
Computer Science Journal of Moldova, vol.30, no.1(88), 2022

Interactive System for Algorithm and Data

Structure Visualization

Patrik Perháč, Slavomı́r Šimoňák

Abstract

This work is dedicated to the design, implementation and
evaluation of a new algorithm visualization system. The cur-
rently available systems and libraries are briefly compared with
each other based on the visualizations and functionalities they
provide. Since the analyzed tools didn’t meet all of the given re-
quirements, we decided that the development of a new system for
algorithm and data structure visualizations would be beneficial
for use in teaching the subject Data Structures and Algorithms.
The new system was designed to be easily usable, extensible,
available and to cover the basic functionalities available in similar
systems and other useful features. The proposed system provides
three types of visualizations: predefined visualizations, to explain
how each data structure and algorithm works; interactive visual-
izations, to let the user interact with the visualization directly;
and interactive exercises, to let the users test their knowledge.
These three types of visualizations cover the whole learning pro-
cess, provide theoretical and practical knowledge, and also a way
to test their knowledge. The system is implemented in the form
of a web application and, for the visualizations, the JSAV library
is used. The system was also evaluated by the users via a survey
and several improvements were implemented in the system based
on the feedback provided by the users.

Keywords: algorithms, data structures, visualization, web
application, JavaScript, JSAV.

MSC 2010: 68P05, 68P10, 68Q65, 97U50.

©2022 by CSJM; Patrik Perháč, Slavomı́r Šimoňák

28



Interactive System for Algorithm and Data Structure Visualization

1 Introduction

In this work, we focus on making the learning process of data structures
and algorithms easier for the students. These topics are thaught in the
subject Data Structures and Algorithms. This subject is taught in
the second year of the bachelor’s degree program Informatics of the
Department of Computers and Informatics. In this subject, different
abstract data types and algorithms are introduced to the students.
Understanding how some of the more complex data structures and
algorithms work can be harder to comprehend for some students at
first. However, this process can be made easier by the use of supporting
tools that help visualize the data structures, so students can understand
them better. Different kinds of supporting tools were in use while
teaching the subject Data Structures and Algorithms, each of which
had its benefits and limitations. These tools are evaluated later in this
paper.

The use of visualizations alongside with pseudocode, in which the
currently executed line is highlighted can help significantly in under-
standing more complex data structures and algorithms [1]. This way
the student has an overview of how each step of the algorithm affects
the data structures used [2]. Another way to ensure the students get the
most out of learning these topics is to provide them with engaging activ-
ities besides the visualizations of the data structures and algorithms [3].
Just looking at the visualizations may not be sufficient enough to fully
understand the topic, but interacting with the data structures directly
can help students gain a better, more in depth understanding. This
is why, besides predefined visualizations, it is advantageous if the user
has the ability to interact with the visualization in some way, either
by defining the order of the operations executed, or defining the values
used within the visualized data structures. This can help the user gain
some practical knowledge too [4].

1.1 Requirements for the supporting tool

Before we select the supporting tool to be used in the teaching of the
subject Data Structures and Algorithms, we need to define the require-

29



Patrik Perháč, Slavomı́r Šimoňák

ments it needs to satisfy. These requirements need to be adjusted to
the learning process and the material thought in this subject. Initially,
there were two main requirements for the system:

• Usability: the system must be easy to understand and simple to
use.

• Accessibility: the system must be widely accessible, and the initial
configuration or setup of the system should not take more than
a few minutes.

After defining these requirements, a more detailed specification was
designed with the following parts [5]:

• Online solution: designing the system in the form of a web ap-
plication and deploying it to a web server solves the accessibility
requirement, since the application would be accessible to anyone.

• Clear visualizations: the visualizations included in the system
should be easy to understand and interactions with the visualiza-
tions should be intuitive and straightforward.

• Brief explanations: the system should include a brief overview of
the visualized algorithm or data structure.

• Pseudocode: for more complex visualizations, pseudocode should
be provided to help better understand the visualized algorithm.
The currently executed line should be highlighted in the pseu-
docode.

• Controls: a way to play the visualizations step by step in any
direction should be provided [2].

• Defining elements: the user should be able to define the value of
the data structure elements.

• Extensibility: the system must be easily extensible with new vi-
sualizations.

• Predefined visualizations: the system must provide predefined
visualizations for the basic data structures.

• Exercises: the system should allow students to test their under-
standing of the visualized algorithms [6].

30



Interactive System for Algorithm and Data Structure Visualization

2 Related work

This section provides a brief overview of some of the existing systems
that were analyzed in this work. The analysis included desktop ap-
plications previously used in teaching the subject Data Structures and
Algorithms as well as some of the available web applications.

2.1 VizAlgo

VizAlgo is a desktop application for algorithm and data structures
visualizaton, used in teaching of the subject Data Structures and Al-
gorithms, written in the Java language [7]. Since it is written in Java,
it doesn’t require installation, but it has limited compatibility in Linux
systems due to the libraries used, some of which need to be addition-
ally installed on Linux systems. It provides visualizations for the basic
data structures such as the Stack, Queue, Binary Search Tree. Sorting
algorithms, tree traversal algorithms, MinMax and Chainmatrix algo-
rithms are also visualized in the application [8]. Because of the need of
obtaining a .jar file to run the program and the limited compatibility
with Linux systems, VizAlgo didn’t meet the requirements specified
above.

2.2 Algomaster

Another desktop application analyzed was Algomaster which is also
used in teaching the subject Data Structures and Algorithms. It’s
built on the .NET platform and provides functionalities like stepping
the visualization, the ability for the user to define the data structures,
pseudocode, and also call stack visualization, which is useful for visual-
izing recursive algorithms [9] [10]. The visualizations are implemented
in the form of plugins [11]. Algomaster includes more visualizations of
data structures and algorithms than VizAlgo, but since it is built on
the .NET platform, it has limited compatibility.

31



Patrik Perháč, Slavomı́r Šimoňák

2.3 Online learning tools

Besides the previously mentioned desktop applications, some of the
online solutions available were also analyzed and evaluated based on
the requirements.

2.3.1 Algorithm Visualizer

This online platform1 provides visualizations directly from source code.
The source code of the included visualizations can be edited and run
after successful build. Since the visualization is generated from the
source code directly, it is suitable for visualizing complex algorithms.
However, this feature makes the code more complicated since the code
doesn’t only contain the code for the algorithm, but also the code
responsible for visualizing the algorithm, which could lead to confusion
while learning basic data structures and algorithms.

2.3.2 VisuAlgo

VisuAlgo2 provides pseudocode for the visualizations as well as expla-
nations for each crucial step of the visualization. The values in the data
structures can be defined by the user, and stepping the visualization
forward and backward is also supported. VisuAlgo is overall a great
learning tool, but it’s license doesn’t allow it to be modified, which
makes it not suitable for the purposes of this work.

2.3.3 Data structure visualizations

This system3 uses its own visualization library, which uses the HTML
canvas [12]. Visualizations for most basic data structures and algo-
rithms are provided in this system, however it lacks features like the
display of pseudocode or explanations for the individual steps of the
algorithm. The more complex visualizations are also harder to follow

1Algorithm Visualizer: https://algorithm-visualizer.org/
2VisuAlgo: https://visualgo.net/
3Data structure visualizations: https://www.cs.usfca.edu/~galles/

visualization/Algorithms.html

32

https://algorithm-visualizer.org/
https://visualgo.net/
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html
https://www.cs.usfca.edu/~galles/visualization/Algorithms.html


Interactive System for Algorithm and Data Structure Visualization

because of this, which makes it not suitable for the purposes of this
work.

2.4 Summary

The analyzed desktop applications VizAlgo and Algomaster offer vi-
sualizations for a wide variety of data structures and algorithms, but
they do not meet the requirements in terms of availability, since both
applications require downloading an executable file, and have limited
compatibility with operating systems other than Windows.

The analyzed online learning tools were either too complex for the
teaching of basic data structures or algorithms (Algorithm Visualizer),
or their license doesn’t allow them to be customized for use in teaching
the subject Data Structures and Algorithms (VisuAlgo). For these
reasons, the development of a new system seems to be a preferable
option.

3 Data structure visualization library

Since none of the analyzed learning tools met all the defined require-
ments, the creation of a new application, designed specifically for sup-
porting the teaching process within the Data Structures and Algo-
rithms subject was needed.

A framework or library was needed for implementing the visualiza-
tions in the proposed new application. For this purpose, three possi-
bilities were compared:

• Data structure visualizations – the library used in the online
learning tool with the same name. This library provides basic
functionalities, but is not flexible enough to be used for the pur-
puses of this work.

• Custom library for data structure visualizations – the creation of
a custom visualization library built on the CreateJS library4 was
also considered.

4CreateJS: https://createjs.com/

33

https://createjs.com/


Patrik Perháč, Slavomı́r Šimoňák

• JSAV – provides visualizations for basic data structures, supports
the creation of interactive exercises, and covers all functionalities
needed for the application proposed in this work with little to no
modifications.

The JSAV5 library was selected for creating the visualizations in
the new application, since it provides visualizations for the basic data
structures like array, list, graph, tree or matrix. JSAV also supports
stepping the visualization both forwards and backwards, displaying
explanations for each step, displaying pseudocode with the possibility
to highlight certain lines in each step. Another useful feature is the
Exercise API, which helps creating interactive exercises for the students
to test their knowledge of the visualized algorithm. These exercises are
evaluated in real time based on a model solution which needs to be
defined in advance.

4 Application design

The application that is the result of this work was designed with all
the requirements in mind. It’s implemented in the form of a web ap-
plication, which fulfills the accessibility requirement. The usability
requirement is covered by the design of the user interface of the appli-
cation [13]. The application is implemented using NuxtJS 6, which is a
framework for creating Vue applications. The layout of the application
consists of three main parts, as seen on the screenshot of Figure 1.

4.0.1 Left sidebar

The left side contains the main navigation menu, where the included al-
gorithms and data structures are listed and can be selected. The menu
is implemented with the help of the vue-sidebar-menu7 component.

5JSAV: http://jsav.io/
6NuxtJS: https://nuxtjs.org/
7vue-sidebar-menu component: https://www.npmjs.com/package/

vue-sidebar-menu

34

http://jsav.io/
https://nuxtjs.org/
https://www.npmjs.com/package/vue-sidebar-menu
https://www.npmjs.com/package/vue-sidebar-menu


Interactive System for Algorithm and Data Structure Visualization

Figure 1. Screenshot of the application created as part of this work

The menu items are generated dynamically from the configuration files
of the visualizations, which means that after a new visualization is
added to the application the menu does not need to be changed, the
new visualization is added automatically.

4.0.2 Visualizations

This is the main part of the webpage in which the visualization is
displayed. The user can select which type of visualization should be
displayed using the tabs beneath the title (see Figure 1). Each visual-
ization of a data structure or algorithm can support any or all of the

35



Patrik Perháč, Slavomı́r Šimoňák

three types of visualizations:

• Predefined visualizations consist of predefined steps containing
detailed explanations for each step, a description of the selected
data structure or algorithm, and pseudocode, in which the line
that is currently being executed, is highlighted. Controls for the
visualization are also provided, so the user can step through or
jump to the beginning or the end of the visualization.

• Interactive visualizations allow the user to interact with the vi-
sualization directly using controls that are specific to each visu-
alization. These interactions can include executing an operation
over a data structure with user defined parameters or defining
the values of a data structure for which the steps should be gen-
erated. The steps associated with each operation are recorded,
which allows the user to step through the visualization if needed.
Letting the user engage with the visualization increases their un-
derstanding of the visualized algorithm or data structure [4].

• Exercises allow users to test their knowledge about the visualized
data structure or algorithm. Exercises consist of a description
containing instructions and data structures that the user needs
to modify in the correct way. The actions of the user are con-
tinuously compared to the model solution. The user can redo
incorrect actions; however, points are not assigned for such ac-
tions.

4.0.3 Language selection

The application supports multiple languages, currently Slovak and En-
glish. The module i18n8 is used for translating texts and automatic
route generation for the different languages. Translations are loaded
from JSON files, in which text in a given language is assigned to the
translation key. Slovak language is configured as the default and fall-
back language of the application. The user can change language at any

8Module i18n: https://i18n.nuxtjs.org/

36

https://i18n.nuxtjs.org/


Interactive System for Algorithm and Data Structure Visualization

time using the language select component in the title of the application
(as seen on the top right of Figure 1).

4.1 Configuration files

As mentioned previously, all information about the visualizations is
included in the configuration files. There are two files, one for data
structures and one for algorithms. These files contain JSON objects
with all the information needed to display a visualization. The infor-
mation is stored in the form of an associative array. The visualizations
in the application are loaded based on the path defined under the jsFile
key in this array. Information about each visualization includes:

• title: translation key for the main title of the visualization.

• menuEntry: translation key for the entry in the side menu.

• jsFile: path to the JavaScript file containing the definition of the
visualization.

• options: a list of visualization types supported by the visualiza-
tion (allowed values: static, interactive, exercise).

• description: object containing translations of the main descrip-
tion of the visualization that is displayed for all types. Transla-
tions for both languages are saved in the attributes ”sk“ and ”en“
of the object. These texts are not included in the files containing
other texts because of their potential size9.

5 Implementing visualizations

The visualizations in the application are created using the JSAV library,
and each visualization is represented as a class extending a common
abstract class in their own JavaScript files. This separation makes the

9Translations are loaded for both languages at all times, and since descriptions

can be extensive, it is unnecessary for them to be loaded for all visualizations and

both languages.

37



Patrik Perháč, Slavomı́r Šimoňák

application easily extensible, since the structure of the application does
not change when a new visualization is added. The file containing the
visualization is specified by the attribute jsFile in the configuration.
The class which defines the visualization is instantiated after the file
containing it is loaded10.

The different types of visualizations are defined in the same file by
overriding one or multiple of the following methods: initStatic, initIn-
teractive, initExercise. These methods are then called from the NuxtJS
template when the user changes the visualization type. The data struc-
tures used in the visualization are defined and initialized in these meth-
ods. For the predefined visualizations, each step is also recorded. If in-
teractive visualization is supported, the setupCustomControls method
also needs to be overridden where the appropriate controls are defined
for the visualization as needed. When adding controls to an interac-
tive visualization, a callback function needs to be defined in which the
structures in the JSAV visualization can be modified or new steps can
also be created. Some controls require the user to input custom values.
These values are encoded properly before being passed to the callback
function to prevent Cross-Site Scripting (XSS) attacks [14]. To create
an exercise, an initialization function and a model solution function
must be created and passed to the JSAV exercise instance. More on
exercise creation can be found in the documentation of the Exercise
API11.

6 Included visualizations

One of the requirements for the system was that it should include visu-
alizations for the basic data structures and algorithms. The application
currently provides visualizations for basic data structures such as the
linked list, stack, and queue. Visualizations are also provided for in-
order, preorder, and postorder tree traversal algorithms; bubble sort,
depth first search, and breadth first search graph algorithms.

10JS files are loaded after information about the visualization is loaded form the

configuration file using path parameters.
11Exercise API: http://jsav.io/exercises/exercise/

38

http://jsav.io/exercises/exercise/


Interactive System for Algorithm and Data Structure Visualization

6.1 Linked list visualization

For this visualization both predefined and interactive types are sup-
ported. The predefined visualization shows how the insert, remove,
append and prepend operations work on a linked list [15]. The append
and prepend operations are not standard operations on a linked list,
but they are suitable for visualizing how pointers behave when adding
new elements to the beginning or end of the list. The interactive visu-
alization is initialized with a linked list containing five elements. The
user can interact with this list by inserting a new element to any index,
removing the element on any index, appending or prepending a new
element.

6.2 Stack and queue visualizations

The predefined visualization of the stack data structure uses an indexed
array, a stack and a pointer structure from the JSAV library [16]. The
two main operations push and pop are explained in the predefined vi-
sualization [17] [18]. The interactive visualization uses the same struc-
tures and the user can push a new value to the stack, pop the value on
the top of the stack or retrieve the value on the top of the stack with
the top operation.

The visualization of the queue data structure is similar to the vi-
sualization of the stack data structure. It also uses an indexed array,
a stack, and two pointer structures from the JSAV library [16]. One
pointer is for the top of the stack, the other is for the tail. The enqueue
and dequeue operations are explained in detail in the predefined visu-
alization [17] [18]. The interactive visualization lets the user enqueue
custom values in the queue, dequeue the value from the front of the
queue or retrieve the value on the front of the queue with the additional
front operation.

6.3 Tree traversal algorithms

There are visualizations in the application for the preorder, postorder
and inorder tree traversal algorithms [18]. Each visualization provides

39



Patrik Perháč, Slavomı́r Šimoňák

a predefined type and an exercise. The algorithms are explained step by
step in the predefined visualizations. The trees on which the algorithms
are illustrated share the same structure, so the relation between the
three algorithms can be understood more easily. Since these algorithms
are recursive, a visualization of the call stack is also provided [19]. A
screenshot of the Preorder tree traversal visualization can be seen in
Figure 2.

In the interactive exercises, the user’s task is to highlight the nodes
of the displayed tree in the correct order according to the chosen tree
traversal algorithm. The trees in the exercises are generated pseudo
randomly with a maximum height of five.

Figure 2. Preorder tree traversal visualization

6.4 Graph algorithms

The depth first search (DFS) and breadth first search (BFS) algorithms
also consist of a predefined part and an exercise. The recursive DFS
algorithm visualization makes use of the call stack visualization to help
better explain the algorithm. In the BFS algorithm, a queue is used
to help keep track of the order of the nodes, which is also included
in the visualization. Similarly to the tree traversal algorithms, the

40



Interactive System for Algorithm and Data Structure Visualization

predefined visualizations of both graph algorithms also use a graph
with the same structure to help understand the difference between the
two algorithms [20].

While solving the exercise, the user must highlight the nodes of the
displayed graph in the correct order according to the selected algorithm.
The graphs generated in the exercises have eight nodes and the edges
between the nodes are directed and generated randomly, while ensuring
that there are no isolated nodes in the graph. However, the graph can
contain cycles.

6.5 Bubble sort algorithm

For the bubble sort algorithm all three types of visualizations are sup-
ported. The predefined visualization shows the algorithm in detail on
a randomly generated array of seven elements [21], as seen in Figure 3.
The steps of the visualization are generated dynamically for the ran-
domly generated array. The interactive visualization allows the user to
enter custom values for the array separated by a space character. The
steps of the visualization are then generated for the array defined by the
user. In the exercise provided for this algorithm, the user is required
to highlight the pairs of elements that are to be swapped according to
the bubble sort algorithm in the correct order.

Figure 3. Bubble sort algorithm visualization

41



Patrik Perháč, Slavomı́r Šimoňák

7 Application evaluation

In comparison with the other applications analyzed in this work, the
designed system covers most of the functionalities which are provided
by the other applications. These functionalities include stepping the
visualization forward and backward, pausing and playing the visual-
ization, changing the speed at which the visualization is played, and
interacting with the data structures being visualized. The new applica-
tion also provides better availability than the systems previously used
in teaching the subject Data Structures and Algorithms. The short-
coming of the newly developed application is the number of provided
visualizations, which is less than the number of visualizations included
in the previously used systems. Although the new application provides
less visualizations, new visualizations can be implemented and added to
the application quickly, due to the way the application is implemented.

Evaluation of the application was conducted also by users via a
survey. This survey was filled out by 23 students aged between 18 and
25, most of whom took part in the subject Data Structures and Algo-
rithms. The respondents gave the application an overall rating of 4.6
out of 5. The participants were evaluating the application based on the
initial requirements. Visualizations of the linked list, stack, and queue
data structures and the three tree traversal algorithms were included
in the application at the time when the user tests were conducted. The
survey was focused on the overall design and the three types of visu-
alizations included in the application. All three types of visualizations
were evaluated as easy to understand and helpful in the learning pro-
cess. The main part of the survey consisted of ten statements, where
the respondents needed to mark the extent they agreed with the state-
ment (a score of 1 means they strongly disagreed, a score of 5 means
they strongly agreed). The average results of this part of the survey
are displayed in Table 1 alongside with the statements.

After filling out the main part of the survey the users were asked
to give feedback on which of the provided visualizations were the most
helpful for them. The results of this question are displayed in Fig-
ure 4. The most helpful were the tree traversal algorithm visualizations

42



Interactive System for Algorithm and Data Structure Visualization

according to the respondents. In the last part of the survey, the re-
spondents had an opportunity to give feedback on the application and
suggest new visualizations or functionalities that would be beneficial
to implement. The respondents requested the addition of new visual-
izations, such as the heap data structure, AVL tree, graph algorithms,
sorting algorithms, and more. Visualizations of the graph algorithms
DFS and BSF and also the bubble sort algorithm were added to the
application based on these requests. The most requested functionality
was the autoplay feature, which was also implemented in the applica-
tion after the review of the survey, and responsive design for mobile
devices.

Figure 4. The most useful visualizations according to the survey

8 Conclusion

The result of this work is a web application implemented using the
NuxtJS framework and the JSAV library for visualizing data structures
and algorithms. The application is designed to be easily extensible
with new visualizations without the need to modify its structure. The
three supported visualization types allow users to learn from predefined
visualizations, interact with them and then test their knowledge via the
provided interactive exercises.

The resulting application meets the initial requirements defined in

43



Patrik Perháč, Slavomı́r Šimoňák

Table 1. Survey results

Statement Avg. response

The application is intuitive and easy to use. 4.54

The application is easy to navigate. 4.58

The layout of the application is appropriate

for displaying visualizations alongside

with pseudocode and descriptions.

4.25

The application helped you to understand

how the visualized algorithms

and data structures work.

4.58

The predefined visualizations are easy to follow. 4.5

The displayed notes for each step of the

predefined visualizations are helpful.
4.38

Having pseudocode alongside the visualizations

makes it easier to understand the algorithm.
4.54

Having interactive visualizations in the

application is helpful.
4.5

The controls for the interactive visualizations are

intuitive and easy to use.
4.42

The prepared exercises are easy to understand

and complete.
4.5

this work. By implementing the system in the form of a web appli-
cation and deploying it to a web server the availability requirement is
satisfied. This also ensures that when a new version of the application
is released, all users have access to it without the need to download
a new executable file or install the new version of the application on

44



Interactive System for Algorithm and Data Structure Visualization

their device.

The oveverall design and layout of the application ensures that the
usability requirement is also met as it was confirmed by users during
tests.

Descriptions for the included data structures and algorithms are
provided in the application. The predefined visualizations contain ex-
planations for each step of the visualized algorithm or data structure,
to help better understand them. The visualization of pseudocode in
which the currently executed line is always highlighted also helps in
the learning process.

Interactive visualizations allow the user to modify the visualized
data structures directly, or define custom values for the data structures
in the visualization. Each visualization has its own set of controls by
which the user can interact with it.

The prepared exercises ensure that the users have a way to test
their knowledge. The data structures in the exercises are generated
pseudorandomly to ensure the students can’t memorize the solutions
of the exercises.

One of the main features of the resulting application is that it’s
easily extensible. Satisfying this requirement affected the design of the
application greatly. Adding a new visualization to the application can
be done in three steps: extending the configuration file with information
about the new visualization; extending the common abstract class and
implementing some or all types of visualizations using the JSAV library;
finally, providing translations for the newly added translation keys.
Everything else (like menu entry and link to the new visualization) will
be generated automatically. An example of adding a new visualization
to the application is provided in the System manual included in the
related work [5].

The application provides visualizations of the basic data structures
such as the linked list, stack, queue. These visualizations are made up
of predefined and interactive parts. Visualizations for tree traversal al-
gorithms, graph algorithms, and a sorting algorithm are also provided.
Exercises are also provided for all the mentioned algorithms.

As of now, the application includes visualizations for only the basic

45



Patrik Perháč, Slavomı́r Šimoňák

data structures and algorithms. In the future, we would like to extend
the application with new visualizations selected from the topics covered
by the Data Structures and Algorithms subject. Implementation of the
visualizations suggested by the users should also be considered. New
features requested by the users can also be considered for implementa-
tion in the future. From the teachers point of view, implementation of
group testing of the students via interactive exercises, with an overview
of the student’s scores might also be beneficial.

References

[1] V. Karavirta and C. A. Shaffer, “Creating engaging online learning
material with the jsav javascript algorithm visualization library,”
IEEE Transactions on Learning Technologies, vol. 9, no. 2, pp.
171–183, 2016.

[2] G. Rößling, “A first set of design patterns for algorithm
animation,” Electronic Notes in Theoretical Computer Science,
vol. 224, pp. 67–76, 2009, proceedings of the Fifth Program Vi-
sualization Workshop (PVW 2008). [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1571066108005136

[3] D. Dicheva and A. Hodge, “Active learning through game
play in a data structures course,” in Proceedings of the 49th
ACM Technical Symposium on Computer Science Education, ser.
SIGCSE ’18. New York, NY, USA: Association for Computing
Machinery, 2018, p. 834–839. [Online]. Available: https://doi.
org/10.1145/3159450.3159605

[4] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer,
C. Hundhausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger,
and J. A. Velázquez-Iturbide, “Exploring the role of visualization
and engagement in computer science education,” SIGCSE Bull.,
vol. 35, no. 2, p. 131–152, Jun. 2002. [Online]. Available: https://
doi.org/10.1145/782941.782998

[5] P. Perháč, “Interactive system for algorithm and data structure
visualization (in Slovak),” Master’s thesis, Department of Com-

46

https://www.sciencedirect.com/science/article/pii/S1571066108005136
https://www.sciencedirect.com/science/article/pii/S1571066108005136
https://doi.org/10.1145/3159450.3159605
https://doi.org/10.1145/3159450.3159605
https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/782941.782998


Interactive System for Algorithm and Data Structure Visualization

puters and Informatics Faculty of Electrical Engineering and In-
formatics Technical University of Košice, 4 2021.

[6] G. Rößling, M. Mihaylov, and J. Saltmarsh, “Animalsense: Com-
bining automated exercise evaluations with algorithm anima-
tions,” in ITiCSE’11 - Proceedings of the 16th Annual Conference
on Innovation and Technology in Computer Science, 01 2011, pp.
298–302.

[7] S. Šimoňák, “Algorithm visualizations as a way of increasing the
quality in computer science education,” in 2016 IEEE 14th Inter-
national Symposium on Applied Machine Intelligence and Infor-
matics (SAMI), 2016, pp. 153–157.

[8] S. Šimoňák, “Using algorithm visualizations in computer science
education,” Open Computer Science, vol. 4, 10 2014.

[9] S. Šimoňák, “Increasing the engagement level in algorithms and
data structures course by driving algorithm visualizations,” Infor-
matica, vol. 44, 09 2020.

[10] M. Benej and S. Šimoňák, “Algomaster platform extension for
improved usability,” Journal of Electrical and Electronics Engi-
neering, vol. 10, no. 1, pp. 27–30, 2017.

[11] S. Šimoňák and M. Benej, “Visualizing algorithms and data struc-
tures using the algomaster platform,” Journal of Information,
Control and Management Systems, vol. 12, no. 2, pp. 189–201,
2014.

[12] D. Galles, “Data structure visualizations,” Library homepage,
2011. [Online]. Available: https://www.cs.usfca.edu/∼galles/
visualization/about.html

[13] S. Khuri, “A user-centered approach for designing algorithm visu-
alizations,” Informatik/Informatique, Special Issue on Visualiza-
tion of Software, 2001.

[14] V. Papaspirou, L. Maglaras, and M. A. Ferrag, “A tutorial on cross
site scripting attack - defense,” 10.20944/preprints202012.0063.v1,
12 2020.

[15] M. Azmoodeh, Abstract Data Types and Algorithms, ser. Macmil-
lan Computer Science Series. Macmillan Education UK, 1990.

[16] K. Mehlhorn and P. Sanders, Algorithms and Data Structures: The

47

https://www.cs.usfca.edu/~galles/visualization/about.html
https://www.cs.usfca.edu/~galles/visualization/about.html


Patrik Perháč, Slavomı́r Šimoňák

Basic Toolbox. Springer, 2008.
[17] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, Data structures and

algorithms. Addison-Wesley, 1985.
[18] D. P. Mehta and e. S. Sahni, Handbook of data structures and

applications, 1st ed., ser. Chapman & Hall/CRC computer and
information science series. Chapman & Hall/CRC, 2004.

[19] A. Cisneros, “Visualizing recursion,” 6 2020. [Online]. Available:
https://medium.com/swlh/visualizing-recursion-6a81d50d6c41

[20] K. Mocinecova and W. Steingartner, “Software support for visual-
izing of the graph algorithms in a novel approach in educating of
young it experts,” IPSI BGD TRANSACTIONS ON INTERNET
RESEARCH, vol. 16, pp. 14–23, 7 2020.

[21] P. Kavdikar, “Comparative study of sorting algorithms,” 04 2021.
[Online]. Available: https://www.researchgate.net/publication/
350959496 Comparative study of sorting algorithms

Patrik Perháč, Slavomı́r Šimoňák, Received September 17, 2021

Accepted October 15, 2021

Patrik Perháč

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovak Republic

E–mail: perhac.patrik97@gmail.com

Slavomı́r Šimoňák

Department of Computers and Informatics

Faculty of Electrical Engineering and Informatics

Technical University of Košice

Letná 9, 042 00 Košice, Slovak Republic

E–mail: slavomir.simonak@tuke.sk

48

https://medium.com/swlh/visualizing-recursion-6a81d50d6c41
https://www.researchgate.net/publication/350959496_Comparative_study_of_sorting_algorithms
https://www.researchgate.net/publication/350959496_Comparative_study_of_sorting_algorithms

	Introduction
	Requirements for the supporting tool

	Related work
	VizAlgo
	Algomaster
	Online learning tools
	Algorithm Visualizer
	VisuAlgo
	Data structure visualizations

	Summary

	Data structure visualization library
	Application design
	Left sidebar
	Visualizations
	Language selection

	Configuration files

	Implementing visualizations
	Included visualizations
	Linked list visualization
	Stack and queue visualizations
	Tree traversal algorithms
	Graph algorithms
	Bubble sort algorithm

	Application evaluation
	Conclusion

