
Computer Science Journal of Moldova, vol.30, no.1(88), 2022

Approach for the development of mobile

applications based on migrant objects

Aissa ElMahdi Bourahla, Mustapha Bourahla

Abstract

Software engineering principles are very required for the de-
velopment of mobile applications, which are necessary for many
life applications. In this paper, we present a development process
based on transformation of UML models, which describe mobile
applications based on migrant objects to Mobile Maude language
that extends the Maude language and implements the Rewriting
Logic (RL). The generated rewriting theories will be executed
for simulation using located configurations, which are produced
from UML object diagrams. State transition models may be built
during simulation to describe behaviours of mobile applications
based on migrant objects, which will be verified against LTL
properties with the technique of model-checking. The verified
model of mobile application based on migrant objects can be
used to generate Android application to be deployed on mobile
devices.

Keywords: Mobile Application, Migrant Objects, Rewriting
Logic, Mobile Maude, Maude LTL Model Checker.

1 Introduction

The mobile application development has exponential growth since the
iPhone AppStore opened in 2008. There are many documents for
sets of best practices to guide developers of mobile applications, like
those proposed to Android and Apple iPhone developers, but rarely
use formal development techniques. Despite the development of large
number of mobile applications, there is still not much formal research

©2022 by CSJM; A. Bourahla, M. Bourahla

3

A. Bourahla, M. Bourahla

around their engineering processes. There are powerful development
tools and frameworks (for example, Android Studio, Eclipse and Win-
dows Phone) offering programming environments for the major mobile
platforms to simplify the task of implementing mobile applications.
These tools are focusing on the individual developer who is trying to
create a mobile application as quickly as possible.

A formal technique will help to develop mobile apps independently
of the mobile platform as Android, iOS, etc. when the devices with
different software versions or screen sizes might have issues that aren’t
found elsewhere, which can also help to handle testing. The formal
specification and verification process is still a crucial part of develop-
ment and it gives an added insight into the inner workings of mobile
app, where alternative ways can be potentially found to achieve our
goals. These alternatives can save work time and cost. Thus, it is not
sufficient to test the app once on mobile phone and assume that it’s
working correctly. A quality assurance process can find problems with
our app before it goes to market. It’s much better to identify these
using formal development; otherwise, users will find them in real life.

Techniques for developing mobile applications are similar to soft-
ware engineering for other embedded applications with additional re-
quirements. The mobile applications have potential interaction with
other applications, sensor handling, data of physical location, proxim-
ity to other mobile devices, the activation of various device features,
complexity of testing, power consumption, and issues associated with
transmission through gateways and the telephone network [1], [2].

Software engineering techniques should assure data integrity and
synchronization using for example, client-server computing. They
should consider the risk of program and/or data integrity when events
of potential loss of connectivity or battery power occur during a trans-
action or system update [3]. They should also design applications dif-
ferently depending on the speed of the network on which they are being
used.

The development of prototypes of the user interfaces is very re-
quired, particularly when multiple devices will be supported. An im-
portant area for mobile software engineering research is the develop-

4

Approach for the development of mobile applications . . .

ment of techniques for testing. Development of the mobile application
is test driven [4] and it will typically be done within the context of
the overall software development effort. It is insufficient to merely test
mobile application on an emulator; it must be tested across many dif-
ferent mobile devices running different versions of the operating system
on various telecom networks. Integrated test tools would help the de-
velopment process [1]. There is need for customized tools to support
cross-platform development and testing.

In this paper, we propose a framework for developing mobile ap-
plications based on migrant objects. A mobile application based on
migrant objects is defined as a mobile application composed of a set of
modules (or procedures) with small code. These modules can migrate
from a mobile device to another to communicate with a located mod-
ule. The module migration is the move of the procedure code and its
state (context) represented by a set of attributes.

A module is represented by an object of a class with attributes
and methods. This module object will be associated with a mobile
object, which can move from device to another using TCP/IP sockets.
The located mobile module contains a root object to play the role of
server (server root object) or the role of client (client root object).
These root objects are responsible for communication to move module
objects between the different mobile devices.

There are many life applications for this kind of mobile applications
based on migrant objects: health care, electronic commerce, electronic
learning, etc. In the health care domain, for example, a doctor can use
a mobile server application to migrate from his/her own mobile device
to another mobile client application owned by its patients. Hence, the
mobile client application now running on the patient’s device can inter-
act with its mobile server application. All required health information
can be asked by this mobile module representing the doctor behaviour
within the patient mobile device. When the doctor module (mobile
object) returns back to the doctor mobile device, it can inform him
with the patient’s health information.

This development framework uses a UML like language for mod-
elling server/client processes composing distributed mobile applications

5

A. Bourahla, M. Bourahla

based on migrant objects, where a mobile object resident in a process
can migrate (move) to another process for communication with its res-
ident mobile objects. For each mobile application based on migrant
objects, we develop the class, object, and statechart diagrams. These
diagrams are used to generate specifications as rewriting theories im-
plemented by the Mobile Maude language [5], which extends the sys-
tem Maude [6] implementing the Rewriting Logic. These specifications
are executable, which help to do simulation and testing. In addition
to simulation, it is possible to verify formally specified properties us-
ing Linear Temporal Logic (LTL) and the technique of model-checking
with Maude LTL Model-Checker [7]. When the UML model of mobile
application based on migrant objects is tested by simulation of its spec-
ification and its LTL properties are verified, an implementation code
can be generated.

1.1 Related works

There are studies on software engineering issues for mobile application
development, which help to be aware of some challenges during the ap-
plication development life cycle and try to resolve problems to improve
the performance of mobile applications. The authors in [8] provide
an overview of important software engineering research issues related
to the development of applications that run on mobile devices. They
highlighted some software engineering issues for development processes,
tools, user interface design, application portability, quality, and secu-
rity. New set of research issues is asked for the different characteristics
of mobile applications and their operating environments.

The authors of [9] have proposed a MDD approach for mobile ap-
plication development, which includes modeling and code generation
strategies for Android and Windows Phone, where UML class and se-
quence diagrams are employed for modeling mobile applications and
code is generated from these models. The paper [10] has presented pro-
cesses and procedures for developing mobile cloud applications by effec-
tively applying UML, where the Android mobile platform and Amazon
Web Service are used for cloud computing in order to demonstrate

6

Approach for the development of mobile applications . . .

the applicability of the proposed approach to systematically apply the
UML profiles and diagrams for cloud-based mobile applications.

The paper [11] has presented model-based analysis to study en-
ergy consumption issues at early stages of mobile development. It uses
Real-Time Maude for analyzing energy consumption of a whole system
behavior consisting of hardware components and application programs
as well as the framework. Example scenarios on detecting energy bugs
demonstrate that the time-bounded analysis method using Real-Time
Maude is effective. The authors in [12] have written a survey as a result
of interviews with mobile application developers. With this survey, we
can understand the main challenges that face mobile application de-
velopers, which are developing applications across multiple platforms:
lack of robust analysis, testing tools, and the problems of emulators
that are slow or miss many features of mobile devices. The most useful
tool for mobile application development is Android Studio [13], which
has become the primary IDE for native Android application develop-
ment. It provides code editing, debugging, and testing tools within the
development environment using emulators.

This paper is organized as follows. In Section 2, we present how to
model a mobile application based on migrant objects with UML. The
model transformation to Mobile Maude specifications is presented in
Section 3. Section 4 explains in detail the simulation of the spec-
ifications and their formal verification against LTL properties. An
implementation of automatic generation of Mobile Maude specifica-
tions from UML diagrams based on Transformation Graph Grammars
(TGGs) [14] is presented in Section 5. At the end, conclusions and
perspectives are given.

2 Modelling mobile applications based on mi-

grant objects

The key elements for modelling Mobile Applications based on Migrant
Objects (we call them MAMOs) are processes and mobile objects. A
process is a computational environment, which is located in a mobile

7

A. Bourahla, M. Bourahla

device, where mobile objects can reside. Each mobile object, which
is characterized by its own code and state, has the ability to move
from a process to another in different locations and it uses messages
to communicate asynchronously with the other mobile objects. The
mobile objects can execute their code in the located computational
environment as response to incoming events.

An overall configuration of MAMO application is a set of processes,
where a mobile object resident in a process can migrate to another
process for communication with its resident mobile objects [6]. The
code of each mobile object is represented by a small object-oriented
program (module), and its state is represented by data of a set of
objects and messages, which can be changed by executing its own code
at the process level.

To model a MAMO, we need to describe a model composed of
three diagrams (class, statechart and object diagrams). A class dia-
gram is composed of three classes (Figure 1). The first two classes are
called “ServerRootObject” and “ClientRootObject”, which are special-
izations (subclasses) of the class “RootObject” and they have different
behaviours. The third class is called “MobileObject”, which is used to
create mobile objects.

Figure 1. Class diagram of the main classes: RootObject, Server-
RootObject, ClientRootObject and MobileObject

To facilitate the transformation process, the definitions of these
classes are based on Mobile Maude implementation [5]. The first two
classes are defined to create sockets for communication between mo-
bile objects composing the MAMO. There will be only one object (in-
stance) of the class “ServerRootObject” to create TCP/IP sockets for

8

Approach for the development of mobile applications . . .

listening on for connections from other root objects, which are of the
class “ClientRootObject”. The mobile objects are instances of the class
“MobileObject” and they can reside with a server root object or a client
root object to be able to communicate.

The root object (“RootObject”) class has a set of attributes. The
attribute “cnt” is a counter to produce names for new mobile objects
that are created at the process level. The root object of each process
keeps information, which is a set of names (identifiers) of the mobile
objects currently in it in the “guests” attribute. Each root object has
another attribute called “forward” to save the forwarding information
concerning the whereabouts of its residents. The communication ac-
tions of root objects are represented by its attribute “state”, which is
only “idle” during their creation to indicate their activation as a client
socket (if it is a client root object) or as a server socket (if it is a server
root object). Then, the root objects change their state to the state
“waiting-connection” and they stay on it until getting acceptation of
connection from the server or client socket, which will pass them to the
state of “active” mode to begin the normal activity of communication.
Each root object has a routing table maintained in its attribute “neigh-
bors”. It is used to associate socket object identifiers with location
identifiers. If the neighbours table doesn’t contain a communication
socket associated with a particular location, then an additional default
socket will be specified in the attribute “defNeighbor” to be associated
with this particular location.

The “MobileObject” class has the attribute “mod” to store the
meta-representation of the object-based module using the operator
“upModule”. The mobile object’s state (context) must be stored in
the attribute “s”, which is meta-representation (using the operator
“upTerm”) of a pair of configurations meaningful for the module in
“mod”. The attribute “hops” of the class “MobileObject” is defined to
be incremented every time a mobile object has moved from one process
to another. This number of hops performed by a mobile object will be
used by the forwarding process. The attribute “mode” indicates if the
mobile object is idle or active. Its initial value is set to be active to
make the mobile object on activity from the beginning and it cannot

9

A. Bourahla, M. Bourahla

be in active mode if it is in motion. The other attribute in this set, is
the “gas” attribute, which is used to limit the number of resources to
be consumed by the mobile objects. It is possible to add attributes to
this set during the modelling if necessary.

The class MobileObjects’ attributes named “mod” for procedure
code specification and “s” for procedure state context will be defined
by a class association, which is associated with the class MobileOb-
ject. This class association extends the class diagram model by classes
for mobile applications (modules) to define the behaviour of the mo-
bile objects (instances of the class MobileObject). This mobile objects
modelling is viewed as a distribution of located configurations; each one
is executed in a different process. The created mobile objects can reside
in a process to execute their code specified by the attribute “mod”. Its
execution can change its state identified by the attribute “s” and it can
also communicate with other mobile objects by sending and receiving
messages to and from the processes locating them.

The server and client root objects are identified by names of the
form l(IP, n), where l stands for location, IP is an Internet Protocol
address of the machine in which the process is being executed and n is
a natural number. The uniqueness of names for root objects composing
located configurations of distributed processes should be guaranteed for
proper functionality. Only one root object of the class RootObject, will
be in a located configuration to be responsible to maintain information
concerning the process location, its mobile objects, and the situation of
the mobile objects that are created in it and moved to other processes.

Mobile objects with their context state and their code written with
an object-oriented language, can migrate between processes and com-
municate by sending and receiving asynchronous messages. The mo-
bile objects are identified by names of the form o(l(IP, n), k), where
o stands for object, l(IP, n) is the identifier of the root object of the
process in which it was created, and k – a natural number. A mobile
application based on migrant objects, which runs on a mobile device,
is a configuration of an object of the class “ServerObjectManager” or
“ClientObjectManager” and a set of objects of the class “MobileOb-
ject”. A mobile object can move (moving its code and its current state)

10

Approach for the development of mobile applications . . .

from a device configuration to another using the TCP/IP sockets cre-
ated by the server and/or client objects. Two mobile objects in the
same configuration can communicate using messages defined during
modelling to change their states. So, if a mobile object wants to com-
municate with another mobile object in a different configuration, the
former should first move to this configuration containing the mobile
object to be able to communicate with it.

3 Generation of mobile Maude specifications

To simulate mobile application based on migrant objects (MAMO), a
transformation must be applied on its models of class diagram and stat-
echart diagram to generate Mobile Maude specifications with respect to
the rewriting logic syntax. These specifications are rewriting theories,
which can be executed via Mobile Maude configurations that will be
generated from the object diagram modelling objects of the MAMO.
Mobile Maude [5] is a mobile object language, which extends Maude [6]
for specifying mobile computation. The Mobile Maude specifications
are executable, which helps to use them as prototypes of the language
and then applications implementing mobile object can be simulated.

The mobile object’s state identified by the attribute s must be
the meta-representation of a pair of configurations meaningful for the
module in the attribute mod. These two attributes, which are spec-
ified in a class association will be added to the attributes set of the
class “MobileObject”. The attribute s has the form of a conjunction
Conf & Msgs, where the first part of the conjunction Conf , is a con-
figuration of objects and incoming messages to be processed by the
mobile Maude system. The second part of the conjunction Msgs, rep-
resents a multi-set of messages to be sent as a result of handling the
configuration Conf .

The root and mobile objects are modelled by a small set of mobile
Maude rules, which code their mobility and message sending. These
rules are independent from the application. It is possible also to write
the MAMO code as Maude object-oriented modules. The mobility
of an object can be realized by sending two different messages to the

11

A. Bourahla, M. Bourahla

root object. The first message is go(L), which means the sender mobile
object request moving from its current location to the specified location
L. This means the mobile object only specifies the location to go to.
The second message is go− find(O,L), which is sent when requesting
the move to a location, where the mobile object O resides (it can be
L). In this case, the mobile object only knows the identifier of the
object (O) to catch up with, not the location it is at. But, it can give
a tentative location (L), which can be the home location of O.

A mobile object can send messages to other mobile objects. These
messages between mobile objects have the form to O : msg, where O

is the receiver of the message and msg is the message content, which
can be of any kind and it can indicate the name of the sender, so the
receiver will know the identifier of the sender. The MAMO applications
are object-oriented, where the operator “&” is used as constructor by
the mobile objects to send messages and to move to other processes
using the socket connections. The communication can be between ob-
jects inside the same mobile object, where the messages can be of any
format and this communication may be synchronous or asynchronous.
Communication can also be between objects in different mobile objects.
In this case, these mobile objects can be in the same process or in dif-
ferent processes. This communication should be asynchronous and it
is transparent to the mobile objects and the messages must be of the
form to O : msg, which is explained before.

When a rule of a mobile Maude module has a configuration identi-
fying a mobile object A is executed, and the second component of its
result state has the message go or go − find, then the mobility of the
identified mobile object A in the configuration is initiated. The go(L)
message will make the root object (manager) moving the mobile object
A to the location L. However, the go− find(B,L) message will try to
move the mobile object A to reach the objet B that can be itself on
move. It begins with the specified location L as the first tentative, if
A doesn’t find the object B, it will go on looking for B in a different
location.

Each mobile object has a tray of outgoing messages; if it decides
to migrate to a different process in a target location L, it will add the

12

Approach for the development of mobile applications . . .

message go(L) to this tray of messages. This will invoke the operation
of sending the go message to inter mobile objects, where the sender
mobile object is indicated as an argument of this message. At the
end of this operation, the go message will be then removed from the
outgoing messages tray. If the mobile object is on move, it will be made
inactive by the go message. If the location of the message’s sender is
different from the location of its receiver, then the root object of the
sender’s location will send this message to the desired location through
the appropriate socket. The root object of the destination location will
update its forwarding information if it receives this message. When
the mobile object reaches its home location, it will be informed by the
corresponding root object of this message.

3.1 Example of healthcare domain

We explain on a simple example how a mobile application based on
migrant objects (MAMO) can be developed with this formalism. In
this example we have patients and a doctor in a MAMO for healthcare
domain; a doctor visits several patients, who provide him information
on their health. The doctor looks for the patients need care, and once
he has visited all the patients, he goes back to his home location where
human doctor who is the owner of the mobile device can consult his
patients’ health information. This description allows us to identify the
actors to be represented as mobile objects, which may migrate (move)
between the different processes composing the MAMO application. In
this approach the specification of the MAMO applications consists of
objects embedded inside mobile objects, which communicate with each
other via messages. According to the semantics of the language Mobile
Maude, we represent this as a dependency between the dependent class
“MobileObject” and its dependency class “Patient” or “Doctor”, where
their codes should be executed (see the code of the processes in Section
4).

To model the doctor and patient classes, we represent patients and
doctor as objects of respective classes Patient and Doctor. Such ob-
jects in the MAMO application code will then be embedded inside their
corresponding mobile objects. In the class diagram, which extends the

13

A. Bourahla, M. Bourahla

class diagram of Figure 1 of this particular mobile application based
on migrant objects, the class “Patient” has attributes description with
the patient name, temperature, blood pressure and glucose levels.

class Patient | name : String, temperature : Float,

blood−pressure : Float, glucose : Float

A doctor class has an attribute called patients with a list of identi-
fiers for the known patients mobile objects. It has also an attribute
called state with its current state, which can be State1 (initial state),
State2, State3 or lastState (last state). These states (generated from
the statechart diagram) are used to synchronise the rules execution,
which represent its behaviour. Finally, the doctor class keeps informa-
tion about the patients’ health information.

class Doctor | patients : patients, state : DoctorState,

health−informations : patient(temperature,

blood−pressure, glucose)

Each mobile object will carry the representation term of its state
(context) and the code managing the behaviour of the objects and
messages of the configuration representing this state. In the sample
mobile application MAMO, we have two different classes of mobile
objects: patients and doctor. Although the objects representing the
patients don’t move, they should be modelled as mobile objects to be
able to send and receive messages from other mobile objects through
the mobile Maude system. The following statechart diagram (Figure
2) summarizes their behaviours. We remark that the mobile object
doctor continues its execution from the state “doctorState3” after it
moves to the client process of the mobile object patient when it was at
the state “doctorState2”.

The transformation to Mobile Maude code is based on formal se-
mantics given to the statechart diagram. Every mobile object has an
initial (located configuration) state, which will be defined in the ob-
ject diagram. The doctor mobile object has a last state (lastState),
however the mobile object patient has no last state, which means its
execution doesn’t terminate. A transition in the statechart diagram is

14

Approach for the development of mobile applications . . .

Figure 2. Statechart diagram of the mobile objects doctor and patient

represented by a rewriting rule of the form.

rl[State] :(State ∧ Condition) & incoming−message =>

State′ & outgoing−message

where State is a state value of the attribute state, Condition is any
value of any attribute from the attributes set. The incoming message
incoming−message is a received message that labels the incoming
edge of the state State (or none, if there is no label), which constitutes
a transition guard with the condition Condition. The execution of
this rule will change the mobile object configuration by changing the
attribute value of state to be State′ and sending the outgoing message
outgoing−message that labels the outgoing edge of the state State′

(or none, if there is no label). A doctor visits several patients to ask
each one he visits for the description of his health, represented here by
its temperature, blood pressure and glucose levels. In the statechart
diagram, when the doctor is in the server root object at the state
State1 (the initial state) looks for the address of the first patient in the
patients list. If there is no patient location to visit, it goes to its last
state (named lastState), else it goes to the state State2, from which it

15

A. Bourahla, M. Bourahla

can go to find the patient location.

rl[State1] :(State1 ∧ list of patients is empty) & none =>

lastState & goHome

rl[State1] :(State1 ∧ list of patients is not empty) & none =>

State2 & go find first patient in the list

A message go − find is sent to the root object. As response to this
message, the doctor mobile object moves to the process location of
the first patient mobile object in the patients list. At this process
locating the patient mobile object, the doctor mobile object continues
its execution from the state State3 by sending the message get−health−
information to the patient mobile object.

rl[State2] : State2 & none => State3 & get health information

The patient sends back his health information stored in its attributes,
which will be received when the mobile object doctor is in its state
State3 and then saved in its attribute health−information.

rl[State3] : (State3 ∧ health information) & none => State1 & none

From the state State3, the doctor returns back to the state State1
if it has received the health information for looking the next patient
address to move to its process location by the same way. Once the
mobile object doctor has visited all the patients it knows (the patients
list is empty), it goes back to its home location by sending the message
go(home− location). Then, all the patients’ health information is in
its attribute named health−information, which can be consulted by
the mobile device owner. Patients receive from the doctor messages of
the form get−health−information(D) with D as the identifier of the
doctor mobile object sending the message. Patients can send messages
of the form health−information(Name, T,BP,G) with Name – string
representing the patient’s name, T , BP , and G – real numbers repre-
senting the patient’s temperature, blood pressure, and glucose levels,
respectively.

rl[State1] : (State1 ∧ get health information) & none =>

State1 & health information

16

Approach for the development of mobile applications . . .

From the extended class diagram and the statechart diagram, we gen-
erate Mobile Maude modules for patient’s behaviour and doctor’s be-
haviour. Patient’s behaviour is represented by the rewrite rule labelled
with State1 (indicated in the statechart diagram), which corresponds
to its unique state State1. When a patient receives a heath informa-
tion request, it sends back the information to the doctor. The whole
module defining the patient’s behaviour in Maude is below.

mod PATIENT i s
. . .
r l [State1] : Conf (to P : get−heal th−i n f o rmat i on (D))

< P : V@Patient | name : Name, temperature : T,
blood−pr e s su r e : BP, g l u co s e : G, AtS > & none =>

Conf < P : V@Patient | name : Name, temperature : T,
blood−pr e s su r e : BP, g l u co s e : G, AtS > &
(to D : heal th−i n f o rmat i on (Name, T, BP, G)) .

endm

However, the doctor module, which is presented below, is more com-
plex. Its behaviour is composed of four states. In the state encoded
by the rule labelled by State1, it moves to the process containing the
mobile object, where the object patient identified by o(L,N) is in and
it changes its state to State2 to ask the patient object its health infor-
mation by sending the message to P : get−health−information(D),
where P is the object identifier of the patient (i.e., o(L,N)) and D is
the object identifier of the doctor requesting health information.

The patient object, which is now located with the doctor mobile
object in the same process, responds with the message to D : health−
information(Name, T,BP,G) (the rule encoding the state State1 of
the patient mobile object). When it is in the state State3 and the
patients list is not empty, it will return back to the state State1 to
move to the located configuration of the next patient mobile object,
else it will return back to its original home location (the server root
object) carrying the health information of all the patients.

mod DOCTOR i s
. . .
r l [State1] : < D : V@Doctor | pa t i en t s : o (L ,N) . OP,

s ta t e : State1 , AtS > & none => < D : V@Doctor |
pa t i en t s : o (L ,N) . OP, s ta t e : State2 , AtS > &
go−f i nd (o (L ,N) , L) .

r l [State1] : < D : V@Doctor | pa t i en t s : no−id ,

17

A. Bourahla, M. Bourahla

s t a t e : State1 , home−l o c a t i o n : o (L ,N) , AtS > &
none => < D : V@Doctor | pa t i en t s : no−id ,
s t a t e : l a s t , home−l o c a t i o n : o (L ,N) ,AtS> & go (L) .

r l [State2] : < D : V@Doctor | pa t i en t s : P . OP,
s ta t e : State2 , AtS > & none => < D : V@Doctor |
pa t i en t s :P . OP, s ta t e : State3 , AtS > &
(to P : get−heal th−i n f o rmat i on (D)) .

r l [State3] : (to D : heal th−i n f o rmat i on (Name, T, BP,
G)) < D : V@Doctor | pa t i en t s : P . OP, s ta t e :
State3 , AtS > => < D : V@Doctor | pa t i en t s : OP,
heal th−i n f o rmat i on : Name(temperature : T,
blood−pr e s su r e : BP, g l u co s e : G) , s t a t e : State1 , AtS > .

endm

4 Simulation and verification

We will show how we can simulate and verify this mobile application
based on migrant objects by using the Maude system. Our sample
doctor/patients configuration is constituted of four located configura-
tions; each one will be executed in a Maude process. Each located
configuration contains one root object (there are four configurations).

The mobile object doctor is the resident of the server root object;
however, the patients are residents of the client root objects. From the
object diagram, we generate four located configurations. The first lo-
cated configuration (shown below) contains a ServerRootObject, with
identifier l(IP, 0), and a mobile object identified by o(l(IP, 0), 0) with
a doctor module in its belly. This configuration represents the cen-
tral process of the star network and it must be executed first, because
it has the object ServerRootObject, which is responsible for creating
the server socket to listen and then accept connections from the other
objects.

mod PROCESS−DOCTOR i s
ex DISTRIBUTED−MOBILE−MAUDE . ex DOCTOR . op IP : −> Str ing .
op i n i t i a l : −> Conf i gurat i on . eq IP = ” l o c a l h o s t ” .
eq port = 8000 . eq i n i t i a l =<>< l (IP , 0) : ServerRootObject |

cnt : 1 , s t a t e : i d l e , gues t s : o (l (IP , 0) , 0) , defNeighbor : nu l l ,
ne i ghbor s : empty , forward : 0 |−> (l (IP , 0) , 0) >

< o (l (IP , 0) , 0) : Mobi leObject | mod : upModule (’DOCTOR, f a l s e) ,
s : upTerm(< o (l (IP , 0) , 0) : Doctor | s t a tu s : done ,
home−l o c a t i o n : o (l (IP , 0) , 0) , pa t i en t s : o (l (IP , 1) , 0) .
o (l (IP , 2) , 0) . o (l (IP , 3) ,0)> & none) , gas : 200 ,

18

Approach for the development of mobile applications . . .

mode : act i ve , hops : 0 > .
endm

Note how the Maude meta-level function upModule is used to ob-
tain the meta-representation of the module DOCTOR, and how the
function upTerm is used to meta-represent the initial state of the inner
object, where the list of patients is declared as value of the attribute
patients. The other configurations below are for the three mobile ob-
jects patients, which contain ClientRootObject with a Patient object
in the belly of a mobile object. Each patient has a different name
“PatI” (“I” stands for 1, 2 or 3) and different health information: the
temperature T (39.0, 39.5, and 39.0), the blood-pressure B (12.0, 13.2,
and 14.0) and the glucose G (1.3, 1.56, and 1.2). The mobile object of
the patient, which has the name “PatI” is called “o(l(IP,I),0)” and it
is located in a process with the client root object “l(IP,I)”, where “I”
stands for 1, 2 or 3.

mod PROCESS−PATI i s
ex DISTRIBUTED−MOBILE−MAUDE . ex PATIENT . op IP : −> Str ing .
eq IP = ” l o c a l h o s t ” . eq port = 8000 .
eq server−addres s = ” l o c a l h o s t ” . op i n i t i a l :−>Conf i gurat i on .
eq i n i t i a l = <> < l (IP , I) : Cl i entRootObject | s t a t e : i d l e ,

cnt : 1 , gues t s : o (l (IP , I) , 0) , ne i ghbor s : empty ,
forward : 0 |−> (l (IP , I) , 0) , defNeighbor : nu l l >

< o (l (IP , 1) , 0) : Mobi leObject |mod : upModule (’PATIENT, f a l s e) ,
s : upTerm(< o (l (IP , I) , 0) : Pat i ent | name : ”PatI ” ,
temperature : TI , blood−pr e s su r e : BI , g l u co s e : GI >

& none) , gas : 200 , mode : act i ve , hops : 0 > .
endm

These four configurations represent an overall located configuration
(processes) of the mobile application MAMO. In this case the four
processes run on the same machine, with IP address localhost. The
execution results of these four different Maude processes are described
as follows. First, the doctor travels to the location l(IP, 1) of the first
patient o(l(IP, 1), 0) and asks him about his health information. The
patient resident in this location responds with his information. Then,
the doctor travels to the next location l(IP, 2) to ask its resident, which
is the patient o(l(IP, 2), 0).

The last move before returning to its home location l(IP, 0), the
doctor identified by o(l(IP, 0), 0) travels to the third patient loca-

19

A. Bourahla, M. Bourahla

tion l(IP, 3) to ask its resident, which is the patient identified by
o(l(IP, 3), 0). The doctor has finished his travel at his home loca-
tion and has the names and health information of all the patients. Its
attribute “hops” has the value 4, which means that it has 4 jumps, it
has moved to 3 locations and it has returned back home. The value of
the attribute “gas” is 200 − 193, which means it has consumed 7 re-
sources. The simulation results for the mobile objects “Pat1”, “Pat2”,
and “Pat3” show that these three mobile objects didn’t move (the val-
ues of their attribute “hops” are zero) and they have consumed two
resources (“gas” equals 200 − 198).

4.1 Formal verification

Formal verification is useful to check properties that cannot be veri-
fied by simulation as, for example, the property a doctor mobile object
should visit only once every patient. The Maude LTL model checker
implemented within the system Maude [7] can be used to verify the
satisfaction of LTL properties by Maude specification if its set of states
reachable from an initial state is finite. The Maude LTL model checker
can be used to check whether a given initial overall configuration fulfills
a mobile application MAMO property described by Linear Temporal
Logic (LTL), such as safety property (something bad never happens)
and liveness property (something good eventually happens) [15]. Veri-
fying LTL properties on mobile applications MAMOs is not easy. The
MAMOs applications are distributed among several hosts; therefore,
the Maude LTL model checker cannot be applied directly to prove
global properties. In the following, we show how this issue is addressed.

The problem has been solved by specifying additional mobile object
responsible for model-checking models that can be built during the
activity of the other mobile objects. A model checker mobile object is
another associated class with attributes, the first attribute model is for
capturing the states sent by the specified mobile objects, the second
attribute formula is to specify the LTL formula to verify the model
built, and the last attributemodel−check will show the model checking
result, which is true if the property is satisfied or a counterexample (a

20

Approach for the development of mobile applications . . .

trace) showing why the property is falsified. This mobile object is
located in the process of the server root object, and it will receive
states from the other mobile objects (in the patients/doctor example,
it receives location of the doctor mobile object each time it travels to
it). The following Mobile Maude code represents the modified doctor
configuration in the object diagram.

mod PROCESS−DOCTOR i s
. . .
< o (l (IP , 0) , 0) : Mobi leObject | mod : upModule (’DOCTOR, f a l s e) ,

s : upTerm(< o (l (IP , 0) , 0) : Doctor | s t a tu s : done ,
model−check : o (l (IP , 0) , 1) , home−l o c a t i o n : o (l (IP , 0) , 0) ,
pa t i en t s : o (l (IP , 1) , 0) . o (l (IP , 2) , 0) . o (l (IP , 3) , 0)>
& none) , gas : 200 , mode : act i ve , hops : 0 >

< o (l (IP , 0) , 1) : Mobi leObject | model : n i l ,
model−check : wai t ing−model ,
formula : ((<> (l o c a t i o n (l (IP , 2)))) /\

(l o c a t i o n (l (IP , 2)) −> [] (˜ l o c a t i o n (l (IP , 2))))) ,
mod : upModule (’MC, f a l s e) , gas : 200 ,mode : act i ve , hops :0> .

endm

The mobile object identified by l(IP, 0), 1) is the model checker
mobile object and its belly moduleMC is the Maude module containing
rewriting theory for building the required model to be the value of the
attribute model. The LTL property in the attribute formula is used
to verify the constructed model against the property that the mobile
object doctor eventually reaches the location of the mobile object of the
patient pat2 and it will never return to it, which formally is expressed
by

♦(loc(l(IP, 2))) ∧ (loc(l(IP, 2)) =⇒ �(¬loc(l(IP, 2))))

The result of model checking is shown in Figure 3 (the value of the
attribute model-check is true, which means the property is satisfied).

5 Implementation

The objective of the implementation is to develop a tool by which we
can generate automatically the Maude specifications from the UML di-
agrams to do simulation and model checking of LTL properties. When

21

A. Bourahla, M. Bourahla

Figure 3. Model construction and model checking results

the simulation results and LTL properties are satisfied, we can use this
implemented tool to generate concrete mobile application (its code),
which can be deployed on mobile devices. For this automatic genera-
tion, we use generation and transformation of models based on Model
Driven Architecture (MDA) [16]. Triple Graph Grammars (TGGs) are
used to specify bidirectional model transformation [14]. Consistency
relations can be specified with TGGs as rules [17] to control the cor-
respondence between the source and target models. With TGGs, to
guarantee that a source model is consistent with a target model, we
specify a correspondence model between them, which will be used by
a set of TGG rules for checking the consistency. This correspondence
model should be conforming to a defined correspondence meta-model.
Also, the source and target models conform to their corresponding
meta-models that are connected by the correspondence meta-model.
The triple of source, target and correspondence meta-models is referred
to as a TGG schema [18].

The class (declarative parts) and statechart (behaviour parts) dia-
grams are used to generate the Maude specifications of modules rep-
resenting the migrant objects. The EMF (Eclipse Modelling Frame-
work) ECore of the Eclipse platform is used for the implementation of
this automatic transformation. Thus, the meta-modelling layer of the
EMF tool is used to graphically model the meta-models of the class
and statechart diagrams, which represent the source meta-models and
the meta-model of the mobile Maude as the target meta-model. The

22

Approach for the development of mobile applications . . .

correspondence meta-model is added to connect the source and the
target meta-models. The Graphical Modelling Framework (GMF) [19]
tool will be then used for editing the different models of the MAMO
application based on the specified formalism defined by the created
meta-models.

The TGG Interpreter [20] is used to generate mobile Maude models
by executing graph rewriting rules based on the source, target, and cor-
respondence meta-models. These rules can be specified to do model-to-
model (M2M) or model-to-text (M2T) transformations using the TGG
technique. The text generated in the model-to-text transformation is
a mobile Maude code, which is generated with respect to defined tem-
plates. The template is a target text containing holes as variable parts.
These holes contain meta-code, this means code creating code. The
variable parts are computed during the template instantiation time. In
this case, we use Xpand language to create templates for code genera-
tion of mobile Maude modules from EMF models of mobile Maude.

For the verification (simulation and formal verification) of these
migrant objects in the located configurations of processes, we gener-
ate from object diagrams representing the located configurations the
mobile Maude processes. By the same way, using TGG transforma-
tions as explained before, we realize this task. We use Maude LTL
Model-Checker to verify the state-transition model constructed dur-
ing simulation against specified LTL properties, a counter example is
generated in case a property fails.

By the same process, Figure 4 shows the steps of the code genera-
tion, where the mobile Maude modules and located configurations are
used as inputs to generate Android Java Code [21] to be deployed on
Android devices. However, the programmer will be asked to add addi-
tional Java code for user interface, as to make secure logins, to input
user data and to handle information as key data or SQL data base, etc.

6 Conclusions and perspectives

A technique to use software engineering principles for developing mo-
bile applications is proposed. The UML class and statechart diagrams

23

A. Bourahla, M. Bourahla

Figure 4. Generation of mobile application code

modelling the mobile app, are first transformed to mobile rewriting
theories to be the belly modules of mobile objects that will reside in
processes containing root objects (server root object and client root ob-
jects) to manage communication between the different mobile objects
and hence creating located configurations by transformation of object
diagrams. Thus, it is possible to execute each located configuration in
a process to simulate these UML models and the execution results will
be checked and compared with the desired behaviours. We can also
formally verify these located configurations using the model-checking
technique. At the end, an equivalent Android mobile application can
be generated using a transformation process of mobile rewriting theo-
ries to Android Java code to be built and deployed on mobile devices.
This software engineering technique is implemented as a prototype and
extensively tested with small examples. The implementation results
encouraged us to continue with this work. As perspectives, we would
like to integrate it with the existing tools for development of mobile
applications.

24

Approach for the development of mobile applications . . .

References

[1] A. I. Wasserman, “Software engineering issues for mobile appli-
cation development,” in Proceedings of the Workshop on Future
of Software Engineering Research, FoSER 2010, at the 18th ACM
SIGSOFT International Symposium on Foundations of Software
Engineering, 2010, Santa Fe, NM, USA, November 7-11, 2010,
G. Roman and K. J. Sullivan, Eds. ACM, 2010, pp. 397–400.

[2] L. Corral, A. Sillitti, and G. Succi, “Software assurance practices
for mobile applications - A survey of the state of the art,” Com-
puting, vol. 97, no. 10, pp. 1001–1022, 2015.

[3] L. Corral, A. B. Georgiev, A. Sillitti, and G. Succi, “Can execution
time describe accurately the energy consumption of mobile apps?
an experiment in android,” in Proceedings of the 3rd International
Workshop on Green and Sustainable Software, GREENS 2014,
Hyderabad, India, June 1, 2014, H. A. Müller, P. Lago, M. Morisio,
N. Meyer, and G. Scanniello, Eds. ACM, 2014, pp. 31–37.

[4] I. do Nascimento Mendes and A. C. Dias-Neto, “A process-based
approach to test usability of multi-platform mobile applications,”
in Design, User Experience, and Usability: Design Thinking and
Methods - 5th International Conference, DUXU 2016, Held as
Part of HCI International 2016, Toronto, Canada, July 17-22,
2016, Proceedings, Part I, ser. Lecture Notes in Computer Sci-
ence, A. Marcus, Ed., vol. 9746. Springer, 2016, pp. 456–468.

[5] F. Durán, A. Riesco, and A. Verdejo, “A distributed implemen-
tation of mobile maude,” Electr. Notes Theor. Comput. Sci., vol.
176, no. 4, pp. 113–131, 2007.

[6] M. Clavel, F. Durán, S. Eker, P. Lincoln, J. Meseguer, N. Mart́ı-
Oliet, and C. L. Talcott, Eds., All About Maude - A High-
Performance Logical Framework, How to Specify, Program and
Verify Systems in Rewriting Logic, ser. Lecture Notes in Com-
puter Science, vol. 4350. Springer, 2007.

[7] S. Eker, J. Meseguer, and A. Sridharanarayanan, “The maude
LTL model checker,” Electr. Notes Theor. Comput. Sci., vol. 71,
pp. 162–187, 2002.

25

A. Bourahla, M. Bourahla

[8] A. I. Wasserman, “Developing mobile software with FLOSS,” in
Open Source Systems: Long-Term Sustainability - 8th IFIP WG
2.13 International Conference, OSS 2012, Hammamet, Tunisia,
September 10-13, 2012. Proceedings, ser. IFIP Advances in Infor-
mation and Communication Technology, I. Hammouda, B. Lun-
dell, T. Mikkonen, and W. Scacchi, Eds., vol. 378. Springer, 2012,
pp. 401–402.

[9] L. Brisolara, A. Parada, and M. Marques, “Automating mobile
application development: Uml-based code generation for android
and windows phone,” Revista de Informática Teórica e Aplicada:
RITA, vol. 22, pp. 31–50, 11 2015.

[10] D. Kim, “Development of mobile cloud applications using uml,”
International Journal of Electrical and Computer Engineering,
vol. 8, pp. 596–604, 02 2018.

[11] S. Nakajima, “Formal analysis of android application behavior
with real-time maude,” in 2015 IEEE 3rd International Con-
ference on Cyber-Physical Systems, Networks, and Applications,
2015, pp. 7–12.

[12] M. E. Joorabchi, A. Mesbah, and P. Kruchten, “Real challenges
in mobile app development,” in 2013 ACM / IEEE International
Symposium on Empirical Software Engineering and Measurement,
Baltimore, Maryland, USA, October 10-11, 2013. IEEE Com-
puter Society, 2013, pp. 15–24.

[13] “https://developer.android.com/studio/index.html, Android Stu-
dio,” accessed: 2019-06-01.

[14] A. Anjorin, E. Leblebici, and A. Schürr, “20 years of triple graph
grammars: A roadmap for future research,” ECEASST, vol. 73,
2015.

[15] M. Clavel, F. Durán, S. Eker, P. Lincoln, J. Meseguer, N. Mart́ı-
Oliet, J. Meseguer, and C. L. Talcott, “LTL model checking,” in
All About Maude - A High-Performance Logical Framework, How
to Specify, Program and Verify Systems in Rewriting Logic, 2007,
pp. 385–418.

[16] A. Kleppe, J. Warmer, and W. Bast, MDA explained - the Model
Driven Architecture: practice and promise, ser. Addison Wesley

26

Approach for the development of mobile applications . . .

object technology series. Addison-Wesley, 2003.
[17] M. Bendiaf, M. Bourahla, M. Boudia, and S. Rehab, “A model

transformation approach for specifying real-time systems and its
verification using rt-maude,” IJITWE, vol. 12, no. 4, pp. 22–41,
2017.

[18] E. Leblebici, A. Anjorin, A. Schürr, S. Hildebrandt, J. Rieke, and
J. Greenyer, “A comparison of incremental triple graph grammar
tools,” ECEASST, vol. 67, 2014.

[19] “URL: https://www.eclipse.org/modeling/gmp/, Graphical Mod-
eling Framework,” accessed: 2019-04-10.

[20] “http://jgreen.de/tools/tgg-interpreter/, TGG Interpreter,” ac-
cessed: 2019-04-10.

[21] M. Murphy, The Busy Coder’s Guide to Advanced Android
Development. CommonsWare, LLC, 2009. [Online]. Available:
https://books.google.dz/books?id=fQmvPwAACAAJ

Aissa ElMahdi Bourahla, Mustapha Bourahla Received July 5, 2020

Accepted October 6, 2021

Aissa ElMahdi Bourahla

Computer Science Department, University of M’Sila

BP. 166 Ichebilia, M’Sila, 28000, Algeria

Phone: +213 0540834764

E–mail: aissa.bourahla@univ-msila.dz

Mustapha Bourahla

Laboratory of Informatics and its Applications, Computer Science Department, Uni-

versity of M’Sila

BP. 166 Ichebilia, M’Sila, 28000, Algeria

Phone: +213 0778574572

E–mail: mustapha.bourahla@univ-msila.dz

27

