Computer and System Sciences, vol. 3, no. 3, pp. 233–224, Au-

gust, 1969.

[2] H. C. M. Kleijn, “Basic ideas of selective substitution grammars,” Lec-

ture Notes in Computer Science, vol. 281, pp. 75–95, 1987.

[3] H. C. M. Kleijn and G. Rozenberg, “Context-free like restrictions on

selective rewriting,” Theoretical Computer Science, vol. 16, no. 3, pp.

237–269, 1981.

[4] M. K. Levitina, “On some grammars with global productions,” NTI, vol.

2, no. 3, pp. 32–36, 1972. (in Russian)

[5] K. Salomaa, “Hierarchy of k-context-free languages, part 1,” Interna-

tional Journal of Computer Mathematics, vol. 26, no. 2, pp. 69–90, Mar,

1989.

[6] K. Salomaa, “Hierarchy of k-context-free languages, part 2,” Interna-

tional Journal of Computer Mathematics, vol. 26, no. 3, pp. 193–205,

Mar, 1989.

[7] R. Siromoney and K. Krithivasan, “Parallel context-free languages,” In-

formation and Control, vol. 24, no. 2, pp. 155–162, 1974.

146

On Elimination of Erasing Rules from E0S Grammars

[8] S. Skyum, “Parallel context-free languages,” Information and Control,

vol. 26, no. 3, pp. 280–285, 1974.

[9] A. Meduna, Automata and Languages: Theory and Applications, Lon-

don, Springer, 2000.

[10] G. Rozenberg and A. Salomaa, Mathematical Theory of L Systems, Or-

lando, Academic Press, 1980.

[11] Handbook of Formal Languages, Volumes I through III, G. Rozenberg,

A. Salomaa, Eds. New York, Springer, 1997.

[12] J. Dassow and G. Paun, Regulated Rewriting in Formal Language The-

ory, New York, Springer, 1989.

Alexander Meduna, Martin Havel Received February 2, 2022

Accepted March 17, 2022

Alexander Meduna

Faculty of Information Technology, Brno University of Technology

Božetěchova 1/2, 612 66 Brno, Czech Republic

E–mail: meduna@fit.vutbr.cz

Martin Havel

Faculty of Information Technology, Brno University of Technology

Božetěchova 1/2, 612 66 Brno, Czech Republic

E–mail: xhavel44@stud.fit.vutbr.cz

147

	Introduction
	Preliminaries and Definitions
	Main Result
	Concluding Remarks
	Semi-Parallel and Parallel Derivation Modes
	Open problems

	Funding
	Acknowledgement

