Computer Science Journal of Moldova, vol.3, no.2(8), 1995

The Bergman package shell: an example of
interface to the interpreting system*

A .Colesnicov L.Malahova

Abstract

Engineering problems of creating a conversational shell for
an interpreter are discussed using as the example the shell for
the computational algebra package Bergman. The attention is
focused on selection of the program objects, their interaction and
reusage.

1 Introduction

There is a lot of popular and frequently used batch or teletype-dialog
programs which were embellished by attaching to them correspond-
ing shells. Restricting ourselves by MS-DOS systems ounly, we have
DosShell, Norton Commander (and many others) for MS-DOS, Shez
(and many others) for archivers, TEXshell and Scientific Word for TEX,
etc. All these shells have much common in their external presentation
and behavior. It may be supposed that their internal organizations
may equally have much in common. These engineering aspects are
discussed in the article.

We will use as the example a shell for the computational algebra
package called Bergman [3, 5, 6]. Bergman was developed in the Stock-
holm University, Sweden, by J.Backelin to calculate the Grobner basis
in the commutative and non-commutative cases. The package was im-
plemented in the Portable Standard Lisp (PSL), firstly under UNIX.
Then efforts were applied to further develop the implementation in the

(©1995 by A.Colesnicov, L.Malahova
This work was partially supported by the Royal Swedish Academy of Sciences,
project number 1502.

111

A.Colesnicov, L.Malahova

cooperative project with the Academy of Sciences of Moldova. The
package was successfully transferred to MS-DOS. Now the project is
continuing.

The Bergman package has three function of the uppermost level
which perform typical calculations in three cases. These three function
are composed from about of twenty function of the lower level. In some
cases the user may wish to compose his own upper level function from
those twenty. There is a lot of internal variables and flags whose values
control modes of the calculation.

The used software, Reduce+PSL, is a teletype-dialog system for all
platforms. So, to perform a calculation with Bergman, the user is not
only to prepare the source data, but to type manually all necessary
flags and variables assignments, then, possibly, to enter a new upper
level function definition, and, finally, to call the function to solve his
problem.

In MS-DOS case, the work was partially automatized with the
Bergman shell. Using the shell, the user has advantages of the intuitive
and simple interface, when he clicks buttons and check boxes instead of
entering LISP commands (see Sec. 2.3 below). The DOS-Lisp interac-
tion was implemented in the first shell version through disk files. It was
the compromise solution chosen for its simplicity. With it, the possi-
bility to compose own procedures from the intermediate level functions
still exists (see Sec. 2.3, page 116 on the Task: Run batch menu item).
But the user has no possibility to interact with the system during the
LISP calculations.

The solved problems and the generalizations are discussed below.

Another example of an interpreter shell may be found in [2].

2 The presentation and behavior of the Berg-
man shell

2.1 The shell running loop

The Bergman shell is launched from the PSL interpreter. The sequence
is as follows:

112

The Bergman package shell. ..

1. The Reduce interpreter is started consuming a standard script as
the input program. This input script contains Reduce commands
switching to PSL mode, the LISP function DOSSHELL definition
and the infinite LISP loop calling this function.

2. The PSL calls DOSSHELL.

3. Through the MS-DOS PSL extension — the SYSTEM function — the
MS-DOS shell executive module BERGM_SH.EXE is started under
MS-DOS. It is important that in the moment the PSL interpreter,
the compiled image of the BERGMAN package and all memory
allocated for them is used. We have MS-DOS and the Bergman
shell in the lower memory and the package waiting in the upper
(extended) memory. For all shell operation we have no more than
400 Kbytes.

4. The shell is utilized by the user to prepare LISP input files with
function calls, and data files with polynomials.

5. The shell finishes its work writing prepared files to the disk and
rerouting the PSL interpreter input from that file containing func-
tion calls.

6. The interpreter interprets newly created file and calls functions
solving the algebraic task. The LISP teletype-mode output is
seen on screen.

7. The interpreter input from files is nested. Finishing the algebraic
calculations, it returns to the infinite loop calling shell (step 2).

8. To break the loop, the user may, within the shell, press the
+ key combination or to click with the mouse the Exit
menu item. The shell writes to the disk the program of the single
LISP command ‘(QUIT)’. This command is interpreted on step
6 and forces the loop break by simply stopping the interpreter.

(During the LISP interpretation, the user may press +
to stop.)

113

A.Colesnicov, L.Malahova

2.2 Usual menu items

The Bergman shell was implemented using Borland Pascal with Objects
7.01 and its supplied package Turbo Vision [4]. Its external represen-
tation is usual for such programs.

You see on the screen the shell desktop between the menu bar at
the top and the status line at the bottom. The menu items may be
selected by keys or mouse. We have six usual menu items (File, Edit,
Search, Options, Window, and Help), and three specific items (Task,
View, and Additions).

Through the File menu item we can open files for editing, saves
files, change the current directory, exit temporarily to MS-DOS, etc.
The File: Exit item means writing the LISP program ‘(QUIT)’ as the
next interpreter input before terminating the shell (see step 8 above).
The exit from the shell to LISP calculations (not stopping the inter-
preter) is performed from another item (see below).

We had used a standard Turbo Vision implementation of the File
item. Our experience shows that in many cases the desired extension
to this submenu is File: Erase to delete a file from the disk.

Other usual menu items do not need any comment.

2.3 Specific menu items and their functions

To define the solved task, the user is to pass three menu items —
Task: Options, Task: Flags, and Task: In/Out.

When the user selects the Task: Options menu item, he sees the
Options dialog. This dialog contains the calculation defining panel —
the Commutativity radio buttons, the Strategy radio buttons, and the
Poincaré-Betti and Hilbert series check box. Combining these setting,
the user selects one of the three possible calculations:

Simple Commutative or non-commutative algebra, ordinary Buchber-
ger’s algorithm, no Poincaré-Betti and Hilbert series.

StagSimple Commutative algebra, staggered linear basis algorithm
with substance (SAWS), no Poincaré-Betti and Hilbert series.

114

The Bergman package shell. ..

NcPBH Non-commutative algebra, Buchberger’s strategy, double Poin-
caré-Betti and Hilbert series of the associated monomial ring cal-
culation.

For the Simple calculation the user is to select the Ordinary Strat-
egy not checking PBH Series box. He can select any Commutativity
— commutative with lexicographical order, commutative with reverse
lexicographical order, and non-commutative.

For the StagSimple calculation the user is to select the SAWS
Strategy, commutative (lex or rev-lex) Commutativity not checking
PBH Series box.

For the NcPBH calculation the user is to select the Ordinary Strategy,
non-commutative Commutativity, checking PBH Series box.

The dialog automatically blocks illegal calculation option combi-
nations (see Sec.4 below). To change previously set options, the user
may need to mark them in some order. E.g., if he had solved the
StagSimple problem before, he had marked commutative (lex or rev-
lex) and SAWS buttons, not marking PBH Series box. In the case the
non-commutative button and PBH Series box are disabled, and the
user can not mark them. To select the non-commutative variant, he
marks at first the Ordinary Strategy — then non-commutative button
will be enabled (but PBH Series box remains disabled until the user
does select the non-commutative radio button).

The selected calculation mode is indicated in the lower-right corner
of the screen (in the status line).

Other elements of the Task: Options dialog are independent and
may be selected in any order.

The Task: Flags dialog permits to define desired flags. Depending
of the calculation mode, some flags may be disabled. Except specific,
there are non-specific flags, e.g., if the user wants verbose garbage col-
lection, he marks Verbose GC checking box. It corresponds to the
standard PSL flag ‘GC’.

The last dialog is the Task: In/Out dialog where the user points
to or enters input and output information. Depending of the calcula-
tion mode, there are three different dialogs — Simple defines only one
output result, StagSimple — two, and NcPBH — three. Results may be

115

A.Colesnicov, L.Malahova

directed to the file, or to the screen. The input may be written directly
on the screen, or taken from the file. To define this the user selects
the corresponding button and then presses the key, or clicks the
onscreen — with the mouse.

In any file selection dialog the user has the possibility to open file
for editing. Closing the corresponding edit window he returns to the
same file selection dialog.

Having selected the input and output modes and entering data the
user can press of click the Run button in the Task: In/Out
dialog to start the Bergman calculation. It means that the shell writes
on the disk the LISP program. E.g., the program contains a line ‘(0N
flag name)’ or ‘(OFF flag name)’ for each flag flag name meaning-
ful for the chosen calculation mode, depending of the settings in the
Task: Flags dialog. Then the shell reassigns the PSL input from the
formed file and terminates.

When the calculation is finished and the shell is reentered, the user
can view the LISP echo screen pressing +, and view the output
results through the View menu item.

The user can prepare the whole task in a single file and run it
through the Task: Run batch menu item.

The Additions menu item calls additional programs not included
in the Bergman package. One such program is the Anick’s resolution
calculation [1]. The algorithm was developed by V.Ufnarovski and
implemented in C++ by postgraduate student A.Podoplelov. It is
the test variant which had shown satisfactory results (see [6]) and is
supposed to be rewritten in LISP to be included into the Bergman
package itself. The rewriting would enlarge available memory, would
permit to use intermediate results and the Grébner basis from the LISP
memory, and has other advantages.

The Anick’s resolution program has its own parameters and com-
mand language. The Additions: Anick’s resolution dialog has an
additional window showing the formed command sequence whilst the
user clicks buttons and fills input fields. E.g., if the user presses the
Derive all chains button and then fills the input order field with the
number 5, he sees in the command sequence the ‘d 5 command added

116

The Bergman package shell. ..

to calculate derivations of order 5 chains. The user may edit the formed
command sequence directly in its window. This property was found a
very useful and demonstrative one so it is planned to implement such
window for the main formed LISP program.

3 Object classes for Bergman shell

The shell is a Turbo Vision application and has many commonplace
objects as such. We discuss below the unusual ones.

3.1 Configuration and task

There is two kinds of shell status information to keep between two
subsequent shell executive module calls: the configuration and the task.

The configuration contains almost constant data like the color palet-
te! chosen by the user in the Options: Palette... dialog. The con-
figuration is stored in the BERGM_SH. CFG file.

The current solved task defines the file names, flags and options
settings etc. It is to be kept in the file because the Bergman shell
would be terminated to the moment of algebraic calculations. When
the shell is recalled, the task is restored, all opened dialogs will be filled
with the corresponding data, and the user may change these settings.
The task is stored in the BERGM_SH. INI file.

The usual way to implement the status information keeping is to
write to the file and to read from it a lot of variable values. In the shell
all status defining variables are fields of two objects of TConfiguration
and TTask classes. These objects have methods to load and to store
themselves and to reset system status.

In fact both these object classes are inherited from one which has
the following base properties of configuration and status objects:

1. In constructor, the object searches for the configuration file. If the
corresponding file is not found, it calls its abstract SetDefaults
method and creates a new configuration file.

'Three possibilities are color, black/white, and monochrome (LCD).

117

A.Colesnicov, L.Malahova

2. The object deals with the configuration file signature containing
the version number. If the status file layout is of the lower version,
the object calls its abstract ProcessLowerVersionData method,
and then rewrites the configuration file.

3.2 Extendable clusters

In Turbo Vision, TCluster is the abstract object class from which
radio buttons and check boxes are inherited. The extendable cluster
is the modification of the standard cluster which informs its owner on
changing its status (switching a radio button, checking or unchecking a
box). It is used to simultaneously change the associated objects status,
see Sec. 4 below. The property is desirable for all objects, it would be
great to made it the generic property of all Turbo Vision views adding
it to TView class.

3.3 Radio button extender

The radio button extender is a new object which can be associated with
a particular radio button from the extendable cluster of radio buttons.
The association is alike to that exiting in Turbo Vision between input
lines and history windows, and is described in details in Sec. 4.2 below.

4 The Bergman shell objects interaction

There are many cases in object-oriented design when objects are not
totally independent and the common communication method trough
messages is not sufficient or inconvenient. In the Bergman shell we had
several examples of the situation with different dependency grade.

4.1 Mutually blocking clusters

The external behavior was described in Sec. 2.3. Three calculation
modes are selected by setting combinations of a cluster with 3 radio
buttons, a cluster with 2 radio buttons and a check box. There are 12
possible combinations; 6 combinations are impossible, 3 combinations

118

The Bergman package shell. ..

define the Simple mode, 2 combinations define the StagSimple mode,
1 combination defines the NcPBH mode. May be it would be simpler
to list possible combinations in a cluster of 6 radio buttons, but the
current design reflects algebraic realities.

The problem of blocking the unpermitted combinations was solved
in the HandleEvent method of the Task: Options dialog which con-
tains these clusters. The corresponding object class contains also the
special method Dependencies and the special Boolean field Starting.
The Dependencies method’s argument is an integer code informing
that the Commutativity, the Strategy, or the Poincaré-Betti and Hil-
bert series request is changed.

In the Init constructor, the Starting field becomes true, and
cluster status is restored from the current task. In the HandleEvent
method the Starting flag is tested. If it is True, the Dependencies
method is called thrice with three possible arguments blocking unde-
sired item in any case, and the Starting flag is set to False. This
initiating sequence is executed only once, and its success strongly de-
pends of the fact that the previously set and restored combination is
permitted. The “most initial” combination is set as default when the
task file does not exist, and it is a permitted one.

Three calculation mode clusters are extendable clusters (see Sec. 3.2
above). Being changed, each of them send a message to its owner, the
Task: Options dialog. The dialog’s HandleEvent method simply calls
the Dependencies method with the corresponding code.

The Dependencies method is straightforward. For example, if
Commutativity was changed, it checks the current commutativity; if
it is the commutative case, then it have changed to commutative right
now; so the method locks the Series check box and unlocks the SAWS
strategy, etc.

4.2 Radio button extenders at work

Three In/0ut dialogs include the clusters shown on Fig. 1.
They work as follows: if the user selects the File radio button,
then its extender (you see it as —) became active and may be clicked,

119

A.Colesnicov, L.Malahova

/Cl;tput Groebner basis to\:
() Screen l

[[
(e) File —

Figure 1:Extended radio button (part of In/Out dialog).

or the user can press the key. Moreover, the user can click the
extender, and then the corresponding radio button becomes selected.
There can be several extenders on the screen, but only that one reacts
to the key whose radio button is currently selected (and marked).

The clicked extender shows the standard file dialog to select the
file name. After the dialog is closed, the selected file name is shown
below the radio button. This is analog to the combo boxes known in
MS Windows and other systems.

The extender became active after the corresponding radio but-
ton because the last one is extendable and issues the message when
changed. If the message code is recognized by the extender, and the
button cluster value (button number) equal to that attached to the
extender, the extender becomes active. If the radio button cluster is
switched to another button, the extender becomes inactive, it can not
be clicked and does not react to the key.

The extender keeps the pointer to the associated cluster. If it is
clicked, it activates the cluster and selects the corresponding button.

The desired property of visual object is this possibility to be associ-
ated. It would be great to include the corresponding fields and abstract
methods in the generic TView class.

5 Conclusions
The Bergman shell design posed many interesting engineering problems
and permitted to formulate several requirements to the shell object

classes and to generic classes.

120

The Bergman package shell. ..

File: Erase... is the desired extension for the File submenu.

The possibility to open file for editing is desired in any file se-
lection dialog, with return to the same file selection dialog when
closing this new window. Thus, such windows are to keep in-
formation on desktop status at their opening. The “quick view”
window to show partially the selected file contents may be also
useful for file selection.

If the shell forms data for the system, it is desired to show the
formed data in the separate window, and, in some cases, to per-
mit the user to edit them directly. But this may imply the im-
plementation of the data analyzer to keep the system status in
correspondence with the manually edited data. (It is one of the
forms of the incremental editing principle — at each step the data
are to be correct.)

It was found that the status and configuration information are
to be kept in special objects. An implementation was proposed
based on a generic configuration class.

We found that in many cases objects are more or less associated.
Several methods of the coordination were discussed, including
that implemented in the owning object and that through the
messages transfer and direct links. It was found desirable to pre-
view the possibility of association starting from the most general
level of object classes inheritance.

The designed object classes are reusable and proved their usefulness

in many cases.

Acknowledgments

Authors thank J.Backelin, S.Cojocaru, J.-E.Roos, and V.Ufnarovski for
their help and fruitful discussions. S.Cojocaru had applied invaluable
efforts as alpha-tester of the Bergman shell.

121

A.Colesnicov, L.Malahova

References

[1]

2]

[3]

[5]

D.Anick. On the homology of associative algebras.
Trans. Am. Math. Soc., v. 296, nr. 2, 1986, pp. 87-112.

A.Colesnicov, L.Malahova. A portable interpreter shell and its im-
plementation for a perspective computer.

In: Computer software and programming (Mathematical Investiga-
tions, issue 115). Chiginau, 1990, pp. 92-96 (in Russian).

J.Backelin, R.Froberg. How we proved that there are exactly 924
7-roots.
S.M.Watt, ed. Proc. ISAAC’91, ACM, 1991, pp. 103-111.

Borland Pascal with Objects 7.0. Turbo Vision Version 2.0 Pro-
gramming Guide.
Borland International, Inc., 1992.

J.-E.Roos. A computer-aided study of the graded Lie algebra of a
local commutative Notherian ring.
J. Pure Appl. Algebra, v. 91, 1994, pp. 255-315.

S.Cojocaru, V.Ufnarovski. Noncommutative Grobner basis, Hilbert
series, Anick’s resolution and BERGMAN under MS-DOS.
Computer Science Journal of Moldova, v. 3, nr. 1 (7), 1995, pp.
24-39.

A .Colesnicov, L.Malahova Received 3 July, 1995
Institute of Mathematics,

Academy of Sciences of Moldova,

5 Academiei str., Kishinev,

277028, Moldova

phone: (373-2) 738058

e-mail: kae@Qmath.moldova.su (21mal@math.moldova.su)

122

