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Abstract

The definition and main results connected with Gröbner basis,
Hilbert series and Anick’s resolution are formulated. The method
of the infinity behavior prediction of Gröbner basis in noncommu-
tative case is presented. The extensions of BERGMAN package
for IBM PC compatible computers are described.

1 Main Examples

Let A =< X|R > be a finitely presented associative algebra over field
K. Here are the main examples of algebras that will help us to illus-
trate some following definitions (later we will refer to them as main
examples).

Example 1 A =< x, y|x2 = 0, xy2 = 0 >

Example 2 A =< x, y|x2 = y2 >

Example 3 A =< x, y|x2 − xy >

Example 4 A =< e1, e2, e3, ...|[ei, ej ] = (i− j)ei+j >, where

[x, y] = xy − yx

c©1995 by S.Cojocaru, V.Ufnarovski

24
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Though the last example does not look as finitely presented, it is evi-
dent that e1 and e2 generate the algebra (ek+1 = [ek,e1]

k−1 for k ≥ 2 and
we assume in this example that the characteristic is zero). Slightly less
trivial is the fact that it is sufficient to have only two relations:

[e3, e2] = e5; [e4, e3] = e7

(see [6]). Nevertheless, we will use this example in this infinite presen-
tation to give the reader a possibility to see how definitions work in the
infinite case (and to conclude that sometimes an infinite presentation
is more convenient even from a computational point of view).

This is also an example of an universal enveloping algebra: A =
U(L), where L is a Lie algebra with the same sets of generators and
relations except that the commutator [x, y] is now interpreted as a Lie
product.

2 Hilbert series and global dimension

Note that all algebras in our examples are graded algebras: A =
⊕An,where all components An are finite dimensional and AnAm ⊆
Am+n. For the last example grading is less trivial: en ∈ An.

We restrict our attention on graded algebras and introduce the
following

Definition 1 The generating function HA = HA(t) =∑∞
1 (dimAn)tn is called Hilbert series of an algebra A.

The Hilbert series of a graded algebra is one of our main object of
interest. It is a very useful invariant in the commutative case, but in the
noncommutative case it also contains a lot of important information
about the algebra. First of all, it plays the role of generalized dimension
of an algebra. For example, it has the following trivial properties:

• HA⊕B = HA + HB; HA⊗B = HAHB,

• 1
HA∗B

= 1
HA

+ 1
HB

− 1,
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• If L is a graded Lie algebra, HL =
∑∞

1 antn and A = U(L), then

HA =
∞∏

1

1
(1− tn)an .

Example 5 If A = K < X > is a free algebra, where generators not
necessarily have degree 1, then HA = (1−HX)−1, where HX =

∑
tdeg x

is a generating function for the number of generators of given degree.
Of course, in the case of natural grading (where all generators have
degree 1), it looks as (1− dt)−1, where d is the number of generators.

Example 6 If L is a Lie algebra from our main example 4, then

HL = t + t2 + t3 + · · · ⇒ HA =
∞∏

1

1
1− tn

=
∑

p(n)tn,

where p(n) is the number of partitions. So it is the example with non-
rational Hilbert series.

Example 7 In our main examples 1–3 the Hilbert series is equal to
(1−2t+ t2)−1. It can be directly checked from the first example, but the
next two will be discussed in the sequel.

Secondly, the following two theorems of D.Anick ([1, 2] )shows non-
trivial properties of Hilbert series:

Theorem 1 Let HR be the generating function of the number of min-
imal relations of given degree (and R is non-empty). Then

gl. dimA = 2 ⇔ HA = (1−HX + HR)−1.

Example 8 In our main examples the value of (1−HX +HR) is equal

1. (1− 2t + t2 + t3),

2. (1− 2t + t2),

3. (1− 2t + t2),
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4. (1− t− t2 + t5 + t7),

so only the second and third examples are algebras of global dimension
2.

Theorem 2 For every system of diophantine equations S = 0, there
exists a finitely presented algebra A (which can be constructively ex-
pressed in terms of the coefficients of the S) such that A has global
dimension 2 if and only if the system S = 0 has no solutions.

Moreover this algebra is a Hopf algebra, defined by quadratic relations
only. This theorem has important, though unpleasant:

Corollary 1 One cannot

• find an algorithm that takes relations as input and gives the
Hilbert series as output. (Even more, one cannot detect in gen-
eral if the Hilbert series of a given algebra is equal some fixed
series)

• predict in general the behavior of a Hilbert series, knowing only
finitely many of its coefficients.

3 Normal words and Gröbner basis

Despite pessimistic conclusions in the end of the previous chapter, there
is some hope to find the Hilbert series in some important cases. Let us
introduce some important definitions.

Let S be the set of the all words in the alphabet X (identifying 1
with the empty word). Consider the following ordering on S :

f > g if either the length of word f is greater than that of g or they
have the same length, but f is greater then g lexicographicaly.

(more ingenious, the so called admissible ordering may be consid-
ered too, but we restrict our attention only to this case).

Definition 2 A word f ∈ S is called normal (for A) if it cannot be
written in A as a linear combination of words that are less than f.
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Example 9 In our first main example the words 1, x, y, xy, yx, y2 are
normal, but x2, xy2 are not. The same is true for the second main
example. Why is xy2 not normal? Because xy2 = x3 = y2x.

In the last main example the words of the form ek1
1 ek2

2 · · · ekm
m are

normal according the PBW-theorem, if alphabet and ordering is e1 <
e2 < e3 · · · . It is much more complicated is to express normal words in
the alphabet e1, e2 only.

The following evident theorem explains how normal words can be used
for the calculation of the Hilbert series

Theorem 3 The set N, consisting of all normal words, forms a basis
for the algebra A.

Its Hilbert series can be calculated as HA =
∑∞

0 dntn, where dn is
the number of normal words of degree n.

Following D.Anick, let us introduce

Definition 3 A word f ∈ S is called an obstruction if f is not normal
itself, but every proper subword is normal.

Note that, other expressions (such as ”tips”, for example) are used
instead of ”obstruction”. We denote the set of all obstructions as F.

Example 10 In our main examples:

1. F = {x2, xy2} (evidently)

2. the same (can be proved, as we’ll see later)

3. F = {x2, xyx, xy2x, xy3x, xy4x, ...} (see later too).

4. F = {ejei|j > i}.
Of course, knowing an obstruction set we can easy reconstruct normal
words:

Theorem 4 Let B =< X|F > . Then algebras A and B have the same
sets of normal words and in particular, HA = HB.
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Definition 4 Algebra B from previous theorem is called the monomial
algebra, associated with A.

So, the algebra from our first main example is associated monomial
algebra for our second example. Note also, that all universal enveloping
algebras for Lie algebras with the same Hilbert series have, according
the PBW theorem, the same associated monomial algebra (in some
alphabet). Note also that definitions depend on choice the generator
set (alphabet) and ordering.

So, the main problem is to find F. Because obstructions are not
normal words every fi ∈ F can be written as a linear combination of
normal words: fi = ui.

Definition 5 The set G = {fi−ui} is called a (reduced) Gröbner basis
(for A).

Example 11 In our main examples:

1. G = {x2, xy2} (evidently)

2. G = {x2 − y2, xy2 − y2x}. Those elements we already know, so
we need only to understand why we have no more elements. This
will be explained later.

3. G = {xyk − xyk+1|k = 0, 1, 2, . . .} Explanations later too.

4. G = {ejei − eiej − (j − i)ei+j |j > i}

More general a Gröbner basis for any ideal I is its subset G, such that
the set of highest terms of elements from G is exactly the set of obstruc-
tions for A = K < X > /I. Note that the reduced Gröbner basis may
be easily obtained from an arbitrary Gröbner basis (by selfreducing)
and determined uniquely for a given ordering.

4 Calculating Gröbner basis

Fortunately there exists an algorithm for calculating elements of a
Groöbner basis. Unfortunately the Gröbner basis itself is infinite (and
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that is one of the reasons for pessimistic results above). We describe
the algorithm in a slightly untraditional manner, taking into account
the future generalization. For traditional approach and extra literature
see [7]. First we introduce the important:

Definition 6 A 2-chain is a word f, containing exactly two obstruc-
tions as subwords: one as a prefix of f and second as a suffix. Those
obstructions should have non-trivial intersection. The set of obstruc-
tions will be denoted C2.

Example 12 In our main examples.

1. C2 = {xxx, xxyy}
2. C2 = {xxx, xxyy},
3. C2 = {xykxylx|k, l = 0, 1, 2, 3...}
4. C2 = {ejeiek|j > i > k}.

Example 13 A =< x|x3 >,F = {x3}, C2 = {x4}, but x5 is not 2-
chain, because it contains obstructions as subwords in 3 different places!

Now we describe the algorithm for obtaining all the elements of
Gröbner basis. Suppose, that we know all the elements of degree at
least n. Then we know all normal words of degree at least n, and can
reduce any arbitrary word of degree at least n to its normal form -
the linear combination of normal words. So, we can introduce a linear
operator R0, that being applied to any word of length (n + 1), reduce
its suffix of length n to the normal form. For example, R0(xxx) = xyy
in our second main example.

We also know all 2-chains of degree (n+1). Let f be one of them.
Consider the following algorithm:

1. Let us single out all words in f−R0f, beginning with an obstruc-
tion.

2. Let us replace each of noted obstructions by its normal form.
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3. Apply R0 to the obtained result.

4. In the so obtained element we again single out all the words,
starting with an obstruction.

5. go back to stage 2.

Since the leading words decrease all the time, the process will sooner or
later stabilize. If the obtained stabilized element is not zero, it should
be (up to coefficient) added to Gröbner basis. In this way we get all
elements of Gröbner basis of degree (n+1). Note, that they are not
necessary in the reduced form, but the highest terms are correct, and
using them we can reduce all to obtain the reduced Gröbner basis (if
we need).

Example 14 In the second main example we have from the very be-
ginning one element of Gröbner basis in degree 2: xx− yy. In degree 3
we have the only 2-chain: xxx. Applying our procedure we have:

1. xxx− xyy

2. yyx− xyy

3. yyx− xyy

Stabilization. We need to add new element xyy − yxx to our Gröbner
basis. In degree 4 we have now the only 2-chain: xxyy.

1. xxyy − xyyx

2. yyyy − yyxx

3. yyyy − yyyy = 0.

Stabilization on zero. We have not more 2-chains and it means that
we have got already the Gröbner basis (exactly in the form as that was
written before).
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Example 15 As to our third main example we skip the procedure of
getting Gröbner basis from original relations, but simply show that
the same procedure works for the checking that a given set is really
a Gröbner basis:

Let f = xykxylx be any composition. Then

1. xykxylx− xykxy+l+1

2. xyk+l+1x− xyk+l+2

3. xyk+l+1x− xyk+l+2

4. xyk+l+2 − xyk+l+2 = 0.

5 n−chains and Poincaré series

The next step is to introduce some homological algebra. Let us consider
a graph Γ = (V, E), where the set of vertex V consist of union of the
unit 1, alphabet X and all proper suffices of the obstructions. Edges
E are defined as follows: 1 → x for every x ∈ X and in other cases
f → g if and only if the word fg contains the only obstruction and this
obstruction is its suffix (maybe coinciding with fg).

Example 16 In our main examples 1 and 2 the graph Γ looks like
1

¡ª @Rx y
6°

²
± @Ryy

In the third example vertices (except 1 and y have form ynx and
are connected each other (including itself),

It the fourth main example vertices are ei and (considering 1 as
e∞). Every ei is connected with every ej with i > j.

Definition 7 n−chain is a word, that can be read in graph Γ during a
path of length (n+1), starting from 1. Let Cn be a set of all n−chains.

So,
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• The only −1−chain is 1 itself: C−1 = 1.

• The only 0−chains are letters from the alphabet: C0 = X.

• The only 1−chains are obstructions: C1 = F.

• The only 2−chains are ...2−chains, as they were defined in the
previous section. So, our previous definitions of C2 coincides with
a new one.

Let us enumerate n−chains for n ≥ 2 in some examples

Example 17 In our first two main examples

Cn = {xn+1, xny2}

In the third
Cn = {xyk1xyk2x · · ·xyknx|ki ≥ 0}.

Ih the last main example

Cn = {ei1ei2 . . . ein+1 |i1 > i2 > · · · in+1}.

Definition 8 Monomial Poincaré series for an algebra A is defined as

Pmon
A (s, t) =

∑
cm,ntmsn,

where cm,n is the number of (n + 1)−chains of degree m.

Example 18 In our first two main examples

Pmon
A (s, t) = 1 + 2ts + (t2 + t3)s2 + (t3 + t4)s3 + · · · .

In the third

Pmon
A (s, t) = 1 + 2ts +

∑

m≥n≥2

tmsn = 1 + 2ts + t2s2(
∞∑

k=0

(t + s)k.

In the fourth main example cm,n is equal the number of partitions of m
to n distinct summands.
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Let us recall the definition of classical Poincaré series

Definition 9 A double Poincaré series for an algebra A is defined as
a generating function

PA(s, t) = dim(TorA
n,m(K, K))tmsn,

where TorA
n (K,K) is considered as a graded module.

From the point of view of calculation of the Hilbert series we can restrict
our attention to monomial Poincaré series:

Theorem 5 If A is monomial algebra, then Pmon
A (s, t) = PA(s, t), so

n−chains corresponds to homology of associated monomial algebra.

Theorem 6
H−1

A = PA(−1, t) = Pmon
A (−1, t)

Example 19 In our first two main examples we have

H−1
A = 1− 2t + t2 + t3 − t3 − t4 + t4 + t5 − · · · = 1− 2t + t2

In the third one we have H−1
A = 1− 2t + t2 too. The reader can simply

interpret himself the connections between partitions, that we have got
as a sequence in the last main example.

6 Anick’s resolution

In order to calculate the Poincaré series in general case we construct
Anick’s resolution ([3]):

Cn ⊗A → Cn−1 ⊗A → · · ·C−1 ⊗A → K → 0

It is sufficient to define module homomorphisms dn : Cn⊗A → Cn−1⊗A
only for terms f ⊗ 1. It is convenient to identify Cn ⊗ N with CnN.
Then the map dn is defined by induction as

dn+1(f) = f − indn(f)
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and in : ker dn−1 → KCnN is defined recursively:

in(u) = αû + in(u− αdn(û)),

where û is highest term of u and α is its coefficient.
Note, that:

• d0 calculate, for every non empty word f, its normal form f̄ , i0
acts identically.

• d1 calculate, for any obstruction, f − f̄ , i.e. recover the element
of Gröbner basis from its obstruction. To apply d1 for arbitrary
word of form fs one need to be more careful: d1(fs) = R0(fs−
f̄s). (in the general case one need to use the map Rn : Cn+1 → Cn,
that fixed n−chain in the beginning and reduce the remaining
part to normal form).

• If we collect all the terms that were singled out during the pro-
cess of constructing the new elements of Gröbner basis that was
described above, we get the action of d2 (if we stabilize on 0. If
not, we need first to finish the process, after introducing a new
relation).

Example 20 In our main examples :

1. dn(f) = f for f ∈ Cn and dn(fs) = Rn−1(fs) in general. (those
formulas are valid for every monomial algebra).

2. In tensor language:

d2 : x3 → x2 ⊗ y − xy2 ⊗ 1,

d2 : x2y2 ⊗ 1 → x2 ⊗ y2 − xy2 ⊗ x

7 Finite state automata and Lie algebras

The main problem in noncommutative case is that Gröbner basis is
usually infinite. Nevertheless, using finite state automata we can try
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to predict the infinity behavior of our Gröbner basis or at least the
obstruction set on infinity. The main idea of this approach was de-
scribed in [8] and can be illustrated here by our third main exam-
ple: having sufficiently many terms from obstruction set, for example,
x2, xyx, xy2x, xy3x, xy4x man can predict the whole family: xynx. This
kind of prediction can be formalized in the terms of regular languages
(or equivalently, finite state automata). Rather often this prediction
gives the correct answer, that can be proved using another arguments.
Nevertheless the possibility of prediction are restricted. First of all
it is impossible in general case, as we have mentioned in the second
section. Second, algebras that have regular obstruction set have also
rational Hilbert series and either polynomial or exponential growth.
So, the Hilbert series for our fourth main example could not be pre-
dicted in this manner after finitely many calculations in terms of only
two generators e1, e2. But even in a quite nice class of solvable universal
enveloping algebras those predictions are impossible, as we see:

Theorem 7 [5] Let L be a free solvable Lie algebra of solvability length
k, U(L) be its universal enveloping algebra. If k > 2 then the growth
of L and U(L) is almost exponential (it means, that it is less than
exponential growth [2m] but greater than growth [2mα

] for any α < 1).

8 Bergman package under MS-DOS

BERGMAN is en effective program for calculating the Gröbner ba-
sis (both for commutative and non-commutative case) and monomial
Poincaré series. It was elaborated in Stockholm university (J.Backelin)
for SUN-station (and some other types of computers). Main language is
PSL. In our implementation on IBM-PC we used the original source of
J.Backelin (and his valuable help) ([4]) It can be used under REDUCE
only and has some new additional functions:

• possibility to predict the infinite behavior of the set of obstruc-
tions basing on in finite part.
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• possibility to calculate all Hilbert series using the regular presen-
tation (in original version it can be calculated only up to selected
degree).

• the separate effective program for calculating growth of an alge-
bra (calculations of Hilbert series rather often are restricted by
huge values of intermediate computations).

• possibility to calculate arbitrary term of Anick’s resolution. (im-
plemented by A.Podoplelov).

• shell for more convenient interactive work (implemented by A.
Colesnicov and L. Malahova).

The following known commutative examples were compared with
Maple 5.2 (that also works under MS-DOS and also has the possibility
to work with numbers of arbitrary length) to estimate the effectivity
of implementation.
Examples

1. A1 =< x, y, u, v|x2, y3, x− u + v, y − u− 2v >

2. A2 =< x, y, z, u, t, a|2x2 + 2y2 + 2z2 + 2tt2 + u2 − ua, xy + 2yz +
2zt+2tu− ta, 2xz +2yt+ t2 +2zu−za, 2xt+2zt+2yu−ya, 2x+
2y + 2z + 2t + u− a >

3. A3 =< a, b, c, d, e, z|a + b + c + d + e, ab + bc + cd + de + ea, abc +
bcd+cde+dea+eab, abcd+bcde+cdea+deab+eabc, abcde−z5 >

4. A4 =< a, b, c, d, e, f, z|a+ b+ c+d+e+f, ab+ bc+ cd+de+ef +
fa, abc+ bcd+ cde+def +efa+fab, abcd+ bcde+ cdef +defa+
efab+fabc, abcde+bcdef +cdefa+defab+fabcd, abcdef−z6 >

The last variable in all example was added to homogenize the equations
(Homogeneous input is the only serious restriction for BERGMAN)
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Example Time
BERGMAN MAPLE

A1 1 sec. 3.2 sec.
A2 6 sec. -
A3 12 sec. -
A4 3 min. 21 sec. -

486SX 25 MHz IBM PC compatible computer with 4 MB RAM was
used. The last three examples could not be calculated by MAPLE.
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