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Investigation of simply periodic motions
of a heavy solid with a fixed point

R.Puya

Abstract

Some simply periodical motions of a heavy solid body with
A = B = 3C inertia principal moments’ ratio near the fixed
point in the uniform gravitational field are studied, employing
the method of point mappings. The order of motion equations’
system is reduced using the Routh method, and the equations are
reduced to the form, analogous to the equations of the restricted
three bodies problem. Three classes of the revealed simply peri-
odical trajectories are described.

Analytical methods, such as the method of small parameter [4],
for example, are widely used nowadays for the analysis of the non-
integrable cases of motion of a solid body with a fixed point. The
numerical methods, realized on the computer, are employed also.

At the investigation of motions of a dynamic system, its mathemat-
ical model W is based on the concept of its state w and operator T,
determining its change in time. The current state w of system W may
be considered as some point of the system phase space F'.

Various aspects of the dynamic system phase trajectories may be
elucidated by the examination of the arrangement of points of their
crossing with some surface of section M in the phase space ¥ [5]. This
sequence characterizes the point transformation 71'. In other words, the
study of system motion is reduced to the consideration of the behaviour
not of the whole phase trajectory, but of some of its points on the
surface of section. As a result the investigation of motion trajectories
becomes, to some extent, more clear and simple. This method is rather
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effective at the study of system dynamics and is called the method of
point mappings, and its origin is connected with H.Poincare name.

The investigation of the dynamic system behaviour in phase space
is the simpler the less is the dimensions’ number it is characterized
by. At present the most simple case, which is in principle reduced to
quadrature - the case of two-dimensional systems is studied sufficiently.
As for multi-dimensional systems of differential equations, there is little
information about them and the elaboration of the theory has been
developed intensively during the last decades [6].

The numerical methods were successfully employed even at the in-
vestigation of Copenhagen variant of the restricted three-bodies prob-
lem. Particularly T.N.Thiele, E.Stromgren and others [7] used them to
study the genealogy of classes of simply periodic orbits. In sixties M.
Henon [5] and J.Bartlett [2] applied the method of point mappings to
the study of this problem and systematized on its base a lot of results,
published by the collaborators of Copenhagen observatory, adding some
new classes.

In this paper we apply the method of point mappings to the research
of simply periodic motions of a heavy body near a fixed point. The
Euler-Poisson differential equations describing the rigid body motions
have the form [1]:

Ap+ (C — B)gr = Mg(e1ys — e373),
Y1 =12 — qY3, (1)
(A7 B7 C7p7 q7 lr‘7 17 27 3)7

where: A, B,C is the principal moment of inertia;
e1, €9, ez are the coordinates of the center of mass;
p,q,r  are the components of angular velocity;
Y1, Y2,7Y3 are vertical guiding cosines;
My is the body weight.

The motion equations (1) form the six-order system to solve for the

variables 71, v2,73,p, q, 7, depending on Euler angles: v is the preces-
sion angle, @ is the nutation angle and ¢ is the angle of the proper
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rotation. In the general case they assume the energy integral with
constant h, the area integral with constant f, and geometrical relation.

The complete system of first integrals of Euler-Poisson equations
was found only for three cases. Kovalevckaya case is one of them, and
our case we consider to be its perturbation. It refers to the body having
unity weight with inertia ellipsoid for which A = B = 3C' = 1, and the
center of mass is situated on its abscissa axis at the unity distance from
the fixed point.

Taking into account that the precession angle v is an ignorable
coordinate, it might be excluded by Routh’s method reducing by two
the order of the system of motion equations, and we may pass to co-
ordinates  and y on the inertia ellipsoid [3]. According to work [4],
we bring system (1) at A = B to the reduced dynamic system with
two degrees of freedom, the motion of which is described as the unity
mass point motion in the plane under the action of conservative and
gyroscopic forces:

ou
"o Q) 2
o vt oz’
(2)
y// _ QCL‘I—i—a—U,
dy

where:

0= A\‘Z_C\/m[(fﬂ(fl—c)ﬂﬂa

p - real root of the transcendental equation:

A
arthp + p arctg pp = ol 1,

FJZA[l—p2], m=— Ho=

Here the derivative with respect to the variable 7, for which dt =
kdT, is denoted by the prime.
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In this case the step to Euler angles ¢ and 6 is conducted directly
by formulae:

A
[l
S

T, 3)

0 = arctg l\/g 17_/)2]’ (4)

System (2) assumes Jacobi integral
o' 4% = 2U. (5)

System (2) structure coincides with the structure of equations’sys-
tem for the motion of the restricted three-bodies problem [7], and, using
Jacobi integral, its solutions could be presented in three-dimensional
phase space (z,y,z’).

Note, that the motion equation (2), as the integral (5), are invariant
under substitution

T — T, t—t, Yy — —, f—-—f.

That’s why we can choose the plane (z,z') as surface of section
M [5]. Such a choice is justified by the fact that ¢ and z differ by a
constant factor only.

Let’s define the point mapping, caused by the system (2) solutions,
in the following way. We’ll choose a point Py (Fig.1) in plane (z,z')
as an initial one and find the following crossing P; of the phase tra-
jectory with this plane. The point P;, after H. Poincare, is called the
consequent of the point F.

The problem of search of the system periodical trajectories reduces
to determination of the mapping 7' invariant points’ location. The
system periodical trajectory, closed after 2n crossings with abscissa
axis, will be presented in the section plane by the set of n consequent
points. In the simplest case at n = 1 the trajectory is called simply
periodical [7].
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Figure 1

If one periodical trajectory is revealed, then in conformity with the
theorem of a continuous dependence of ordinary differential equations’
system solutions on initial condititions, for f and h, not greatly differ-
ent from the original parameters of the system, it is possible to find
out such zg, that correspond to the periodical motion, neighbouring to
the given one.

The search of the reduced system periodical trajectories was accom-
plished with the help of a personal computer by the use of a program,
set up for the study of dynamic system motions by the method of point
mappings, for initial 2y and velocity =, = 0,3’ > 0.

When classifying the discovered trajectories, we assume the tracing
of stationary points S; and S2 on Poisson sphere, which are the ana-
logues of libration points in celestial mechanics, as one of the criteria.

In accordance with the relation (3) in order the analysis of the
results to be more suitable, the revealed periodical trajectories were
recalculated for system (1) with corresponding going to Euler angles
¢ and 6. The value of the angle § = 7/2 conforms the value yo = 0
of the reduced system, therefore in figures 2 and 3 the trajectories are
presented in ¢ and 6; = 7/2 — 6 coordinates. The values of angles are

189



R.Puya

given in radians in the tables and in degrees - in figures.

The values of constant integrals of energy h and areas f, the initial
value ¢y and the value ¢, for the second crossing of the trajectory in
configuration space with abscissa axis, and the half-period 7'/2 quantity
as well, corresponding to real time ¢ are adduced in applied tables with
the aim of characterizing the classes of the revealed simply periodical
trajectories.

Here we’ll describe the characteristics of three classes, discovered
at constant value f = 0.1 of simply periodical trajectories.

Simply periodical trajectories of the first class were detected at
—0.9 < h < 0. Their characteristics are presented in Tabl.1, and their
configurations - in Fig.2. All this class trajectories are straight lines
and are situated in the vicinity of the stationary point So . They are
oval for most values of energy integral constant A in the plane (¢, 6;).
When the value of h increases, these ovals gradually become curves,
possessing self-crossings, the sizes and motion periods grow.

Periodical trajectories of the second and third classes were found
out in the range 2. < h < 6. The characteristics of these classes are
offered in Tabl.2 and their configurations - in Fig.3. Simply periodical
trajectories of the both classes are straight lines and are situated in the
vicinity of the stationary point S92 and have the oval form without any
self-crossings. With the increase of the constant h the small semi-axes
of the trajectories of the second-class move slightly to the right along
@, and the trajectories of the third class - to the left, preserving their
configuration. As for large semi-axes along 6, they have the same
deviations and motion periods. The location of the second and third
classes’trajectories is such, that they coincide after turn for 180° in
plane (¢, 61) in respect to the stationary point Ss.

Although the search was limited by the classes of simply periodical
motions, we’ve found out the trajectories of other classes. We are going
to conduct additional investigations with the aim of their study.
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Table 1

|| Class I ||
f b T/2
0.1 -0.9 -1.54681 | -1.59478 | 3.17126
0.1 -0.8 || -1.53279 | -1.60880 | 3.21298
0.1 -0.7 || -1.561903 | -1.62256 | 3.25734
0.1 -0.6 || -1.50439 | -1.63720 | 3.30466
0.1 -0.5 || -1.48833 | -1.65326 | 3.35537
0.1 -0.4 || -1.47044 | -1.67116 | 3.40997
0.1 -0.3 -1.45037 | -1.69122 | 3.46912
0.1 -0.2 || -1.42784 | -1.71375 | 3.53361
0.1 -0.1 -1.40259 | -1.73899 | 3.60449
0.1 0.0 || -1.37445 | -1.76713 | 3.68312

Figure 2
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Table 2
Class 11 Class 111
f h T/2
0.1 2.0 -1.01289 | -4.46296 1.32136 | -2.12871 1.66140
0.1 2.2 -0.99831 | -4.43270 1.29110 | -2.14329 1.56736
0.1 || 2.4 || -0.98358 | -4.40458 || 1.26295 | -2.15802 || 1.48905
0.1 2.6 -0.96877 | -4.37809 1.23650 | -2.17281 1.42229
0.1 || 2.8 || -0.95392 | -4.35296 || 1.21139 | -2.18765 || 1.36435
0.1 3.0 -0.93914 | -4.32903 1.18744 | -2.20248 1.31335
0.1 3.2 -0.92438 | -4.30606 1.16445 | -2.21722 1.26795
0.1 3.4 -0.90966 | -4.28389 1.14224 | -2.23201 1.22716
0.1 3.6 -0.89500 | -4.26246 1.12082 | -2.24665 1.19022
0.1 3.8 -0.88032 | -4.24160 1.09997 | -2.26131 1.15654
0.1 4.0 -0.86572 | -4.22127 1.07959 | -2.27596 1.12566
0.1 4.2 -0.85119 | -4.20143 1.05979 | -2.29046 1.09719
0.1 || 4.4 || -0.83665 | -4.18197 || 1.04034 | -2.30500 || 1.07084
0.1 4.6 -0.82210 | -4.16286 1.02126 | -2.31950 1.04634
0.1 || 4.8 || -0.80758 | -4.14407 || 1.00252 | -2.33397 || 1.02349
0.1 || 5.0 || -0.79315 | -4.12562 || 0.98398 | -2.34850 || 1.00210
0.1 || 5.2 || -0.77858 | -4.10728 || 0.96563 | -2.36309 || 0.98203
0.1 || 5.4 || -0.76413 | -4.08930 || 0.94768 | -2.37746 || 0.96313
0.1 || 5.6 || -0.74962 | -4.07141 || 0.92981 | -2.39198 || 0.94531
0.1 || 5.8 || -0.73501 | -4.05362 || 0.91208 | -2.40657 || 0.92845
0.1 6.0 -0.72050 | -4.03611 0.89449 | -2.42110 0.91247
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Figure 3
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