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On the Family of Conditional Embedded
Implicational Dependencies

Victor Felea

Abstract

Certain second-order sentences, called conditional embed-
ded implicational dependencies, about relations in a relational
database, are defined and studied.

This class of dependencies includes some of previously defined
dependencies as special cases. Thus, the family of implicational
embedded dependencies introduced and studied by R. Fagin can
be included in the family of conditional embedded implicational
dependencies.The conditional-functional dependencies defined by
P. De Bra and J. Paredaens are special cases of new dependencies.
The family of conditional embedded implicational dependencies,
also contains the family of conditional implicational dependen-
cies, defined by the author. A characterisation of a conditional
embedded implicational dependency implied by a given class in
this family is given.

The existence of Armstrong models for a class of conditional
embedded implicational dependencies with a single relational
symbol is shown.
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1 Introduction

The purpose of this paper is to investigate a large family of dependen-
cies. Using second-order logic, we define the family of conditional em-
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bedded implicational dependency constraints. This family contains the
class of conditional functional dependencies introduced by P. De Bra
and J. Paredaens [3] and used by them for the horizontal decomposition
of a relation schemes. This family also contains the family of implica-
tional dependencies studied by R.Fagin [4]. The family of conditional
implicational dependencies [6] is included in this family.

In this paper, we give a characterisation of a conditional embedded
implicational dependency implied by a given class in this family. We
study the existence of Armstrong models for the class of conditional
embedded implicational dependencies with a single relational symbol
constant by means of the results obtained by Fagin [4] with respect to
Armstrong relations.

2 Preliminaries

In this section we introduce some of the notations used throughout the
paper.

Let U be a finite nonempty set of distinct attributes, called the universe
of attributes: U = {A;,...,A,}. For each A € U, a set denoted by
dom(A), is associated. dom(A) is called the domain for A. The domain
mapping, denoted by ¢, is defined thus: ¢(A) = dom(A), VA€ U.

A relation over U is a domain mapping over U along with a set of tuples
for U and ¢.

In the definition 3.1., embedded implicational dependency statements
appear. We consider there formulas defined as in [4]. Let R be a
relation symbol, that corresponds to a relation r over U. Assume that
there exists a nonempty set of individual variables for every attribute
A. An atomic formula is either of the form Rz ... z, (z; is an individual
variable) or of the form z = y (where z and y are individual variables).
The atomic formulas are typed; that means for the formula Rz ...z,
z; is a variable associated to the attribute A; (1 < ¢ < n) and in the
formula = = y, the variables x,y are associated to the same Aj. If M;
and M; are the sets of individual variables corresponding to A; and A;,
respectively, then M;NM; = 0, for i # j. The atomic formula Rz ... zq
will be denoted also under the form R(z), where z = z; ... zg.
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An implicational dependency has the form:
(V.Tl .. .Tm)((Bl VAN /\Bk) = C)

where each B; is of the form Rz ...z, and C is atomic.
An embedded implicational dependency (or EID) is a typed sen-
tence of the form

(V[L‘lfL‘m)((Bl /\.../\Bk) = (Elylyr)(Cl N... /\CS))

where each B; is a relational formula and each Cj is atomic. We assume
that each of z;’s appears in at least one of the B;’s and that k > 1.
Moreover, we assume that n > 0 and s > 1.

For the details about implicational dependencies and embedded impli-
cational dependencies see [4].

Let X be a subset of U and r be a relation over U. A set S of

tuples in r is called X-complete in r if for all t; € S, t2 ¢ S, we have
t1[X] # t9[X]. In particular, the empty set of tuples is X-complete for
every set X of attributes.
A conditional-functional dependency [3] is denoted by X — Y >-X —
Z. We said that the relation r obeys X — Y D—X — Z if in every
X -complete set of tuples of 7, in which the functional dependency (fd)
X — Y holds, the fd X — Y must hold too.

3 The Family of Conditional Embedded Impli-
cational Dependencies

Definition 3.1 A Conditional Embedded Implicational Dependency
(CEID) is a universal sentence in second-order logic of the form:

a(R,X) = (VS) [¢1(S, R) ANp1(S, R, X) Ao (S) A ... (1)
o Nop(S) = o(9)]

where:

a) R is a predicate symbol, which represents a relation r over U.
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b) S is a predicate symbol, which is universally quantified and rep-
resents a subset s of r.

c) ¢1(S, R) is a first-order formula of the form:
(Vu)[S(u) = R(u)]
This means that whenever a tuple t belongs to s, it also belongs
tor.
d) X is a fized subset of U.
e) ¥1(S, R, X) is a formula of the form:
(Vo) (V1) [S(t1, ) A R(ta, ) = S(ta, x)],

where © is a tuple of variables corresponding to X and ty,t9 are
tuples of variables for all attributes in U — X. t is a term, which
contains both the variables from t1 and ts.

The pair (s,r), where s and r are relations over U, satisfies

P1(S, R, X) and ¢1(S, R) if and only if s is X-complete in r.

f) 0;(S) is an embedded implicational dependency, which contains S
as an unique relational symbol, 1 < j < h. o(S) is an embedded
implicational dependency which contains on right-hand side of the
implication just one atomic formula.

Let us consider the following formula:
a1(R) =[o1(R)A... Nop(R) = o(R)] (2)

Let r be a relation over U and D a family of relations over U. Using
the semantics of second-order logic [7], we obtain:

r satisfies a1 (R) iff (r, D) satisfies (R, 0),
for every family D of relations over U

(3)
The simbol () denotes the empty set.
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Since (3) is true, we may include the sentence «a;(R) in the class
of conditional embedded implicational dependencies as the formula
a(R,0).

When we consider in formula a;(R), h equal to 1 and o1(R) a
tautology, then «;(R) is equivalent to o(R), which is an embedded
implicational dependency.

It means that conditional embedded implicational dependencies are
generalizations of embedded implicational dependencies.

When in a(R, X) we consider the value 1 for h and o1(R), o(R)
are functional dependencies (which are the embedded implicational de-
pendencies), then we obtain a formula corresponding to a conditional-
functional dependency. The class of conditional-functional dependen-
cies has been defined and studied by P. De Bra and J. Paredaens [3].

Example 3.1 Let U = {A,B,C,D,E} and m; : AB —— C/D a
multivalued dependency. The following formula, denoted oy, (R) rep-
resents my:

Ay (R) = (Vabcldlelczdzeg)[Rabcldlel/\RabCdeez = (Eleg)Rabcldzeg]
Similarly, for my: AB —— C/E, we have the formula:
[e777%) (R) = (Vabcldlelczdzeg)[Rabcldlel/\RabCdeez = (Eldg)Rabcldgeg]

We consider n : AB — C/D D—AB —— C/E as a conditional-
multivalued dependency. A relation r over U obeys this dependency if
in every AB-complete set of tuples in r, in which my holds, mo must
hold too. For the dependency n, the associated formula is:

a(R,AB) = (VS) [¢1(S, R) ANp1(S, R, AB) AN o1(S) = o(5)]

where
01(S, R) = (VYujuguzuyg) [Sujuguzus = Rujugusug]
Q[)l(S, R, AB) = (V.’EleCldlCng) [Sa:lazgcldl VAN R.’EleCQdQ =
= S$1$202d2]
01(5) = am,(8), o(5) = am,(S)
The simbol “=” denotes the logical equivalence.
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4 The Main Result

In this section we give a characterisation of a conditional embedded im-
plicational dependency logically implied by a given class of conditional
embedded implicational dependencies.

Let M be a class of CEIDs and a(R, X) be a CEID of the form (1).
Let us denote by ar (S, R, X) the following formula:

ar(S, R, X) = o1(S,R) Np1(S, R, X) Ao (S) A ... Nop(S)

Definition 4.1 Let F be a set of formulas in second-order logic and
= the logical implication. Then, let us denote by F*, the set F* =

{a|F E a}.

We need to define recursively the set of formulas, denoted by
T;(M,ar(S,R, X)), which correspond to the class M and to the for-
mula ar (S, R, X).

Definition 4.2

TO(M7 aL(Su RuX)) = {@1(S7R)71/)1(S7R7X)701(8)7"' ,O'h(S)}
,I:i—f-l(MaaL(Sa]?dX)) = T:i*(MaaL(Sa R’X)) U {7(5)| there is G € M7
G = (VS') [p2(S",R) Ao (S, R, X") Ay (S") Ao Ai(S") = (9],

such that ¢2(S, R) € T;*(M,ar(S, R, X)), ¢2(S, R, X") €
€ T;(M,ar(S, R, X)),v;(S) € T;(M,ar(S,R,X)),j = 1,k}.

T(M,ar(S, R, X)) = U T;(M, ar(S, R, X))
=0

2

We omit S and R in T;(M, ar(S, R, X)) and T'(M, ar(S, R, X)) when-
ever S and R result from context.

Theorem 4.1 Let M be a class of CEIDs and a(R,X) be a CEID of
the form (1). We have:

M = a(R, X) iff o(S) € T(M, ar(S, R, X))
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Proof: (<)
Let o(S) be from T(M, ar(S, R, X)). Let us show that

MUTO(M7aL(SaRaX)) ): /3(‘9)’
for every B(S) € T,(M, ar(S, R, X)) (4)
and every n =0,1,2,...

We proceed by induction on n:
For n = 0, we have M U Ty(M,ar(S, R, X)) = To(M,ar(S, R, X)),
hence the relation (4) is true for n = 0.
Assume that (4) is true for a natural number 7.
Let B(S) be from Ty, 11 (M, ar(S, R, X)) — Tn(M, aL(S, R, X)).
We have two cases:
a) B(S) e Ty (M,ar(S,R, X)) — T,(M,arn(S,R, X)) and
b) /B(S) € Tn-l—l(Mu O*‘L(Su RuX)) - T’;:(M7 O“L(Sa RvX))
In the case a), we obtain T),(M,ar(S, R, X)) = B(S). But, by the
induction hypothesis for n, we have:

MUTy(M,arn(S,R, X)) ET,(M,ar(S, R, X)).

By the transitivity of relation |=, it obtains
MUTy(M,ar(S, R, X)) = B(S)
In the case b), there exists a G from M, where
G = (V) [pa(5', B) Ao (8, B, XT) Ay () A Ai(S") = (S]]
such that 5(S) = v(95), Tn(M,ar(S, R, X)) E v2(S, R),
Tu(M,ar(S, R, X)) = ¢2(S. R, X"), Tn = 7;(5), i =Lk (5)

The relation (4) is true for n, which implies:

M UTy(M,ar(S, R, X)) | To(M, aL(S, R, X)) (6)
From (5) and (6), it results:

MUTO(M7 O(L(S, RuX)) |: @Q(Su R)7 1/)2(87 RuXI) (7)
MUTO(MuaL(SuRuX)) |: 7](8)7 J=Lk
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G being from M and the relations (7) conclude that
MUTy(M,ar(S, R, X)) E 7(5).

But v(S) = B(S), hence we have M U To(M, ar(S, R, X)) = B(S).
Thus, by the induction theorem we have the relations (4). When o(S) €
T(M,ar(S,R, X)), there is a natural number n, such that o(S) €
T,(M,ar(S, R, X)).
From (4) it obtains:

M UTo(M,ar(S, R, X)) = o(S)
which is the same with the following:
MU{pi(S,R), (S, R, X),01(S),...,0n(S)} E o(S5)
By the logical implication, we have:
M = [p1(S,R) ANp1(S, R, X) ANo1(S) A ... Aap(S) = a(9)]

hence M = a(R, X).

(=) Let M' = {G|G € M, 3n such that G appears in the construction
of

Thi1(M,arp(S, R, X))}.

Let M = a(R,X) and assume that o(S) ¢ T(M,ar(S, R, X)). We
show that M [~ a(R, X) by constructing a model M, which obeys M
and does not obey «(R, X), hence a contradiction.

The formula ¢(S) is an embedded implicational dependency, hence it
has the form:

o(S)=(Vz1...Vz,) (BiA ... ANBg) = (Jy1...3y,)(C))
The formula o(5) is equivalent with the following sentence:
O(S) = (V.Tl Ve, dyr .. Hyr(—!le (tl) V...V _'Rjk (tk) \% Rjk+1 (tk+1))

where R;, is an n-ary predicate symbol (B; = Rj,(t;), i = 1,k, C =
Rj, .\ (tgs1)), ti; 1 <0 <k + 1 are sequences of terms such that every
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x-variable in tx1; is contained in some t;, 1 < ¢ < k and no t; for
1 <4 < k, contains any y-variables. We have R; = ... = R; = S,
and Rj, ., = S or Rj,  is the equality predicate.

The elements of T'(M, ay (S, R, X)) are generalized dependencies.
Associated to o(S) and T'(M, ar(S, R, X)), J. Grant and B. E. Jacobs
[8] have defined a set of atomic formulas, denoted by
Y(T'(M,ar(S,R,X)),0(S5)).

Let us denote a class of embedded implicational dependencies by &, and
o be an embedded implicational dependency.

Yo(&,0) = {R},(t;)|~Rj,(t;) is a disjunct in o}

Yir1(§,0) = {Ri, ., (tmt1)] thereisa G € §, G =V ... Vaydz; ... 32,
(R, (ur) V...V =Ry, (um) V Ry, ., (Umq1)) and a substi-
tution @ such that wm416 = typ41, each 2}0 is a new

constant symbol, 1 < i < ¢, and for every negated atomic

disjunct ~ Ry, (u;) of G, Ry, (ui)f € Yi(€, 0)} UYi(E, 0)
)f(gao) ZZ%LUY%(gaa)'
The process of obtaining R;,,, (t;,41) is realized once only for each
{Ry,(u1)0,..., Ry, (upm)f} and formula G.
J. Grant and B. E. Jacobs in [8] have shown that:

¢ |= o iff these is a substitution € on the z-variables of o, (8)
such that R, (tx1+1)0 € Y (&,0).

Jk+1

From a(S) € T(M, ar(S, R, X)) it obtains:
T(M,aL(S, R, X)) = o(5) (9)
Applying (8) for T'(M, ay (S, R, X)) and o(S), and using (9), it results:

Rjp, (te1)0 €Y (T(M, oL, (S, R, X)), 0(5))

k+1

for every substitution 6 on the y-variables of o(S).

We construct a model My in the following way:

Let UMo, the universe of My, be the set of strings which are either terms
in o(S) or constants in some G € T'(M, ar,(S, R, X)). We include R;(t)
in My iff R;(t) e Y(T'(M,ar(S,R,X)),0(S)), where R;(t) is an atom.
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Now we show that My obeys every element in T'(M, ay (S, R, X)).
Let us denote Y (T'(M, ar(S, R, X)),o(S)) by Y (S) and
Y;(T(Ma aL(Sa RaX))’ U(S)) by Y;(S)
Let G be from T'(M, ar (S, R, X)). It results that G has the same form
as in definition of Yj11(S5).
Let 7 be a substitution such that Ry, (u;)7 € My, for 1 < i < m. By
the definition of My, we have: Ry, (u;)7 € Y(S), 1 < i < m. Since
Y (S) =iL>JOYZ~(S), it results that there exist p;, 1 < 4 < m such that
Ry, (w)T € Y,,(S), 1 <4 < m. Let p be max{p1,...,pm}. Since
Y5(S) C Y1(S) C ..., we obtain that Ry, (u;)7 € Y,(5), 1 <i<m.
As in the process of constructing Ry, ., (tm41) in Yi11(S) we extend
the substitution 7 for the variables 27, 1 < j < g, such that zi7 is a
new constant symbol, w17 = typ1 and Ry, (ty1) € Yeq(S). It
follows that Ry, (tm41) € My. It means that Mg obeys G.
Next we must show My doesn’t satisfy o(S). Since Rj,(t;) € Yo(S),
1 < i < k and by the definition of My, it obtains that Rj,(t;) € Mo,
1<i<k.
But, Rj,, (tx41)0 € Y(S) for every substitution 6 on the y-variables
of o(S). It results that My doesn’t obey o(S). Since M, satisfies
To(M, ar(S, R, X)) it obtains that M doesn’t satisfy a(R, X).

Since M, satisfies every element in T'(M,ar (S, R, X)), it results
that Mj satisfies each formula in M’. Let a(R, X) be a sentence from
M — M' and of the form (1). We have:

T(M, ar(S, R, X))  ¢1(S, R) or
T(M, aL(S,R, X)) = 91(S, R, X) or
(3i)(1 < i < h) such that T(M, ar(S, R, X)) £ o:(S).

Using the same method as for the relation (9), it results that there
exists a model M|, which satisfies T'(M, a.(S, R, X)) and «(R, X).
Hence M satisfies M’'. Thus, M] satisfies M' U {«a(R, X)}.

Let (o;);er the family of elements from M — M', where M — M' # ().
Let us consider 0 ¢ I and let us denote I U {0} by I’. Considering «;
instead of a(R, X), we obtain:
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there exists a model M; which satisfies

T(M,ar(S,R,X)) and «;, for every i € I (10)

Let us consider the direct product of My and M;, 1 € I. Let us denote
by M this direct product, that is

M =®(M;, icI)

Since every element in T (M, ar (S, R, X)) is upward faithful with re-
spect to direct products ([4]), it results that M satisfies
T(M,arn(S, R, X)).

Let us ¢; be an element from left-hand side in «;, such that M;
obeys T (M, ar (S,R,X)) and it doesn’t satisfy ¢;, ¢ € I. It results
that T'(M, ar(S, R, X)) = @i, i € 1.

We have:

M doesn’t satisfy ¢;, for every i € I. (11)

The relation (11) follows from the fact that every ¢; is downward faith-
ful (with respect to direct products).
From (11) it obtains:
M satisfies ay, for every i € I (12)
From M satisfies T(M, (S, R, X)), it results that

M satisfies M'. Thus, M satisfies M (13)

On the other hand, since o(R, X) is downward faithful (with respect
to direct products), it obtains that

M doesn’t satisfy a(R, X). (14)

The relations (14) and (13) contradict the fact that a(R, X) is a logical
consequence of M, that is M |= a(R, X). ]

248



On the Family of Conditional Embedded ...

5 Armstrong models

Let us consider the family of all conditional embedded implicational
dependencies on a single relation symbol R, denoted by 3(R).

We show that ¥ (R) admits Armstrong models. A model is considered
as a pair (r, D), where 7 is a relation over U and D is a set of relations
over U.

In the sequel we use the direct product for a family of relations over
U, defined by Fagin [4] and the direct product for the models (r;, D)
and (rg, Dy) defined in [7].

Theorem 5.1 Let S be a set of sentences. Then a) implies b):

a) There is an operator @ that maps nonempty families of models
into models, such that if o is a sentence in S and (R; : 1 € I) is a
nonempty family of models, then o holds for &(R;,i € I) iff o holds
for each R;, v € 1.

b) Whenever ¥ is a consistent subset of S and X* is the set of
sentences in S that are logical consequences of X, then there is a model
(called Armstrong model) that obeys X* and no other sentences in S.

The proof is analogous with that of the Theorem 3.1 [4], considering
in S sentences of the form (1), instead of sentence in first-order logic.
Using the results from [7], it obtains:

Proposition 5.1 Let (R, X) be a CEID. Then a(R,X) is faithful
with respect to direct products.

Theorem 5.2 Let ¥ be a set of CEID’s and ¥ C 3(R). There exists
a model M = (r, D) that obeys ¥* and no other CEID a(R,X) from
2(R) — ¥,

Proof: Let (a;)ier be the family of all elements from ¥(R) — X* (when-
ever L(R) — X* £ 0).

For q; there is a model M;, which satisfies 3 and it doesn’t satisfy
«;. The direct product ®(M;,i € I) satisfies the conclusion of the
theorem.
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6 Conclusions

Using second-order logic we defined the family of conditional embed-
ded implicational dependencies. This family contains the class of
conditional-functional dependencies, the family of embedded implica-
tional dependencies and the family of conditional implicational depen-
dencies. We gave a characterisation of a conditional embedded impli-
cational dependency implied by a given class in this family.

A method for the construction of an Armstrong model for a given
class of this family was given.
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