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Construction of a Parallel Algorithm to Solve
the Multiphase Gas Dynamics Problem

B.Rybakin

Abstract

This paper considers questions of an effective use of multipro-
cessor computing system to implement a parallel algorithm solv-
ing the multiphase gas dynamics problem. A technique is offered
to parallelize the two-dimensional explicit differential scheme to
implement it on multiprocessor systems with distributed memory
(MIMD architecture).

MIMD is the architecture used in transputer systems. It has its
advantages and shortcomings. As its advantages one should classify
its relative cheapness (concerning the productivity/cost ratio), its com-
pactness and reliability, as well as the possibility to adjust the topology
of processor arrays to a specific application [1,2]. However the archi-
tecture of such systems requires serious revision of existing algorithins
and software. In many cases there arises a need to develop new ap-
proaches to construction of numerical methods solving the multiphase
gas dynamic taking into account structure of multiprocessor systems.

Let us estimate the number of processor units necessary to solve
a specific problem described below. Let the computational area for a
two-dimensional (2D) problem contains 100*100 points and the number
of floating point operations per a point makes about 1000. Let number
of iterations is about 1000, and number of phases is 100. If we want to
solve such a problem in an hour then necessary computing power should
make about 30 Mflops. If at each computational point of the area
we should be store about 50 real numbers with double accuracy, then
the necessary volume of memory is about 40 Mbt. The corresponding
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computational capacities could be provided by a processor array of
about 30 transputers of T800 type or by three of TTM 200.

To find the estimation of multiprocessor system efficiency one should
know the productivity of one processor unit in the system and the char-
acter of growth of system productivity when the number of processor
units in it grows. As a base effectivity factor the characteristics of
transputer are used shown with optimized test programs which work
utilizing only internal memory area of transputer. Access time to the
operative memory makes 3...6 cycles of processor, so the repeated access
to the memory reduces the productivity. Taking into account charac-
teristic properties of command set and of processor architecture lets us
to increase several times the productivity of each processor unit.

The efficiency of multiprocessor system can be determined as the
following ratio:

B =T/pT),

where T is solution time of the problem using one processor unit,
and T}, - solution time of the problem using p processors [3]. The
acceleration factor is determined as: S =p x E.

In numerical simulation not only the peak productivity of the sys-
tem which is achieved on the carefully optimized examples is important
but the real one which can be achieved on a specific class of problems.
Analysis of effective productivity on specific application problems is an
independent goal difficult to achieve.

The most essential factor which determines the real power of multi-
processor system is choice of algorithm and the technique of its imple-
mentation using the system you dispose. For computation - consum-
ing problems in the area of mathematical simulation, the algorithms
which let us to obtain linear growth of productivity of system when the
number of processor units in it increases are of special interest. Nu-
merical methods of solution of problems in mathematical physics, and
specifically in gas dynamics, posses, as a rule, its internal parallelism.
However the character and the degree of its parallelisation depends on
the stage of problem solution when the parallelisation is made. These
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stage correspond to levels of repeated decomposition of a problem into
more and more small hierarchically subordinated parts [4,5].

The solution of the number of important applied problems in the
field of ecology requires to use the methods of mathematical experi-
ment, and subsequently to resort to the numerical experiment using
computers. Research of currents in multiphase dispersion flows of gas
containing solid particles is a very urgent problem of mechanics of con-
tinuous media. Especially acute it is at gas cleaning installations for
thermal power stations, at cement and ferro-concrete factories etc. In-
crease of degree of purification of gas flow results in essential improve-
ment of ecological conditions. Let us consider statement of a problem,
main equations and method of solution. The flow of polydispersion gas
through an installation of complex shape is simulated.

For the simulation usual assumptions of mechanics of continuous
media are used: each phase is considered to be ideal, viscosity and
heat conductivity of phases are taken into account only for inter-phase
friction and heat and mass transfer processes; collisions of solid parti-
cles, their splitting or coagulation shall be neglected [6]. Let as also
limit to the situations where one can assume the particles and the dis-
tances between them very small in comparison with characteristic size
scale of the flow.

We shall represent the part of volume of the suspension occupied
by phase i by the value of its volumetric contents ; (i = 1,2). To
each point the relative phase densities p;, characterizing their masses in
volume unit of the suspension, and the real densities, characterizing the
densities of substances they consist p;', will be put in correspondence.

p1 = a1py, p2 = a2py.

The volumetric content of the suspended phase of particles will be
determined by the volume of an individual particle # and the number
of particles in the volume unit of the suspension, which can be called
the numerical density of the suspension ag = fn. We shall study the
movement of the suspension media using the two-phase example (with
two speed values and two temperature values), i.e. let us assume that
all particles in the solid phase are identical.

Note that in this case the number of differential equations to be
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solved is two times more than in the case of usual one phase gas.
Therefore the questions of an optimal construction of the program im-
plementing the parallel algorithm of their solution become especially
important.

Proceeding from aforesaid, the system of differential equational de-
scribing unsteady spatial currents of gas suspension could be written
down in the following form:

op1 dp2
5 +Vpi Wy =0, 5 + VpaWa =0,
Pldldt L= —ayVp —nf, P2d2dt 2 = nf — ayVp,

0
&(PlEl + p2E2) + V(o1 EYW1 + p2 EaW3) + Vp(ag W1 + aoW3) =0,

Op2J2
ot

+ V(p2J2W3) = ng, (1)

(B; = J; + W2 /2).

Here W, J;, E; are the speed, the specific internal and the specific
full energy of phase i, p is the pressure in the suspension, f is the
total force effecting upon a separate particle from of the gas, g is the
intensity of heat inflow to the surface of a separate particle. Through
V and % the symbolical operators are designated:

0 0 0
=—i+—j+—k
v 8xl+ 8y']+ 0z’

d 9
%=&+(WV)

To close the system of differential equations (1) one should exactly
specify the laws of phase interaction and formulate the equations of
state.

P = P(p11‘7T1)7 J1 = Jl(p%aTl)a p% = const, Jy = JQ(TQ)’ (2)
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Here T; (i = 1,2) - is the temperature of phase i - of the suspen-
sion.

To choose the physical model we shall follow works [6,7]. Specifying
the laws of phase interaction we shall presume that suspended particles
are spheres of diameter 9.

Assume, besides that, the intensities of thermal and force interac-
tion of a particle with the gas do not depend on presence of another
particles at its nearest vicinity. Then to determine the intensity of heat
exchange one can use usual formulae:

g =7w0?B(T) —Ty) = 7o\ Nu((T) —T»), Nu = Nu(Re, Pr,M),

(3)
Rezpzf(5|W1—W2|/,u1, Prchl,ul/)\l, M=|W1—W2|/C2.

Here ( is the heat transfer factor, Nu and Pr are Nusselt and
Prandtl numbers. Re and M are Reynolds and Mach numbers for the
relative flow about the particle. Trough A\; and gy the heat conductiv-
ity and the dynamic viscosity of the gas are designated, c,1 is the heat
capacity of the gas at constant pressure C) is the local sound speed in
the gas.

The resulting force of interaction between phases f we shall deter-
mine in view of non-stationary effects in the flow of the gas about the
particle in its relative movement. For this purpose we shall approxi-
mately represent it as the sum:

f=f,+fa+fn (4)

Where f,, is the force of viscous friction, fa is the Archimedes force,
f, is the force of the appended mass:

1
f, = §w52p§‘05|wl — Wy|(W; —Wy), C;=C;(Re, M)

dW; dWjy
pri el ()

dW 1
L = S0p(

fA=9P1f77 50m
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here Cj is the aerodynamic drag of the particle.

Note, that because of essential distinction of the sizes of suspended
particles and the sizes of suspended particles and the body flown about,
the Reynolds number of an external flow is in many orders more than
the Reynolds number for interaction between the gas and particles.
Therefore, for enough large class of problems one may take into ac-
count the viscosity and the heat conductivity only for phase interac-
tion, counting the gas in the gas dynamical sense as non-viscous and
non-heat-transferable.

If we take into account the forces of phase interaction (4) and (5)
from phase acceleration, then it is reasonable to solve the equations
for the system moment relative to the derivatives: dg‘tfl, dvd‘t]?. When
we fulfill this procedure concerning the gas suspensions with enough
small pressures p}/py < 1 and concentrations of the suspended phase
ag < 1, neglecting the terms with the order O(ag, pi'/p4) it gives us:

dW; 3
—_a-2 —xnf,
P ( 2041)VP xnfy,
dW 3
P2 dt2 =—§0¢2V;0+anu, (6)

3
xz(L—?m—pW%ﬁl

Equations (6) could be conveniently rewritten in the quasidivergent
form:

oW 3
% +VpiWi1(Wq, 1)+ (1 - iag)Vp = —xnfy,
0ps W 3
p28t 2 + V,OQW2(W2, 1) + EO(QVP = anﬂ. (7)

Here p;W;(Wj, 1) is the momentum vector fluxes for phase 7 through
surface, which is perpendicular to the unit vector 1, (Wi, 1) is the scalar
product of vectors W;j and 1.

The effects in (6) and (7) have the order of value of volumetric gas
content ao. In a number of practically important cases of an external
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aerodynamical flow of dusted gas about the body the value of volu-
metric contents ay < 1% of the suspend phase is low, although the
mass contents of the particles can even exceed the mass content of the
gas because of its low pressure. Therefore we shall further neglect the
terms of order ay. Correspondingly we shall limit ourselves to the cases
of moderate pressures, when pf/p4§ < 1.

Resistance factor for the particle Cy is found using the empirical
dependence.

2L ¢+ 45, if 0 < Re <700,
06 — e Re 5 )
4.3(lgRe)™2, if 700 < Re < 2000.

Nusselt number Nu, Prandtl number Pr and Reynolds number Re
are interconnected as follows:

Nu = 2.0+ 0.6Re'/2Pr1/3.

The differential scheme calculating the flows of heterogeneous media
is the developed one calculating the movement of the single-phase gas
[8,9] . At Eulerian stage of the traditional formulae are used:

T n T T T
Uijg — Ui Piv1y ~ Pic15 %y
= el b
At 2Ax Pi;
T T T 7 T
Yig — Y5 _ Pij+1 T Pij-1% (8)
At 20y Pi
mn mn n n n ' . .
By - B @y {pi—f—l,juz’—i—l,j —Di1,Wi—1,4
70
At Pi; 2Ax
T g 7 n
Dij1Yijr1 — Pij—1Yij—1 }
_l’_
2Ny
Values 4;'; and 97;, EJ'; are determined using equations (8). All

values concern to the gas phase.

At Lagrangian stage the mass transfer through cell borders for each
phase is calculated. The fluxes of values for the gas phase are calculated
using the formulae:
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A(M1¢1)?+1/27j
g +u? ip o~
:0?1) gb?l)m. 2t Nyt if uzﬂ,j + “zn,j > 0, 9)
- +uZ e~
p?l)z+1,y¢?1)z’+1,a sAyAL, it a4 ug; <0,

¢1 = (l,u,v, E)

The fluxes of solid phase parameters are determined similarly (9).
At a final stage, on the basis of laws of conservation, the values of

parameters for both phases at a new temporal level are found p**!,
EMHL gt gpntl o =12,

Doing this, the phase interaction f and heat flow ¢ are taken into
account. The differential formulae for the final stage have the following

form:

ntl o {A(Ml) L+ A(M)"

Pyig = P1ig ij—1/ i—1/2,]

— DMy = DYy}
= Ay + T AM)/(Axdy),
ulte; = (Pl Pl )i + X AM)aq /(DxLyp)

Atf:l:/pn—i_l

The formulae determining the parameters of a suspended solid phase
are similar to ones adduced above.

The differential scheme shown above belongs to an explicit type
and is implemented using a rectangular differential grid. The method
of geometrical decomposition is the best of methods mentioned above.
The differential grid must be broken into rectangular subareas in such a
way, that the amount of information transmitted between the adjacent
processor units will be minimal. The effectiveness of the system will be
maximal in the case if information exchange time between the adjacent
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processor units will not exceed the computation time of these units. As
is known, transputers can execute operations of computation and data
exchange simultaneously.

The number of subareas into which the initial differential grid is
broken, must be equal to the number of transputers in the system. Be-
sides that, it is necessary, that the number of computational nodes in
each [3,5] subarea were identical. The differential scheme used is homo-
geneous, i.e. formulae, used in each computational node, are the same.
These conditions, namely, the homogeneity of scheme used, and the
equal number of nodes computed by each transputer, should basically
provide a uniform load (balance) of the multiprocessor system.

Let us map the computational grid onto the transputer array. The
differential scheme for the method of large particles uses an 5-point
pattern. In boundary points of computational subarea calls to the
memory of an adjacent transputer are required. It is not necessary for
computations in internal nodes of the subarea.

Let us study multiprocessor implementation of the problem solu-
tion. Let the computation for nodes in an upper subarea is carried
out at the transputer number n , while the computation for a lower
subarea - at the transputer number n — 1. To obtain the solution in a
boundary node of a subarea one must dispose the information about
gas dynamical parameters stored in the n — 1 th transputer. So it is
necessary to organize an exchange channel to transmit data between
adjacent transputers.

The physical connection between transputers is to be made through
a sole bidirectional link. Thus it is necessary to implement reception
of messages from each boundary node in the correspondent boundary
node at the adjacent transputer.

For computation of multiphase gas dynamical flows in the condi-
tions of low phase interaction one can organize parallelization of cal-
culations on the basis of phases. Because transputers have only 4 link
channels each, the corresponding topology can not be built. It is nec-
essary either to use more advanced transputers of TMS320C40 type or
to keep in the memory of each transputer of usual type n-dimensional
vector containing data describing n phases of the flow.
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