
Computer Science Journal of Moldova, vol.3, no.1(7), 1995

List manipulation in Turbo Prolog

V.Cotelea

Abstract

The present paper is concerned with list processing in Turbo
Prolog language. It doesn’t claim to be an exhaustive descrip-
tion of operations which can be performed upon lists. Never-
theless adduced programs are most representative, more or less
known to specialists in logic programming domain. By means of
examples are explained the list manipulation techniques, use of
recursion, declarative comparison of predicates, analysis and fix-
ation of acceptable prototypes and some problems of predicates’
inconsistency. Index terms. Prolog, list, recursion.

Lists are the basic data structure in Turbo Prolog programs and the
most valuable programming technique is recursion. A list is an ordered
sequence of arbitrary length of elements. The order of elements in the
sequence is essential. In case the order is changed we are having a new
list. At the same time the list may be conceived (if desired) at a logical
level as a set, going aside the order of elements.

The list in Turbo Prolog is a binary structure,i.e. the first argument
is the first element, the second is the recursive defined rest of list.
Thus the list is represented as [X|Xs], where arguments X and Xs
describe the head and the tail correspondingly. Here and than, when
it is possible, if X is the list head, then Xs represents the list tail.

Recursion allows us to process the elements of list. To avoid an
infinite recursion there is a necessity of presence of a constant symbol.
This is the empty list, which is presented by []. As the list elements can
be anything: constants, variables, and surely structures that contain
other lists. The only prerequisite is that all elements in a list must
belong to the same type.

c©1995 by V.Cotelea

10

List manipulation in Turbo Prolog

Let’s recollect, that the simplest program in Turbo Prolog language
consists of the following compartments [1]: domains, where the data
types are defined; predicates, in which predicates are declared; clauses,
where facts, clauses, rules are described; and goal compartment.

While processing the lists there may often occur the situation, when
clauses which define a predicate may satisfy some goal, while for an-
other goal they meet with failure. Let’s examine the following defini-
tion of list(Xs) predicate, which has true value, if Xs is a list, the last
element of which has as tail the empty list.

list([|Xs]) : − list(Xs).
list([]).

For these rules the goals list([a, b, c, d]), list([]), list([f(1, 2)]) will
get the true values. In case we put the question list(Xs), then the
program will enter an infinite loop. The above mentioned predicate
has the prototype (i), i.e. input prototype (the term “prototype” is
taken from reference [2]). To eliminate that shortage the clauses may
be written down in other order:

list([]).
list([|Xs]) : − list(Xs).

But for queries of list(Xs) form, the answer always have to be Xs = [],
if the goal is in the program and have enter an infinite loop in case
the goal is entered from the keyboard. Thus this predicate tests only
whether its argument is a list. So the routine has to check right through
until it finds a [] as tail. Now, consider an another definition of the list
predicate, which is not subject to enter an infinite loop.

list([]).
list([|]).

This list predicate’s description has also the output prototype (o). It
tests list’s head only, but not the fact, that its tail contains empty list.
By this description a term is a list if it is an empty list or it has a head
and a tail. Thereby the last definition is not a strict test of the list, as

11

V.Cotelea

the above, but instead it wouldn’t enter an infinite loop in the case the
argument is a variable [3]. And here we shall have two solutions for the
list(Xs) goal: Xs = [] and Xs = [|], depending on the clause order.
Therefore it is recommended, the predicate prototypes to be defined
explicitly by means of free() and bound() (if Turbo Prolog does not
know the value of variable and knows its value, respectively). The
above mentioned examples show the importance of predicate analysis
from the point of view of prototypes they express.

The basic problem in list processing is the membership problem. It
consists in determination whether a given element is the list head. If
so, examination of the list is successful; if not, then the tail of the list
is considered to belong to that of the element. So, we study the head,
but in this case — the head of the tail etc. If in recursion we reach
the empty tail and the process is still not finished, then our search has
failed. In Turbo Prolog language this may be rendered as follows:

member(X, [X|]).
member(X, [|Xs]) : −member(X, Xs).

These clauses have several interesting applications. We ascertain
among them those, which can be used to test the membership of the
given element to the given list by the member(b, [a, b, c]) goal; which
can be used to discover all list’s elements, e.g., member(X, [a, b, c]);
and which can be used to generate lists with a given thing as member,
for example, member(b,Xs). The last goal seems strange, but there
exist programs, which are based on such a use of member relation.

Let’s notify a characteristic feature for query of member(X, [a, b, c])
type. If the goal is in program, than as soon as the first element
is found, the reception of others is stopped. But using the fact, that
member is a nondetermined predicate, we can go from the first clause to
the second one by fail. So the system will determine the following ele-
ment etc, till the whole list would be exhausted. As for member(b,Xs),
the result will be Xs = [b|], i.e. Xs will be a list with b head and the
tail will be any list. But in the common case the last type of goal leads
to an infinite loop.

The beauty of Turbo Prolog lies in the fact, that, often we construct

12

List manipulation in Turbo Prolog

the clauses for a predicate from one point of view, while they work for
another as while. As an example of this, we’ll now construct a predicate
append(Xs, Y s, Zs) to append lists Xs and Y s to a form Zs.

append([], Y s, Y s).
append([X|Xs], Y s, [X|Zs]) : − append(Xs, Y s, Zs)

There are various applications of the append relation as well as for
the member relation. The main interpretation consist in reception of
junction of two lists, which can be expressed by append([a, b, c], [d, e],
Xs) and, which lead to result Xs = [a, b, c, d, e]. For queries of
append(Xs, [c, d], [a, b, c, d]) and append([a, b], Y s, [a, b, c, d]) types, the
answer consists in finding of the first part Xs = [a, b] and second part
Y s = [c, d] of list, which in junction with the second part [c, d] and
with the first part [a, b] result in [a, b, c, d] accordingly. The append
relation may have the (i, i, i) prototype too. For example, queries
append([a, b], [c], [a, b, c]) and append([a, b], [c, d], [e, f]) have the values
true and false respectively. This relation also hold if only Zs list is
known. For example, to find which two lists could be appended to form
a known list, we could use the goal of the form append(Xs, Y s, [a, b, c]).
For which Turbo Prolog will find the solution: Xs = [], Y s = [a, b, c]
and Xs = [a], Y s = [b, c] and Xs = [a, b], Y s = [c] and Xs =
[a, b, c], Y s = [].

The append relation may by used to divide a list into two ones —
one on the left side and another on the right side of a given element of
the list: append(Xs, [c|Y s], [a, b, c, d, e]). Solution is Xs = [a, b], Y s =
[d, e].

Its easy to verify, that the member relation may be defined by the
append relation:

member(X, Y s) : − append(, [X|], Y s).

This definition affirms, that X is an element of the Y s list, if the Y s
list may be divided into two lists, where X is the head of the second
list.

The append relation can be utilized in the definition of the
adjacent(X, Y, Zs) predicate, which is true, if X and Y are adjacent

13

V.Cotelea

elements in the Zs list.

adjacent(X, Y, Zs) : − append(, [X, Y |], Zs).

We can use it to return successive pairs. An example to illustrate
this is the adjacent(X,Y, [a, b, c]) goal. We can instantiate one of
the first two arguments and get the other one, for example the goals
adjacent(X, b, [a, b, c]) and adjacent(a, Y, [a, b, c]). It may be used also
to test whether the two items are adjacent in the given list (the (i, i, i)
prototype). It is obvious that if the third argument is free then the
adjacent predicate enters an infinite loop.

Another easy constructed operation with append relation is the last
relation.

last(X,Xs) : − append(, [X], Xs).

The above clause defines, that X is the last element of the Xs list, if
it is the only element of the second list, which forms the Xs list. The
last predicates has two prototypes. Namely, it can be used to extracts
the last element of a list (the (o, i) prototype), and to test whether the
given element is the last one of the given list (the (i, i) prototype).

The repeated application of append predicate is available to define
the reverse(Xs, Y s) relation, where Y s is the reverse list of the Xs
list. As an example there may be the reverse([a, b, c], [c, b, a]) goal,
for which the true value is attributed. The most “naive” procedure
consists in recursive reversion of the tail, after that the first element
is attached to the end of the reversed tail (majority of examples are
taken from [4]).

reverse([], []).
reverse([X|Xs], Zs) : − reverse(Xs, Y s), append(Y s, [X], Zs).

It’s clear,that the reverse predicate has two prototypes — (i, i) and
(i, o). The list to be reversed should be the first argument.

The reverse relation may be defined without addressing to the
append relation. Let’s define an auxiliary reverse(Xs, Y s, Zs) predi-
cate of arity three to which the value true is attributed in case Zs is

14

List manipulation in Turbo Prolog

the junction of the Y s list and the inverted Xs list.

reverse(Xs, Y s) : − reverse(Xs, [], Y s).
reverse([X|Xs], Acc, Y s) : − reverse(Xs, [X|Acc], Y s).
reverse([], Y s, Y s).

This routine is more efficient than the former one. It’s not difficult
to examine the derivation trees of both predicates and to observe, that
for the first predicate the tree dimension is growing polynomially in
respect to reversed list’s size, while for the last predicate the depen-
dence is linear. This takes place due to the use of an additional data
structure Acc.

Let’s consider the sublist(Xs, Y s) predicate, which receives the
true value, if the Xs list is a sublist of the Y s list. We have to mention,
that the order of list’s elements is essential here. For example, [b, c] is
a sublist of [a, b, c, d], while [c, b] is not.

At the beginning we shall examine, for simplicity, two types of
sublists, that are described by two predicates — prefix and suffix.
The inclusion of auxiliary predicates is a well–known and efficient logic
programming technique, furthermore, they may represent a separate
interest. The prefix(Xs, Y s) predicate holds, if Xs is a beginning sub-
list of the Y s list, e.g. prefix([a, b], [a, b, c]). The antipodal predicate
suffix(Xs, Y s) affirms, that Xs is a final sublist of Ys, for example
suffix([b, c], [a, b, c]).

prefix([],).
prefix([X|Xs], [X|Y s]) : − prefix(Xs, Y s).

suffix(Xs, Xs).
suffix(Xs, [|Y s]) : − suffix(Xs, Y s).

Therefore a sublist can be described in terms of prefix and suffix —
a sublist of a list is the suffix of the list prefix; or a sublist of a list is
the prefix of the list suffix.

a: sublist(Xs, Y s) : − prefix(Ps, Y s), suffix(Xs, Ps).
b: sublist(Xs, Y s) : − prefix(Xs, Ss), suffix(Ss, Y s).

15

V.Cotelea

The first clause define the rule according to which Xs is a sublist of
the Y s list, if there exists such a Ps prefix of the Y s list for which Xs
is a suffix. By analogy with the first definition, the second one says
that Xs is a sublist of the Y s list, if there is such a Ss suffix of the Y s
list for which Xs is a prefix.

The sublist relation may be also recursively defined only by the
prefix relation.

sublist(Xs, Y s) : − prefix(Xs, Y s).
sublist(Xs, [|Y s]) : − sublist(Xs, Y s).

The first clause (the basic clause) of this definition says that Xs is a
sublist of the Y s list, whether Xs is a prefix of Y s. The second clause
(the recursive clause) define, that Xs is a sublist of the [|Y s] list, if
Xs is a sublist of the Y s list.

It is evident that the member relation may be considered as a par-
ticular case of the sublist predicate, if it is defined as follows.

member(X, Xs) : − sublist([X], Xs).

That is X is an element of the Xs list, whether the [X] list with the
only X element is a sublist of the Xs list.

As stated above, the append predicate may be used to find the two
lists that could be appended to form the given list. It follows that
the prefix and suffix predicates can be rendered with the aid of the
append relation.

prefix(Xs, Y s) : − append(Xs, , Y s).
suffix(Xs, Y s) : − append(, Xs, Y s).

Substituting the prefix and suffix predicates in (a) and (b) by their
expressions in the append terms we’ll obtain two supplementary defi-
nitions of the sublist predicate:

c: sublist(Xs, Y s) : − append(Ps, , Y s), append(, Xs, Ps).
d: sublist(Xs, Y s) : − append(Xs, , Ss), append(, Ss, Y s).

These relations are neat but inefficient compared to the precedent
sublist predicates.

16

List manipulation in Turbo Prolog

The next predicate to be considered expresses a relation between
lists and numbers. The listlen(Xs,N) predicate says, that the Xs list’s
length is N , i.e. the Xs list consists of N elements. For example, the
listlen([a, b], 2) goal is true in accordance with the listlen predicate’s
semantics.

listlen([|Xs], N) : − listlen(Xs, N1), N = N1 + 1.
listlen([], 0).

What is the multitude of prototypes for this predicate? One is the
(i, i) prototype above described, which tests whether [a, b] is of length
2. The other (i, o) — may be represented by the listlen([a, b], N) goal
and is being reduced to estimate the length of the [a, b] list.

A new variant of the predicate under consideration may be written
as follows.

listlen([|Xs], N) : − N > 0, N1 = N − 1, listlen(Xs,N1).
listlen([], 0).

This definition can be used either to test the length of a list (the (i, i)
prototype) or to generate lists of a given length (the (o, i) prototype).
On the other hand, it can’t determine the length of a list. For in-
stance, the listlen([a, b, c], N) goal falls short of expectation because it
is subject to enter an infinite loop.

The listindex(Xs, N, X) predicate has three possible prototypes
(i, i, i), (i, o, i), (i, i, o), i.e. it can verify, if in the Xs list the N–est
element is X; it determines on what place in the Xs list is the X
element; and determines what element is found on the place N in the
Xs list.

listindex([X|], 1, X) : − !.
listindex([|Xs], N, Y) : −

bound(N), !, N > 1, M = N − 1, listindex(Xs, M, Y).
listindex([|Xs], N, Y) : − bound(Y), listindex(Xs,M, Y), N = M + 1.

As is observed there can be distinguished two types of concepts
of predicate definitions: procedural and declarative. The Prolog lan-
guage is a declarative language, but this does not mean that during

17

V.Cotelea

the programming process there are not used at all procedural consid-
erations. Declarative considerations prevail, mainly during the time of
solving the problem of definitions’ validity. As a matter of fact, in Pro-
log there are harmoniously combined these two methods: procedural
construction of programs and declarative interpretation of predicate
definitions. We’ll show this during the elaboration of a program which
eliminates the elements from a list.

First step consist in definition the semantics of the predicate
delete(X, Xs, Y s). For elimination of an element from a list three ar-
guments are necessary: the X element meant to elimination; the Xs
list, which can include X; and the Y s list, which does not contain any
X element.

We pass to the procedural approach, considering the recursive part
of the definition of the delete predicate. The recursive argument is
[X|Xs]. There are two cases: X is the element, that has to be elim-
inated from the list or is the element that has not to be eliminated
from the list. In the first case, we describe the recursive elimination
of X from Xs. Such a rule can be the clause delete(X, [X|Xs], Y s) :
− delete(X, Xs, Y s). In the second case, where the element, which
is verified for elimination differs from X, the clause looks like the
first, but the Y s list will have the head different from X, and the tail
will examined for excluding X — delete(X, [Z|Xs], [Z|Y s]) : −X <>
Z, delete(X, Xs, Y s).

Declarative approach in the first case: “Eliminating X from the
[X|Xs] list we obtain Y s, if eliminating X from Xs we obtain Y s”.
Declarative point of view in the second case: “Eliminating X from
[Z|Xs] we obtain the [Z|Y s] list, if X differs from Z, and eliminating
X from Xs we obtain Y s”. The limiting condition is being declared
simply: “By elimination of an any element from the empty list, we
result the empty list” — delete(, [], []). So the total definition of the
delete predicate is as follows:

delete(X, [X|Xs], Y s) : − delete(X, Xs, Y s).
delete(X, [Z|Xs], [Z|Y s]) : −X < > Z, delete(X, Xs, Y s).
delete(, [], []).

18

List manipulation in Turbo Prolog

Let’s make an analysis of this definition. If from the second clause
the condition X < > Z is excluded, then another variant of the delete
relation is obtained. It will be less acceptable, because from the
Xs list not always will be eliminated all X entries. E.g., the goals
delete(b, [a, b, c, d], [a, c, d]), delete(b, [a, b, c], [a, c, b]), delete(b, [a, b, c, d],
[a, b, c]) and delete(b, [a, b, b], [a, b, c, b]) all hold for that variant of defi-
nition.

There should be mentioned, that the above definition, as well as
the new variant accept goal, in which lists do not contain elements
that have to be eliminated. For example, delete(b, [a], [a]). There exist
applications for which such a feature is not desired.

We will examine another predicate which as distinct from the delete
predicate excludes from a list only one entry of a given element.

select(X, [X|Xs], Xs).
select(X, [Y |Y s], [Y |Zs]) : − select(X,Y s, Zs).

Let’s observe that the description of the select predicate is a hy-
brid of the member and delete predicates’ definitions. The declarative
perception of this definition is: “Eliminating the X element from the
[X|Xs] list we obtain the Xs list or eliminating X from [Y |Y s] we
obtain the [Y |Zs] list, if eliminating X from Xs we obtain the Zs
list”.

A special interest presents the (i, o, i) prototype of the select re-
lation. For example the select(b, Y s, [a, c, d]) goal forms the Y s list
introducing the b element into the [a, c, d] list. To emphasize this pro-
totype it is frequently defined a separate relation insert(X, Y s, Zs)
which has the (i, i, o) prototype and where Zs is the received list after
the insertion of X in the Y s list.

insert(x, Y s, Zs) : − select(X,Zs, Y s).

The verification of the fact that the elements in a list are arranged
in a non–decreasing order may be effected through two clauses. The
first rule affirms that any list with a single element is ordered. The
second clause says that a list is ordered, whether the first element of

19

V.Cotelea

the list is not greater than the second one and the list’s tail which
begins by the second element is ordered.

ordered([]).
ordered([X, Y |Y s]) : −X ⇐ Y, ordered([Y |Y s]).

The program of partition of a list into two ones resembles the pro-
gram of elimination of the list’s elements. It consist of checking whether
the head of the current list is greater or not than the element which
determines the partition.

partition([X|Xs], Y, [X|Ls], Bs) : −X ⇐ Y ,
partition(Xs, Y, Ls, Bs).

partition([X|Xs], Y, Ls, [X|Bs]) : −X > Y, partition(Xs, Y, Ls, Bs).
partition([], , [], []).

The declarative interpretations of this definition are: “The partition
of a list with X and Xs as head and tail respectively in relation to the
Y element yields the [X|Ls] and Bs lists, if X is not greater than Y ,
and the partition of the Xs list in relation to Y yields the Ls and Bs
lists” for the first clause. And for the second one it is “The partition
of a list with the X head and the Xs tail in relation to Y yields the
Ls and [X|Bs] lists, if X is greater than Y and the partition of Xs in
relation to Y yields Ls and Bs”. For the limiting rule it will be “The
empty list is partitioned by any element into two empty lists”.

The partition predicate may be efficiently used for quick sort of a
list. The quick sort conception lies in the choice of a list’s element and
in the partition of the list into two lists. One contains greater elements
than the selected element and another contains the remainder. In the
next program the first element of the list is the selected element in
comparison to which the partition is made.

quicksort([X|Xs], Y s) : −
partition(Xs, X,Littles, Bigs),
quicksort(Littles, Ls),
quicksort(Bigs, Bs),
append(Ls, [X|Bs], Y s).

quicksort([], []).

20

List manipulation in Turbo Prolog

The recursive clause of the quicksort predicate’s definition declares:
“Ys is the sorted variant of the [X|Xs] list, whether the Littles and
Bigs lists are the result of the Xs list’s partition in relation to X; and
the Ls and Bs lists are the result of sorting of the Littles and Bigs
lists; and Y s is the result of junction of Ls and [X|Bs].

A list may have other lists as members. The procedure of flattening
a list involves addition of all elements of such lists to the main list in
place of these lists.

flatten([], []) : − !.
flatten([X|Xs], [X|Y s]) : −not(list(X)), f latten(Xs, Y s), !.
flatten([X|Xs], Y s) : − flatten(X, FX),

flatten(Xs, FXs),
append(FX, FXs, Y s).

This is the simplest variant of the flattening procedure which uses
a twofold recursion. The initial constraint statement tells that the
flattening of the empty list produces an empty list. The second clause
puts in a stack the head of the intended list for flattening it. Here the
not(list(X)) restriction is necessary in order not to apply the rule in
case X is a list. The third clause to flatten an arbitrary [X|Xs] list,
where X itself is a list, begins with flattening of the X head and Xs
tail and afterwards appends the flattened lists.

Although the meaning of this program is evident, it achieves not
the most efficient method of flattening.

Lists are an obvious representation of sets, provided they do not
make no assumption about ordering and repetition of lists’ elements.
Below some predicates will be examined which conceive the lists as
sets.

The members relation can be defined easily in terms of member.

members([X|Xs], Y s) : −member(X, Y s),members(Xs, Y s).
members([],).

This predicate determines if every element of Xs is an element of Y s.
So it does not deal with the classic notion of subset. For example,
members([b, b], [a, b, c]) refers the multitude of solutions of the predicate

21

V.Cotelea

and so has rather narrow area of application. More of that, if the
first or the second argument are variable, then the program cycles.
Any argument has to be of the bound type, because of the simple
motive, that it is appealed to the member relation, described at the
beginning of the article. For example, there will be no answer to the
members(Xs, [a, b, c]) query, because Xs permits the repetition of the
elements, and that is why there will be an infinite number of solutions.

These constraints are eliminated by the selects relation that deals
with the subset in the classic sense of the word.

selects([X|Xs], Y s) : − select(X, Y s, Y s1), selects(Xs, Y s1).
selects([],).

The selects relation permits not more repetitions of the elements
in the first list than in the second. Because of this particularity the
program always ends, if the second argument is of the bound type.
Goals of the form selects(Xs, [a, b, c]) get as solution all subsets of the
[a, b, c] set.

The intersection of the two sets is the collection of elements in both
of them.

intersect([], , []).
intersect([X|Xs], Y s, [X|Zs]) : −

member(X,Y s), !, intersect(Xs, Y s, Zs).
intersect([|Xs], Y s, Zs) : − intersect(Xs, Y s, Zs).

This routine may produce the intersection of the two lists, for example,
the intersect([a, b, c], [b, c, d], Zs) goal which has the (i, i, o) prototype.
To test whether a given Zs set is the intersection of two given sets
(as example may be the goal intersect([a, b, c], [b, c, d], [c, b]) with the
(i, i, i) prototype), we must see if the resulting list is a permutation of
the third argument. Thus the correct use of the (i, i, i) prototype of
the intersect predicate is up to the programmer.

The union of two sets is the collection of elements in either one, or
the other.

22

List manipulation in Turbo Prolog

union([], Y s, Y s).
union([X|Xs], Y s, [X|Zs]) : −

not(member(X,Y s)), !, union(Xs, Y s, Zs).
union([|Xs], Y s, Zs) : −union(Xs, Y s, Zs).

As well as with the intersect relation the (i, i, 0) prototype has to be
carefully used. One of the solutions can always be the use of the sorted
lists.

Finally, we remark that all the predicates described in the article
were tested by the system Turbo Prolog version 2.0 and can be freely
used without modifications.

References

[1] K.M.Yin, D.Solomon. Using Turbo Prolog. Moscow, MIR, 1993
(Russian)

[2] A.Janson. Turbo–Prolog compact. Moscow, MIR, 1991 (Russian)

[3] W.F.Clocksin, C.S.Mellish. Programming in Prolog. Moscow,
MIR, 1987 (Russian)

[4] L.Sterling, E.Shapiro. The art of Prolog. Advanced programming
techniques. Moscow, MIR, 1990, (Russian)

V.Cotelea, Received 12 January, 1995
Academy of Economic Studies, Moldova
59, Banulescu–Bodoni str., Kishinev,
277001, Moldova

23

