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Quasi-Newton Methods for Solving
Nonlinear Programming Problems

V.Moraru

Abstract

In the present paper the problem of constrained equality op-
timization is reduced to sequential solving a series of problems
of quadratic programming. The Hessian of the Lagrangian is
approximated by a sequence of symmetric positive definite ma-
trices. The matrix approximation is updated at every iteration
by a Gram-Schmidt modified algorithm. We establish that meth-
ods is locally convergent and the sequence {zy} converges to the
solution a two-step superlinear rate.

Key words: Quasi-Newton methods, Constrained Optimiza-
tion, Superlinear convergence.

1 Introduction

This paper considers the methods of the finding of a vector z, € R",
which is the solution of the nonlinear programming problem:

minimizef(x)
subject to hi(z) =0, 1<i<r. (1)
It is supposed that the following conditions are fulfiled:

1) the functions f(z): R® — R, hi(z) : R® — R are continuously
differentiated twice in some neighbourhood of the point z,;

2) the gradients Vhy(z4), Vha(zy), ..., Vh.(z,) form a linear inde-
pendent sistem;
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3) VoL(zs, M) =0, where V,L(x, \) is a vector of the first deriva-
tives by x from the Lagrangian function

L(z,A) = f(2) + )_ N'hi(z);
1=1

4) the matrix V2, L(z,, \) is positive definite on the null spase of
the constraint gradients, i.e.

N V2, L@, M) > m|nl|?,0 < m < oo,

at any vector n € R™,n # 0, such as Vh(z.)n = 0, where
V2,L(z, ) is a matrix of the second derivatives of the Lagrangian
function L(z,A) by z; Vh(z) is a matrix, the lines of which are
the gradients Vh;(z),1 < i < r. The symbol ”T” denotes the
transpose of a vector or a matrix.

If the conditions 1) to 4) are fulfiled z, is the point of the strict
local minimum of the function f(z) with the restrictions (1) (see for
example [1], p.42-49). Besides that, let us apply the Newton’s method
to the sistem of the nonlinear equations (see [2], p.275):

V.L(z) =0,
hl ({L‘) = 0, (2)
hr(z) =0

Here z = (z,\)”. Throughout the paper we will denote by z, =
(zx, \p)" and by z, = (24, \s)" the Kuhn-Tucker pair for problem (1).

The process, caused by the Newton’s method, while applying it to
the sistem (2) is equivalent (see [3-8] to the solution of the quadratic
programming problem of minimization a the function

1
Qz, M) = 5z — o) Vi L(zk) (@ — ap) + V f (o) (w —2x)  (3)
subject to the linear constraints
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h,(.’lﬁ]q) + th($k)T($ — $k) =0, 1< (4)

Here A1 will be the vector of the Lagrange’s multipliers in the extreme
point x4 of the problem (3),(4), i. e. that is x4 and Aty are
calculated by xj and A; as a solution and a vector of the Lagrange’s
multipliers of the problem (3),(4) connected with it. If the initial
approximation zg is chosen from the sufficiently small neighbourhood

of the point z,, the sequence zg,x1,...,Tk,... converges to x, and
besides that it converges with a superlinear rate (see more precise result
in [6,9,10]).

One of the main disadvantages of this method is that the func-
tion’s Q(x, A\;) convexity is not guaranteed. Another one is that while
determing every new approximation it is nessesary to calculate the
Hesse matrix of the Lagrangian function L(z,\) at the point which
coresponds to the precedent approximation. That is why a question
appears how to construct the methods, which do not require the cal-
culation of the matrix V2 _L(zg, A\x) and provide the convexity of the
auxiliary problems (3),(4) keeping the high velocity of convergency.
At present, such a method is elaborated, based on using of the vari-
able metric algorithms (see [6,11-15]). In this papers the matrices
V2, L(z, \i),k = 0,1,2,..., are replaced by some other matrices Ay,
which are positively definite on the space R" and approximate the
matrix V2, L(z., As) only on the tangent subspace to the constraints
of the problem (1) in the point z,. The construction of the matrices
Ar,k =0,1,2,..., are accomplished with help of the variable metric
algorithms.

In our work we present methods, in which on each iterates the
convex problems of the quadratic programming are solved and the ap-
proximation of the requiered matrices is accomplished by the methods,
examined in the papers [16-18] will be studied.
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2 The method and its proprieties

Consider a matrix

M(z) = V2,L(z) + Vh(z)T DVh(z), (5)

where D is some bounded symmetric and positively definite matrix of
the dimension r x r.
The matrix Vh(z)! DVh(z) is positively definite on the set

{y € R" : Vh(z)y # 0}.

According to the assumptions done in Section 1 it is possible to
select a matrix D such, that the matrix M(z), which is defined by
formula (5) would be positively definite on R" in some neighbourhood
of the point z,. More detailed about the selection of the matrix D will
be said laver in Section 3.

Further, every where will consider, that the matrix D is selected
such that

y' M(z)y > m|ly|*,Vy € R",m > 0, (6)

for all z from the small’enough neighbourhood of the point z,, marked
by €.

Let zp € . Consider an iteration process in which zy; is defined
according to zj from the solution of the problem of minimization of the
quadratic function

Q) = 3o — o) M) — ) + VI @) @ =) ()

with the constraints (4).

By the solution of the quadratic programming problem (7), (4) it
is understood the same as for the problem (3),(4). This process of
the construction of the sequence {zj} will name further as the method

(7), (4)-
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Lemma 1 The sequence {z} constructed according to the method
(7), (4) converges to z. at superlinear rate.

Proof is done analogically to the proof of the Newton’s method of
solving the systems of equation [19]. In the considered case

2kp1 = 2k — [B(2)] 7 F(21), (8)
where
T
Ba) = [ M0 Ve

and

V:EL(zk)

Fa) = | M
hr (xk)

The matrix B(zy) is nonsingular accorrding to the assumptions 1)—4)
from Section 1. It is possible to prove that in the same way as it was
done in [2], p.275. Hence, on €2 is correctly defined the operator

G(z) =z~ [B(z)] 'F(2) (9)

and besides

G'(2) = I — [B(2)] 'S (=),

where I is unit matrix of the dimension (n +r) X (n +r) and S is the
(n+7) x (n+r) Jacobian matrix of F.
It is easy to convinced (see [20] p. 252)

0 0
-1 _ 1y -1
[B()] ! = [8(2)] [ oD ] (10)
Taking this in consideration we’ll obtain:
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, 0 0
Glz) = l DVh(z,) 0 ]

that is the matrix G'(z,) is a triangular matrix, and it means that
it’s eigenvalues p1, pio, . .., tintr €xactly coincide with the diagonal el-
ements. But » < n, because in the opposite case the system of vector
{Vhi(z.)};—; will not be linearly independent. Hence it follows, that

Bl =Moo = ... = lytr = 0.
According to the definition of the spectral radius

p(G () = maz |l ., [asr]} = 0. (11)

Now to finish the proof of the lemima, it is necessary to use the theorem
of Ostrowsky, which proves: if p(G'(z.)) < 1 then the G(z) which is
defined by formula (9) is a contraction. The process (8) is nothing
else that a method of successive approximation for the solution of the
equations G(z) = z, that is finding of immovable point of the operator
G(z).

The equality (11) quarantees that the sequence {z,} converges to
the point z,, more rapidly than any geometrical progression. Indeed,
for V given £/2 > 0 exist a norma || e || in E™ (see, for example, [19], p.
47) such that

|G/l < (G () + 5 =
according to (11). For arbitrary €/2 > 0 according to differentiation of
G(z) it is possible to indicate a number N = N(¢) such that

1G (2k) = G(22) — G'(24) (21 — 2| < %II(Zk — 2|,

when £ > N. Taking this in consideration, for £ > N

1211 = 2]l < NG (2k) = G(2) = G'(2:) (26 — 2 I+
HIG (2l Mz = 2l < ellze — 2.

268



Quasi-Newton Methods for Solving ...

Lemma is proved.

Remark. If hi(z),1 < i < r are the linear functions then z — z,
superlinearly. In fact, in this case from (8) taking in consideration (10)
will have

Zha1 = 2k = [F (2)] 71 F (),

that is the matrix Vh(zg)? Dy Vh(z)) does not participate in the con-
struction of the vector zxy1. In the common case it is impossible to get
a superlinear convergence for the sequence {xy}.

The construction of the vector zy41, which is the solution of the
problem (7),(4) does not depend on the selection of the matrix Dj.
This matrix influences sufficiently only on the properties of the se-
quence {Ag}. It is possible to snow that in the sollouing way. Let the
point z; be constucted and let Zy_ 1, Ax,1 be the solution of the problem
(3), (4). Taking in consideration (10) it’s easy to see, that the solution
of the problem (7),(4) is connected with Zj,1,Ax;1 in the following
WaY: Thyl = Thils Metl = Mgl — Dih(zy). From this follows, that
the selection of the matrix Dy directly shoues up when constructing
vector Agi1. This selection finally will influence on the properties of
the sequence {z} because the value of Ay, is required while forming the
problems (7), (4). The character of convergence is set in the following
lemma.

Lemma 2 For the sequence {zy}, constructed by method (7),(4) the
following appraisal is true

k41 — 2l < prllzr—1 — 2], (12)
where pp — 0, while k — oo.
Proof. Let

Py = I —Vh(z) [Vh(zr) Vh(z) ] Vh(zs).

In the paper [6] the following statement is set if the matrix M (z) in
the method (7), (4) is such that
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fig 2R (M (25) — V2, L(2:)) Pr (w1 — 1)

=0 13
e Toers — orl (13)

then for the sequence {z} the appraisal (12) is true. To prove the
lemma, it is enough to show, that for the matrix M (zy), selected in the
form (5) the condition (13) is true.
In fact for any vector y € E™
Vh(zp)Pry = 0.

Hence,

(M (2) = V7, L(2)) Py = 0.

Taking this in consideration, after some transfofmations, we obtain

|| Pe(M (21) — Vo L(2) Pe(@ps1 — z)|| =
= ||Pe(V2,L(z1) — V2, L(2:)) P (zhs1 — zp) | < viellwrsr — ],

where

M = Ve L(zk) — Vi L(z)| = 0,

while £ — oo, because z; — 2., according to lemma 1.

3 The Description of the Quasi-Newton Algo-
rithms

The properties of the method (7), (4) will be kept, if the matrix M (zj)
will be replaced by some other matrix Ay, which is sufficiently close to
the matrix M (zx). Let’s pass now to the construction of the matrices
A (which approximate M (zy), using the methods studied in [18].

It’s necessary to note that the problem of construction of these
matrices is complicated, because obviosly there does not exist function,
the matrix of the second derivatives of which (calculated in the point
zr) would be exactly equal to M(zy) because the second addendum in
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the matrix M(zy) contains only the first derivatives of the functions
hi(z),1 <i<r.
However one can take the function

W(z) = L(2) + 5 IVDh)

In fact

V. (2) = V,L(2) + Vh(z) Dh(z),
V2, 9(z) = V2,L(2) + Vh(z)T DVh(z) + b (z)T Dh(z).

Near the solution z, it is possible to neglect the matrix h”(z)? Dh(z).
Hense, in the formulae (3.1), (4.1), (5.1), (6.1), (6.3) from the paper
[18], for construction of the matrices Ay, it is possible to select as ej_;,
a vector

ep—i = Vo U(Tpoi+ Th—i, Ai) — Vol (Tr—i, Mi)-

Consider another move simple method of construction of the vec-
tors e;x_;, 1 <4 < n, than the method above. Let e;_; be calculated
according to the formulae

ep—i = VoL(zp_i+ rh—i, \i) — Vo L(Tp—i, M\p)+

+Vh(zg) Dy ilh(k—i + i) — h(zp), 1 <i<n (14)

From the point of view of calculations it is more simple to take as
Dy._; a product of the unit matrix I with a positive number oy _;:

Dy = op—il.

In this case

(€k—isTh—i) = (ak—i> Th—i) + Op—i(brp—i, Vh(zg)rr—s), (15)

where
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ap—; = Val(xp_i +15—is \p) — Vo L(zp—i, Ai),

bi—i = h(zp—; + ri—i) — h(zp—;).

Two cases are possible on each 1.

1)

Vh(zg)ry_; = 0. According to the suppositions made above (see
section 1) it means, that the vector r;_; belongs to subspace, on
which the matrix V2, L(z,) is positively defined.

Hence, (eg_i, Tk—;) > m||7x_;]|? on any selection of oj_;. Here, m
— a constant that characterize (see section 1) a positive definite
of the matrix V2 L(z,).

Vh(zg)ry_; # 0. Using the Lagrange’s formula for operators, it
is possible to set, that the ratio (ag—;, 75—;)/(bg—i, Vh(z)rK—;) is
bounded. Let

ok—i =0 — (ag—is7k—i)/(bk—i> Vh(z)TK—3), (16)

where § is an arbitrary positive number, chosen such that of_; >
0.

Then from (15) we obtain

(€k—isTh—i) = 0(bg—i, Vh(2k)rr—s) (17)

While the gradients of the functions h;(z),1 < ¢ < r are linearly

independent in the neighbourhood of the points z, the following ap-
praisal is true

(€k—i>Tk—i) = Omallrg—;[|*,0 < my < oo.

Basing on that, it is possible now to construct the matrixes Ay,

in the following way [18,21,22]. Suppose, that k& = &n + s,& =
0,1,2,...,0 < s <n—1. We will denote wep5 = Nentsvsy1, where
V1, V2,..., Uy 18 a system of unit vectors. Let us calculate the matrix
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n—1 T
€L—;€ ;
Ap =3 Tkt (18)

i=0 Tk—iCk—i

Here the vectors e;_; are chosen according to the formula (14), where

Dy = op—il,

where oj_; is either positive number or it is chosen from the condition
(16).

The construction of the vectors r,_; is performed according to the
formulae

s—1

T'¢n = Wen, 'rkzwk_z T '
j—o Cen+tjTén+y

T
Wy, €¢n+j ,
77{”_}_‘7.

The factors 7y are chosen so that to satisfy the following condition
0 < ¢ < |nks1l/Ime] < 1 and limg_onr = 0. The vectors ry, ey are
constructed recursively while using Gram-Schmidt modified algorithm
[18,21,22).

Let’s note, that if (ax_;,7%_;) < 0 then it is possible to choose as
d in (16) any positive number but the scalar product (eg_;, 75—;) could
be calculated directly by formula (17).

Analogically to that in [16,17] the verity of the following appraisals
is set

(Tk—ir ek—j) = o([[rk—illllex—sl), i # J. (19)

Taking in consideration these appraials we’ll have

Agrg—i = egi+ pp, 1 <i<m,
where ||pg_;|| = 0, while & — oc.
Repeating now the reasoning from the lemma 2.3.1.from [2], we’ll
set that
lim [|Ag — M(z)]| =0 (20)
k—o0
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If in adition the condition of Lipshitz for matrix V2, L(z,\) con-
cerning z holds then the following appraisal is true:

| A — M (z)|| < ¢|nil,0 < ¢ < oo, (21)

where 7 — a number used in the definition of the vectors ry_;, (see

[18]).

If the condition (19) holds true, then

Jim [(Ax — Vi, L(zk))gll =0 (22)
—00

on any vector ¢ such that Vh(xzg)g = 0.

Hence, the matrices Ay approximate V2, L(z) on the tangent sub-
space to the multitude {z|h;(z) = 0, 1 < i < r} at the point =z,
that is on that subspace, where V2 _L(z) is positive definite. Taking in
consideration (20), (22), analogically to that as it was done in the proof
of lemma 2, it is possible to show, that the considered Quasi-Newton
methods will converge with the velocity, evaluated by inecuality (12).

Let us mention the following. It is impossible to use the methods
[18] for approximation of the matrix V2, L(z;) because it is posible that
at some ¢ will be (7, e;) = 0. The exeption is the method of indecisive
directions [2]. While using this method, it is better to construct the
matrices Ay, which approximate V2, L(z) directly. To the constructed
matrix Ay, it is possible to add now a matrix Vh(zy)” D, Vh(zy), trying
to get a positive definite by choosing the matrix Dy.

It’s necessary to mention that it is profitable to ensure the posi-
tive definite of requiered matrices, because in this case the auxiliary
problems are rather effectively solved.

4 Another method of the constructing of the
approximating matrices

Let’s consider briefly one more method (that essentially differs from the
considered above) of the construction of the matrices Ay, that ensures
the subfilment of the condition (22).
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According to the suppositions done above, the space

R(zy) = Ry, = {q|Vh(zr)q = 0}

has the dimentions n—r. Let by,...,b,_, the basis of this space and let
Ay is the matrix, defined by formula (18) in which wg_; = n_;b;, 1 <
1 < n —r, bat the values e;_;;1 < ¢ < n — r are replaced by the
expressions ai_; (see (15)) and addition is done by all ¢ from 1 to
n — r. Taking this constructions in consideration and reasoning in the
same way as in [16-19] the verity of the appraisal (19) used, but then
supposing that this appraisal holds true the verity of the condition (22)
is proved. The matrices Ay, satisfy the following condition (Azy,y) > 0
for any y € E™.

Concerning the construction of the basis of subspace Ry it could
be obtained in the following way (see for example [23]). With the
help of elementary operations and rearrangements the matrix Vh(zy) is
reduced to the matrix Sy strairs aspect. Then the system of equations
Vh(zg)g = 0 is equivalent to the system Spg = 0, which (taking in
consideration that rang (Vh(zy)) = r) has n —r fred variables. Giving
in turn to each of free variables the value 1, but to the rest of free
variables the values 0 and solving the system Sipqg = 0 relative to the
remained variables, we’ll obtain search basis b1, ..., b,_, of the space
Ry.
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