Computer Science Journal of Moldova, vol.3, no.2(8), 1995

Message composition and its application
to event-driven system construction

A .Colesnicov

Abstract

Due to the object-oriented technology of event-driven system
construction, the message composition may be used. Rules of
message composition are alike those of program statement com-
position. The interpreting message queue is described which pro-
duces primitive messages from compound ones. The proposed
conception lets to include the information on message depen-
dence to compound messages themselves, which permits to sim-
plify programs.

1 Introduction

When a system is developed using the event-driven object-oriented
technology, its behavior is controlled by events. An event may be ex-
ternal, e.g., mouse movement, and internal—execution of a program
block or subroutine. Events change the computation state space.

Inside the system, events are reflected by messages. An external
event is processed by the corresponding interrupt handler, and one
or more messages are generated. These messages are dispatched to
instances of the program objects. Objects handle messages and execute
the corresponding code; they may produce new internal messages as
the result, and so on. In many cases the executing program processes
may generate internal messages without any external signals. E.g., the
compilation process may produce messages finding an error.

All messages are passed firstly to the system message queue, are
kept by it and then are dispatched to program objects. An object may

(©1995 by A.Colesnicov

123



A .Colesnicov

process a message and destroy it, or it may pass the message to its
subordinate objects, or even return the message to the queue. And it
may generate several new messages and pass them to the queue. These
message flows circulate into the system and control its operations.

The ideal case for such system is “sleep-and-wait”, when all possible
events are external and independent. The system stays still and waits
the user action. When the user presses a key or operates with the
mouse, the system handles the corresponding messages and waits again.

This ideal case is not so rare. Meanwhile, there are many programs
in which:

1. There are several independent and asynchronous event sources
except the user.

2. Events (and representing messages) are not fully independent.

Both problems may be solved with standard message management
methods, but the price paid is the complication of program structure.

The message composition was proposed in [4] to resolve problems of
message flow synchronization. We are to note here that in that previous
article we had followed the terminology of our used software [2], where
messages are called ‘events’. Afterwards it was found that this approach
resolves the above mentioned problems.

The present article contains in Section 2 the detailed description of
the message composition rules. The compound message generation and
insertion into the queue is described in Section 3, and their interpretive
decomposition is described in Section 4.

The message queue is to be able to reply requests for its state. The
importance of this property is discussed in Section 5.

An example of message flows in a program and their management
using proposed technique are referred in Section 6.

The proposed message queue can use files as message sources. The
problem of creating such files if they are not logs from some previous
runs is discussed in Section 7.

In literature, the conception of processing compound event scripts
can be found in [1], in connection with reversing (undoing) program

124



Message composition

actions and testing different event sequences. In [1] each event is rep-
resented in the script by three pointers to procedures which perform
the action, undo the action, and perform the inverse action. The event
script is organized as a tree.

2 The Message Composition

2.1 Primitive Messages

For simplicity, we restrict our discussion by the following five classes of
primitive messages:

1. The empty message.
2. External primitive messages, namely:

(a) the mouse message;

(b) the keyboard message.
3. Internal primitive messages, namely:

(a) the command message;

(b) the broadcast message.

Primitive messages are the only messages that are dispatched by
the message queue to program objects and that are processed by these
last. You do not need to program your objects to process compound
messages.

Primitive messages contain the corresponding information, e.g., a
keyboard message contain the key code, the keyboard status, etc. The
particular layout is indifferent for our purposes.

2.2 Block Messages

Rules of message composition are exactly the same as rules of program
statement composition. Having program statements, we can recursively
organize them in blocks, selections (if, case), and loops (while, etc.).

125



A .Colesnicov

Block messages are composed from one or more messages (primitive
or compound) that are dispatched in sequence. In implementation, one
possible way is to represent the block message by the pointer to the
first submessage in sequence, and to attach to each submessage the
pointer to the next message in the sequence, with nil attached to the
last, i.e., by the simple list.

2.3 Special Types of Block Messages

There are the following special types of block messages:

1. A text message contains a string and acts exactly as if the string
was typed at the keyboard.

2. A keystroke message contains a sequence of key codes including
not only characters as in the previous case, but keystrokes like
Alt-X.

3. A text file message contains a file name and acts as if the file
contents was typed at the keyboard.

4. A keystroke file message contains a file name, and the correspond-
ing file contains keystrokes to be played.

5. A message file message contains a file name, and the correspond-
ing file contains messages to be played.

In the case of message file message it is possible to restrict the
file contents by the primitive messages only, or to permit compound
messages there. See Section 7 below.

2.4 Selection Messages

A selection message contains the pointer to a selector function which
returns the discrete (Boolean, integer, etc.) value, and the pointer to
a sequence (list) of (value, pointer to a message) pairs. More general,
a pair may contain, instead of a single value, a list of values or value
intervals, or the special else value. As a particular case, an if message

126



Message composition

may be defined which contains pointer to a Boolean selector function
and pointers to two submessages.

2.5 While Messages

A while message contains the pointer to a Boolean test function and
the pointer to a message.

3 Compound Message Generation

Compound messages are recursive structure. The best language to
describe such structures is LISP. If we work in procedural language
like Pascal, we are to define several procedures creating compound
messages, e.g. (Pascal syntax):

function CreateWhileMessage(PTest: PBooleanFunction;
Body: PMessage): PMessage;
function CreateIfMessage(PTest: PBooleanFunction;
IfPart, ElsePart: PMessage):
PMessage;
function CreateBlockMessage(Head, Tail: PMessage):
PMessage;

Here PMessage is ‘pointer to message’ and PBooleanFunction is
‘pointer to function returning Boolean value’.

Suppose we want to create a while message whose body is a block
message of 3 messages. We write in Turbo Pascall:

CreateWhileMessage (Addr (TestFuncl),
CreateBlockMessage (Addr (Messagel),
CreateBlockMessage (Addr (Message2),
CreateBlockMessage (Addr (Message3),
nil))));

! Turbo Pascal is the registered trademark of Borland International, Inc.

127



A .Colesnicov

The Addr function yields pointer to its argument. Instead of
Addr (Messagel), Addr (Message?2), and Addr (Message3)
we can write another message creating function calls, for compound or
primitive messages. We see that the structure is quite LISP-like.

There is one possible problem. The interpretive message dispatch-
ing algorithm described in Section 4 below will work right only in
the case when the structure of any compound message is a tree, with
different? primitive messages as leafs. The corresponding checking is
simnple and may be performed by message generating functions or by
message using procedures.

With the restriction described above, we may compare the com-
pound message structure with the textual structure of a program in
structural programming paradigm, which is a tree. The case of mes-
sage composition in an arbitrary graph (a net with nodes and transition
conditions) is not so simple to implement and is now under investiga-
tion. The obvious parallel to the last case is the program structure
with labels and goto’s.

See Section 7 below for further discussion on creating compound
messages.

4 Compound Message Interpretation

The message queue dispatches messages to instances of program ob-
jects. The only dispatched messages are primitive ones. Compound
messages are decomposed as follows.

The block compound message is decomposed to its constituent sub-
messages in sequence. It means that if the block message is the one to
dispatch, the first of its constituents is extracted, and the non-empty re-
mainder, being the new block message, is included anew into the queue.
Next time the next constituent will be extracted, etc. Of course, any
constituent may be compound, so the decomposition is recursive.

2You may use several copies of a message; unpermitted are pointers to the same
place.

128



Message composition

The selection compound message is decomposed by calling its selec-
tor function, and then extracting the constituent submessage selected
by the corresponding value. The original selection message disappears.
This selected constituent may be compound as well.

The while compound message is interpreted by calling its test func-
tion. If this call returns true, the constituent body submessage is
selected to process, and the original while message remains into the
queue. If the test function call returns false, the while message is
deleted from the queue without any processing. The constituent sub-
message may be compound.

When the compound message is interpreted, it causes the dispatch-
ing of its terminal constituent primitive messages, in the sequence de-
fined by the compound message structure and selector and test function
values. It would be wrong to dispatch them as the continuous flow, be-
cause each primitive message send to program objects may cause the
new message generation, and in many cases those new messages are
to be processed before the next constituent of the original compound
message.

One possible solution is to attach to each message the absolute
(initial) priority, the priority increment and the current priority. When
the message is included into the queue, its current priority is set equal
to its absolute priority. The queue selects to process messages with
the maximal current priority. If the message is compound and after
it remains non-processed message (block, or while) then the priority
of this remaining part is reset to its absolute priority, and the current
priorities of other messages are increased by their priority increments.
This excludes a situation when some messages would forever stay in
the queue and implements a conception of the fair merge ([3, p. 132
]): “A fair merge ...merges messages from every sender and may not
ignore any sender infinitely...”.

The other solution is to organize messages in several lists and to
attach priorities to the lists, as it was described in [4].

129



A .Colesnicov

5 Additional Message Queue Properties

The message queue itself is to be an object with corresponding methods.
Message inclusion and dispatching are the obvious ones, but it was
experienced that among queue methods are to be requests on its state.
These requests are extremely useful for compound message selector and
test functions when the problem of synchronization of many message
flows appears (see Section 6 below). In selectors and tests, it may
became necessary to ask the queue length, to check the existence in
the queue of particular type messages, to access some information from
messages in the queue, etc.

Another class of useful queue methods are requests on compound
message interpreter state. Examples of useful requests are the cur-
rent number of repetition of while message body, the current depth of
compound or while message nesting, etc.

6 An Example of Message Flow Management

Let us refer to a spelling checker. After the user selects a text file to
check, we have three independent message sources. The first message
flow comes from the checking process, which includes text scan, vocab-
ulary search, screen scrolling etc. The second source is the user which
can at any moment press a button or click the mouse, e.g., to interrupt
the checking. The third source is the suggestion process. When the
scan stops after the error, it is desirable to search in the vocabulary
words which are under some criteria near to the erroneous one. At any
moment user may wish to stop this search if he/she sees the proper
word in the suggestion list.

The implementation of the case by standard means is not so triv-
ial, see [4]. It included the reprogramming of the event queue manager
to make it to generate a broadcast message FindTextScanProcess ev-
ery time when no other messages existed in the system. The scan
process message handler, if such process exists, reacts to this message
by executing its Update method. This includes taking the next word,
checking it against the vocabulary etc. It is difficult to manage many

130



Message composition

independent processes in such manner.

Using the approach with compound messages, we only need, after
text selection, to put into the queue the while message with Scan-
NextWord command message as the body, and with the test function
yielding false at the file end, or at the user request (the user presses
the Esc button, the external keyboard message is processed, and a flag
is set), or when the erroneous word occurs.

7 Message File Creation

The property to replay message files may be useful for demonstrations
and educational software, or in debugging. There are several methods
to create the message file.

The first method is to log primitive messages dispatched from the
queue. The difficulty is that not all messages are to be logged—we need
only those one which were not results of processing previous messages,
i.e., only those external or generated by an object’s own initiative. One
possible solution is to mark each message with a log flag (0—do not
log it, 1—log it). For compound messages, the log flag value of the
message is to be used for all its submessages. The log is to be one of
the queue object actions.

A possible variance of the first method is to log the topmost level
messages, primitive or compound, selected to process. See a discussion
on pointers later in this section.

The second method is to write special program for message file
creation which will contain message generation function as arguments
of the WriteMessage procedure. The method is less desirable because
it is necessary to change the corresponding program each time as we
want to generate slightly different message sequence.

The third method is to define a special language to describe mes-
sages, and to develop the corresponding compiler etc. A difficulty arises
with selector and test functions. This approach may be used, however
being restricted by argument length limits, in generating messages in
the program. We can have a function compiling a message script to a
message.

131



A .Colesnicov

The fourth method is to create a special kind of resource editor to
create message sequences in conversational manner.

Two problems exist in all cases. A problem with selector and test
functions may be solved by storing their names and reconstructing links
dynamically.

The principal problem of message storing is the same as of ob-
ject storing—the storing of pointers. We can dereference pointers to
constituent messages, but even the primitive message may contain a
pointer as the information. Example of the technique may be found
in [2], and another known solutions exists: using identifiers (handles)
instead of pointers etc.

8 Conclusions

If several independent sources asynchronously produce messages which
are in some cases dependent, we are to complicate program structure
in many places to deal with the situation. The proposed approach uses
more complicated message queue manager and compound messages,
and permits to encapsulate the information on message dependence in
messages themselves and in their selection and test functions, simplify-
ing programs and object design, and increasing readability and function
isolation.

References

[1] D.W.Singer, SCENARIOS: An Event Management Package.
Software—Practice and Experience, vol. 11, 521-529 (1981).

[2] Turbo Pascal, Version 6.0, Turbo Vision Guide.
Borland International, Inc., 1990.

[3] Gul Agha, Concurrent Object-Oriented Programming.
Communications of the ACM, vol.33, No. 9, September 1990.

[4] A.Colesnicov, L.Malahova, Event synchronization in object ori-
ented environment—a case study.

132



Message composition

9th International Conference on Control Systems and Computer
Science CSCS9, Conference Preprints, Bucharest, 25-28 May 1993,
vol. II.

A .Colesnicov, Received 3 July, 1995
Institute of Mathematics,

Academy of Sciences of Moldova,

5 Academiei str., Kishinev,

277028, Moldova

phone: (373-2) 738058

e-mail: kae@math.moldova.su

133



