
Computer Science Journal of Moldova, vol.3, no.2(8), 1995

Global optimization in one-dimensional case

using analytically defined derivatives of

objective function

A.Shpak

Abstract

A number of algorithms with simple theoretical base (ac-
cessible even for non-specialists) for a wide class of global one-
dimensional optimization problems is described below. Good rate
of convergence is demonstrated with a lot of numerical examples.

1 Introduction

The following problem will be considered:
determine (numerically) f∗ and x∗ such that x∗ ∈ [a, b] and for all

x ∈ [a, b] f∗ ≤ f(x), f(x∗) − f∗ ≤ ε, where f is a given bounded
real-valued function of one variable, [a, b] is a given interval, and ε is a
given positive number (accuracy).

If f has only one local minimum point on [a, b] then we can use one
of known algorithms (such as Golden Section Algorithm) to solve this
problem. But if f has more then one local minima on [a, b], or number of
local minimum points is unknown, then we have a global optimization
problem, and it is not so simple. In spite of abundance of literature
dedicated to global optimization problems (see survey [1]), now we have
not a simple and reliable way to solve them. So, the normal reaction of
a non-specialist in global optimization when he meets such a problem
is usually one of listed below:

– he tries so-called “grid method”: takes a great number (106 say)
of points on [a, b] (i.e. a grid on the given interval), and finds

c©1995 by A.Shpak

168

Global optimization in one-dimensional case. . .

a minimum point over this grid. This way is good only if an
objective function is simple enough and require not much time to
compute it;

– he tries an algorithm taken from some book, but (being non-
specialist) he cannot decide — is his objective function of class
described there, or how to pick out a lot of parameters required
to run this algorithm, or why this algorithm converges “almost
always” but not for his problem, etc.

Therefore the aim of this paper is to give not a new good theory,
but method with the following properties:

• simple mathematical background, clear for non-specialist, no “eu-
ristics” and “empirics”;

• guaranteed convergence;

• the class of objective functions is as wide as possible;

• “ready-to-use”: anyone familiar with some programming lan-
guage can program it without any difficulties;

• good rate of convergence.

Mathematical base is considered in sections 2 and 3, formally de-
scribed routine is given in section 4, and convergence is discussed in
section 5. One can find it to be useful the further discussion in section
6.

2 Methodology

The approach suggested below is based on the well-known branch and
bounds method. Our algorithm will work iteratively, and let us suppose
that on k-th iteration we have k + 1 points xi such that a = x0 < x1 <
. . . , < xk−1 < xk = b. Then we have to:

1. estimate each interval, i.e. find some appropriate numbers
Ri ≤ minx∈[xi−1,xi] f(x), i = 1, 2, . . . , k;

169

A.Shpak

2. find interval with the best (minimal) R∗ = mini∈{1,...,k}Ri;

3. if mini∈{0,1,...,k} f(xi) − R∗ ≤ ε then we got a solution and the
algorithm stops;

4. bisect the best interval (found on step 2) by a new point xnew;

5. add the new point xnew to the set {xi}k
0, set k := k + 1, reindex

points to get the order a = x0 < x1 < . . . , < xk−1 < xk = b and
go to step 1.

So, two things are interesting for us: Ri on step 1 and xnew on
step 4.

Now it is the time to discuss the class of objective functions, wide
enough to cover our practical needs, but limited enough to construct
an effective algorithm. It is “almost the fact” in global optimization
that the class of bounded (or even bounded and continuous) functions
is too wide: unlikely one cannot hope to construct something effective
for such functions. The next class (narrowed but still wide) is the class
of functions with bounded first derivatives. So, let us suppose that the
objective function f has a bounded derivative on [a, b]. Using Taylor’s
formula we have for all x ∈ [xi−1, xi]

f(x) ≥ f(xi−1) + thimi(f ′),

f(x) ≥ f(xi)− (1− t)hiMi(f ′),

where hi = xi − xi−1, t = (x − xi−1)/hi (0 ≤ t ≤ 1) and all x ∈
[xi−1, xi] verify the inequalities

mi(f ′) ≤ f ′(x) and Mi(f ′) ≥ f ′(x).

Hence

f(x) = (1− t)f(x) + tf(x) ≥
≥ (1− t)f(xi−1) + tf(xi) + t(1− t)hi

[
mi(f ′)−Mi(f ′)

]

or, denoting u
(1)
i = hi

[
Mi(f ′)−mi(f ′)

]
,

f(x) ≥ (1− t)f(xi−1) + tf(xi)− t(1− t)u(1)
i . (1)

170

Global optimization in one-dimensional case. . .

Suppose now that f has bounded second derivative on [a, b] (such class
of functions is more limited than the one discussed above, and we may
hope to estimate better our function). Using Everett’s formula we have

f(x) ≥ (1− t)f(xi−1) + tf(xi)− t(1− t)
h2

i

2
Mi(f ′′).

where hi = xi − xi−1, t = (x − xi−1)/hi (0 ≤ t ≤ 1) and for all
x ∈ [xi−1, xi] the inequality Mi(f ′′) ≥ f ′′(x) holds. Denoting now
u

(2)
i = h2

i
2 Mi(f ′′) one gets the formula

f(x) ≥ (1− t)f(xi−1) + tf(xi)− t(1− t)u(2)
i . (2)

Comparing (1) and (2), we get the expression

(1− t)f(xi−1) + tf(xi)− t(1− t)ui (3)

with ui = u
(1)
i or (if possible) ui = u

(2)
i .

Now, we can get required Ri as a value of minimum point of (3)
under the constraint 0 ≤ t ≤ 1. By means of simple transformations
we have

Ri =

min{f(xi−1), f(xi)},
if ui ≤ |f(xi−1)− f(xi)|;

1
2

[
f(xi−1) + f(xi)

]
− 1

4ui − 1
4ui

[
f(xi−1)− f(xi)

]2
,

if ui > |f(xi−1)− f(xi)|.

(4)

and the expression for minimum point

tmin =
1
2

[
1 +

f(xi−1)− f(xi)
ui

]
if ui > |f(xi−1)− f(xi)|. (5)

Note that if ui ≤ |f(xi−1) − f(xi)| then (3) has minima either in
t = 0 or in t = 1. It is obvious that in this case i-th interval is not
interesting for further investigation.

171

A.Shpak

Let us now discuss the way to get xnew. It is quite natural to use
(5) for that. Hence, taking into account that t = (x − xi−1)/hi, we
have

xnew =
1
2

[
xj−1 + xj + hj

f(xj−1)− f(xj)
uj

]
, (6)

where j is such that Rj = mini∈1,...,k Ri. Thus the only question is:
how can one calculate ui? Let us discuss it below.

3 Computing bounds with interval analysis

The problem we need to solve now is:
ϕ(x) is a given bounded analytically defined function on [x−, x+]

(we are interested in ϕ(x) = f ′(x) or ϕ(x) = f ′′(x)). One has to find
numbers ϕ− and ϕ+ such that ϕ− ≤ ϕ(x) ≤ ϕ+ for all x ∈ [x−, x+].

“Analytically defined function” means here that we can apply the
interval analysis to it. One familiar with this technique can go to the
next section. There is a plenty of literature about interval analysis. We
used [2] as a basis for this section.

Let I(X) denotes a set of all intervals contained in an interval X,
i.e.

I(X) =
{
[x−, x+] | x− ∈ X, x+ ∈ X, x− ≤ x+

}
.

Definition. The function Φ : I(X) → I(IR) is an inclusion function
for ϕ : X → IR if Φ(Y) ⊇

{
ϕ(x) | x ∈ Y

}
for all Y ∈ I(X) .

Let us assume that some basic set (BS) of functions is available
including four arithmetic operations and “standard” functions such as
sinx, cosx, . . . , log x, expx,

√
x, xn, etc. (one can fill up this list with

any standard functions available on a computer).
The interval arithmetic operations in I(IR) are defined by

A ? B = {a ? b | a ∈ A, b ∈ B} for A,B ∈ I(IR),

where “?” denotes one of the operations “+”, “−”, “·” and “/” (note
that A/B is not defined if 0 ∈ B). This definition is equivalent to the

172

Global optimization in one-dimensional case. . .

following rules

[a, b] + [c, d] = [a + c, b + d];

[a, b]− [c, d] = [a− d, b− c];

[a, b] [c, d] = [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}];
[a, b] / [c, d] = [a, b] [1/d, 1/c] (if defined).

Interval [a, a] is equivalent to “explicit” a, thus the operations a +
[b, c], a− [b, c] etc. are defined.

It is obvious that interval arithmetic gives inclusion functions for
“usual” arithmetic operations. There is no problem to calculate inclu-
sion functions for other representatives of BS. We give below a library
of corresponding routines in PASCAL-like notation for interested read-
ers (routines used for numerical experiments are given).

• [a, b]2 — inclusion function for x2:

IF a > 0 THEN c := a2; d := b2;
ELSIF b < 0 THEN c := b2; d := a2;
ELSE c := 0; d := max(a2, b2);
END; RETURN [c, d];

• [a, b]3 — inclusion function for x3:
RETURN [a3, b3];

• Iexp([a, b]) — inclusion function for exp(x):
RETURN [exp(a), exp(b)];

• CONST TwoPi = 2π — constant often used in trigonometry;

• ChkPi(a, b, c) — service procedure for trigonometry, returns
BOOLEAN=TRUE when there is no such integer k that a ≤
2π(k + c) ≤ b (supposing that a ≤ b, b − a < TwoPi); TRUNC
means integer part of nonnegative REAL:

a1 := a/TwoPi− c; b1 := b/TwoPi− c;
IF (b1 < 0) OR (a1 > 0) THEN

173

A.Shpak

RETURN TRUNC(Mod(ABS(a1),2))=
TRUNC(Mod(ABS(b1),2));

ELSE RETURN FALSE;
END;

• Isin([a, b]) — inclusion function for sin(x):

c := −1; d := 1;
IF (b− a) < TwoPi THEN

Smin := min(sin(a), sin(b)); Smax := max(sin(a), sin(b));
IF ChkPi(a, b,−0.25)THEN c := Smin END;
IF ChkPi(a, b, 0.25) THEN d := Smax END;

END; RETURN [c, d];

• Icos([a, b]) — inclusion function for cos(x):

c := −1; d := 1;
IF (b− a) < TwoPi THEN

Cmin := min(cos(a), cos(b)); Cmax := max(cos(a), cos(b));
IF ChkPi(a, b, 0.5) THEN c := Cmin END;
IF ChkPi(a, b, 0.0) THEN d := Cmax END;

END; RETURN [c, d];

Now, let RC be the set of functions which can be constructed re-
cursively by composition from BS in finitely many steps. Then any
function ϕ of RC can be represented as a finite expression consisting
of the basic functions of BS. For instance,

ϕ(x) = cos(x) +
10
3

cos(
10
3

x) +
1
x
− 0.84

could be such an expression. Each function ϕ of RC has then an
inclusion function Φ. The only thing one has to do to get Φ is to
replace each occurrence of the variable x by the “interval”-variable
[x−, x+] and each occurrence of a function g ∈ BS by the inclusion
function G of g in an expression of ϕ. The resulting function is then an
inclusion function of ϕ [2]. The inclusion function for ϕ(x) mentioned
above is

Φ([x−, x+]) = Icos([x−, x+]) +
10
3

Icos(10
3 [x−, x+]) +

1
[x−, x+]

− 0.84.

174

Global optimization in one-dimensional case. . .

There is not a big problem also in a case when searching for inclusion
function Φ for ϕ if ϕ is not explicitly given, for example, if ϕ is defined
via a numerical algorithm. In such cases it is only necessary to find
inclusions for explicitly given parts of ϕ and then to apply the algorithm
to them.

It is one of “annoying” features of interval analysis that inclusion
functions received via process described above depend on the chosen
function expression for ϕ. Particularly, there is no distributive law in
interval arithmetic (Y1(Y2 + Y3) ⊆ Y1Y2 + Y1Y3), so some transforma-
tions of ϕ can lead to improving of quality of corresponding function
Φ.

4 Routine

Here is described a formal routine for our method. All real numbers
are refered as REAL, but it is recommended to use LONGREAL data
type if possible. If one is about to program this routine as procedure
on some high level programming language he have to provide following
parameters and subroutines:

BndL, BndR — real numbers, bounds of initial interval;

Func(x) — real procedure-function, returns value of ob-
jective function in point x;

Method — integer, Method = 1 if first derivative is used,
Method = 2 otherwise;

DrvBnd(a, b,m, M) — procedure for calculation inclusions [m, M] of
first or second (depending on “Method” pa-
rameter) derivatives of objective function on
given interval [a, b]; read a previous section to
program it;

MaxK — integer constant, maximum permissible num-
ber of iterations (MaxK = 1000 seems to be
enough);

eps1 — required accuracy, must be a positive real;

175

A.Shpak

eps2 — a real number; routine stops when size of the
best interval becomes less then eps2 to avoid
numerical errors; if one is not afraid of numer-
ical errors he can set eps2 < 0.

Results of routine’s work will be saved in the following output data:

Xmin, Fmin — real numbers: the found minimum point and
corresponding value of the objective function;

K — integer number of made iterations;

ExCode — integer exit code: ExCode = 0 means OK
(minimum point found with a required ac-
curacy), ExCode = 1 means that procedure
stops on “eps2” condition, ExCode = 2 —
maximum number of iterations exceeded.

The following arrays are used in procedure:

X [0..MaxK] — searching points x0, x1, . . . , xK ;

F [0..MaxK] — objective function values f(x0), f(x1), . . . , f(xK);

R [1..MaxK] — estimates of intervals R1, R2, . . . , RK ;

Xp[1..MaxK] — for storing “possible” values for Xnew; there is some
economy of calculation time if to calculate possible
value of Xnew on i-th interval together with Ri.

Service procedure CalcR(i) is used to calculate R[i] and Xp[i]
where input parameter i is the number of interval:

PROCEDURE CalcR(i)

h := X[i]-X[i-1]; (∗ h = length of i-th interval ∗)
DrvBnd(X[i-1],X[i], Dm,DM); (∗ call user proc. to calculate ∗)

(∗ inclusions for derivatives ∗)

176

Global optimization in one-dimensional case. . .

IF Method = 1 (∗ supposing that Method=1 or 2 ∗)
THEN Uh := DM - Dm; (∗ Uh is tmp variable = ui/h ∗)

ELSE Uh := 0.5 ∗ h ∗ DM;
END;

Fd := F[i-1] - F[i];

Xp[i] := 0.5∗(X[i-1] + X[i] + Fd/Uh); (∗ “possible” Xnew, ∗)
(∗ see (6) ∗)

U := Uh∗h; (∗ ui ∗)
IF U > ABS(Fd) THEN

R[i] := 0.5∗(F[i-1]+F[i]) - 0.25∗U - 0.25∗Fd∗Fd/U;
ELSE R[i] := min(F[i-1], F[i]); (∗ see (4) ∗)
END;

END CalcR;

Now, taking into account the notation and assumptions adduced
above, let us write our routine.

(∗ Step 1. Initialization ∗)

X[0] := BndL; X[1] := BndR; (∗ set initial interval ∗)
F[0] := Func(BndL);
F[1] := Func(BndR);

CalcR(1); (∗ get Xp[1] ∗)
X[2] := X[1]; F[2] := F[1]; (∗ subdivide it here to ∗)
X[1] := Xp[1]; F[1] := Func(X[1]); (∗ avoid problems with ∗)
K := 2; (∗ “empty loops” when ∗)

(∗ K = 1 ∗)
Fmin:=F[0]; Xmin:=X[0]; (∗ calculate initial ∗)
FOR i:= 1 TO K DO (∗ values for Xmin, ∗)

IF F[i] < Fmin THEN (∗ Fmin ∗)
Fmin:=F[i]; Xmin:=X[i];

END;
END;

CalcR(1); CalcR(2); (∗ estimate intervals ∗)

177

A.Shpak

LOOP (∗ iterate ∗)
(∗ Step 2. Find the “best” interval ∗)

Rmin := R[1]; Imin:=1;
FOR i:= 1 TO K DO

IF R[i] < Rmin THEN
Rmin := R[i]; Imin := i;

END;
END;

(∗ Step 3. Check stopping conditions ∗)
IF (Fmin - Rmin) < eps1 THEN ExCode:=0; EXIT END;
IF (X[Imin]-X[Imin-1]) < eps2 THEN ExCode:=1; EXIT END;
IF K >= MaxK THEN ExCode:=2; EXIT END;

(∗ Step 4. Find and insert new point ∗)
Xnew := Xp[Imin]; Fnew := Func(Xnew);

K := K+1;

FOR i := K TO Imin+1 BY -1 DO
X[i] := X[i-1];
F[i] := F[i-1];
R[i] := R[i-1];
Xp[i] := Xp[i-1];

END;

X[Imin] := Xnew;
F[Imin] := Fnew;

CalcR(Imin); (∗ estimate new intervals ∗)
CalcR(Imin+1);

IF Fnew < Fmin THEN (∗ get new Xmin, Fmin ∗)
Fmin:= Fnew; Xmin:= Xnew;

END;

END; (∗ END of LOOP = GOTO Step 2. ∗)

178

Global optimization in one-dimensional case. . .

5 Numerical examples and convergence rate

We will not give a proof of convergence of described algorithm for some
reasons. Firstly, it is almost evident. Secondly, an interested reader can
find in [2] a proof of convergence for more general algorithm. Thirdly,
one can construct a convergent algorithm for solving ANY optimization
problem (see the joke [3]). A more important question is the rate of
convergence. There is too few algorithms (and corresponding classes
of problems) in global optimization which allow to prove theoretical
properties of convergence rate. So, the common practice is testing of
algorithms on a wide class of numerical examples to get some empirical
dependencies. Of course, testing result is not a proof, but it is more
than nothing. The set of test functions used below is taken from [4, 5]:

1) f1(x) = sin(x) + sin(10
3 x) + lnx− 0.84x + 3, 2.7 ≤ x ≤ 7.5;

2) f2(x) = sin(x) + sin(2
3x), 3.1 ≤ x ≤ 20.4;

3) f3(x) = −∑5
i=1 i sin [(i + 1)x + i], −10 ≤ x ≤ 10;

4) f4(x) = (x + sin x) exp(−x2), −10 ≤ x ≤ 10;

5, 6) f5,6(x) = −∑10
i=1

1
k2

i (x−ai)2+ci
, 0 ≤ x ≤ 10;

where ki, ai, ci are constants, defined as
a=(3.040, 1.098, 0.674, 3.537, 6.173, 8.679, 4.503, 3.328, 6.937, 0.700),
k=(2.983, 2.378, 2.439, 1.168, 2.406, 1.236, 2.868, 1.378, 2.348, 2.268),
c=(0.192, 0.140, 0.127, 0.132, 0.125, 0.189, 0.187, 0.171, 0.188, 0.176)

for the function f5, and
a=(4.696, 4.885, 0.800, 4.986, 3.901, 2.395, 0.945, 8.371, 6.181, 5.713),
k=(2.871, 2.328, 1.111, 1.263, 2.399, 2.629, 2.853, 2.344, 2.592, 2.929),
c=(0.149, 0.166, 0.175, 0.183, 0.128, 0.117, 0.115, 0.148, 0.188, 0.198)

for the function f6.
First and second problems are simple, with only a few local mini-

mum points. Problems 3) and 4) are rather complicated. Function f3

has 20 local minimum points (3 of them are global). Function f4 varies
slowly almost on whole interval, having sharp pikes of global maxima
and minima. Functions f5 and f6 (known as Shekel’s functions) have a

179

A.Shpak

number of sharp local minimum points with relatively flat maximums.
Values and coordinates of global minimum points are listed in table 1.

Table 1: Solutions for the test problems.

Function Solution Value
f1 5.19977837 -1.60130755
f2 17.03919896 -1.90596112
f3 -6.77457615 -12.03124944

-0.49139083 -12.03124944
5.79179447 -12.03124944

f4 -0.67957866 -0.82423940
f5 0.68586093 -14.59265203
f6 4.85556557 -13.92234488

All the functions f1, . . . , f6 have bounded second derivatives and
hence we can use both variants of our algorithm (i.e. we can provide
inclusions both for first and second derivatives and call our routine first
time with the parameter Method=1, and then with Method=2). Test
results (number of iterations required to achieve the needed accuracy)
are given in table 2 and table 3. In all the tests there was set eps1 = eps
and eps2 < 0 (see routine parameter in section 4), and all the problems
were solved with given accuracy.

Of course, one can say that six problems are only six problems. The
common practice is to use a class of test functions with pseudorandom
coefficients to get more representative results. There was used the class
of problems

f7(x) = a0 +
N∑

j=1

(
aj sin

πj

2
x + bj cos

πj

2
x
)
, x ∈ [0, 1],

where ai and bi are uniformly distributed on interval [−1, 1] pseudo-
random numbers, and N is uniformly distributed on interval [4, 14]

180

Global optimization in one-dimensional case. . .

Table 2: Method = 1 (with first derivatives).

ε f1 f2 f3 f4 f5 f6

10−3 11 13 82 17 45 64
10−4 12 14 89 18 46 69
10−5 16 16 91 21 50 73
10−6 17 18 96 22 52 80
10−7 19 19 104 24 53 84
10−8 21 20 111 26 55 90
10−9 22 22 115 27 56 93
10−10 24 24 119 29 58 99
10−11 26 25 126 30 59 102
10−12 28 27 133 33 62 109

Table 3: Method = 2 (with second derivatives).

ε f1 f2 f3 f4 f5 f6

10−3 9 10 71 16 27 33
10−4 9 10 72 16 27 34
10−5 9 11 72 16 27 34
10−6 9 11 74 18 28 35
10−7 9 11 74 19 29 35
10−8 9 12 75 19 29 36
10−9 11 12 77 19 29 36
10−10 12 12 78 19 29 36
10−11 12 13 79 19 29 36
10−12 12 13 79 20 29 37

181

A.Shpak

pseudorandom integer number. Another class of test problems is a set
of Shekel’s functions

f8(x) = −
10∑

i=1

1
k2

i (x− ai)2 + ci
, x ∈ [0, 10],

where coefficients are uniformly distributed pseudorandom numbers,
ai ∈ [0, 10], ki ∈ [1, 3], and ci ∈ [0.1, 0.3]. There were used 1000
functions of each class. The average results may be found in Table 4.

Table 4: Results for test functions f7 and f8.

Method=1 Method=2
ε f7 f8 f7 f8

10−3 17.88 44.58 10.29 26.19
10−4 20.48 47.25 10.90 26.76
10−5 22.94 49.91 11.39 27.29
10−6 25.41 52.63 11.81 27.74
10−7 27.86 55.25 12.16 28.11
10−8 30.33 57.94 12.47 28.43
10−9 32.83 60.64 12.78 28.73
10−10 35.32 63.28 13.03 29.00
10−11 37.82 65.99 13.24 29.25
10−12 40.30 68.68 13.46 29.49

Obviously, one can suppose that for examined classes of test func-
tions proposed algorithm converges linearly on the average when first
derivatives are used, and superlinearly on the average with second
derivatives. There are some hints about such behaviour of this al-
gorithm in [2].

6 Further discussion

Usually in global optimization an unconstrained problem is considered.
The reason is that we can reduce an optimization problem with con-

182

Global optimization in one-dimensional case. . .

straints to an unconstrained one by penalty functions or something
else. But some useful properties of an initial problem (for example dif-
ferentiability) may be lost. One can extend our methodology to solve
problems with constraints without any “reductions”. The only thing
one have to do is to estimate each constraint by corresponding expres-
sion (3) and then to solve a simple problem with a quadratic objective
function and quadratic constraints. Further, the found solution may be
used as an estimate of a corresponding subinterval, and our algorithm
may work without any other changes. We will not discuss this subject
widely here because it will be a topic of an another paper.

There are a lot of algorithms similar to those discussed above (see
for instance [6]. But we found that the algorithms presented in this
paper have two advantages: the simplicity and the rate of convergence.

References

[1] Zhiglhiavsky A.A., Zhilinskas A.G. Methods of global optimiza-
tion. Moscow, Nauka, 1991. (Russian)

[2] Ratschek H. Inclusion functions and global optimization.
Mathem.Programming, v.33(1985), no.3, 300–317.

[3] Anonymous. A new algorithm for optimization. Mathem. Pro-
gramming, v.3(1972), no.1, 124–128.

[4] Zhilinskas A.G. Global optimization. Axiomatics of statistical
models, algorithms and their application. Vilnius, Mokslas Pub-
lischers, 1986. (Russian)

[5] Strongin R.G. Numerical methods in multiextremal problems.
Moscow, Nauka, 1978. (Russian)

[6] Shpak A.L. An algorithm for minimization of multiextremal twice
differentiable functions on a interval. Math.Res., no 110. Chişinău,
Ştiinţa, 1989.

183

A.Shpak

A.Shpak Received 27 October, 1995
Institute of Mathematics,
Academy of Sciences of Moldova,
5 Academiei str.,
Kishinev, 277028, Moldova
e-mail: 33verlan@mathem.moldova.su

184

